Navigating the Maze of Deception in Endurance Sports
A Systematic Review
DOI:
https://doi.org/10.51224/SRXIV.453Keywords:
Endurance exercise, pacing, deception, quanitative performanceAbstract
Endurance exercise bouts require prolonged exertion and the precise regulation of energy expenditure. Without accurate knowledge of the task demands and performance metrics (e.g., speed, distance), individuals may struggle to establish or maintain effective pacing strategies. Providing deceptive information about the task can be a useful experimental tool for exploring the phenomenon of pacing and endurance performance. The purpose of this systematic review was to synthesize existing research on the effect of deception on performance outcomes in endurance tasks. An electronic search was performed across 4 databases and 27 studies met the inclusion criteria for the review. Studies investigated deception of time, split pace, power output, anticipated difficulty, speed, previous performance, and competitors’ knowledge within cycling, running, and/or triathlon tasks. Various methodologies, including different types and percentages of deception, were utilized across studies in review. Time deception of ≤ 5% does not appear to influence endurance performance across cycling and running trials, but 10% can influence pacing strategy. Competitor deception appears to improve endurance performance, however the effects of split pace and speed deception had conflicting findings within the literature. Due to the discrepancies across studies and most studies being on cyclists, future research should consider the effects of deceptive feedback in various endurance tasks beyond cycling, as well as in more diverse samples.
Metrics
References
Abbiss, C.R., & Laursen, P.B. (2008). Describing and understanding pacing strategies during athletic competition. Sports Medicine, 38, 239–252. https://doi.org/10.2165/00007256-200838030-00004
Abbiss, C. R., Ross, M. L., Garvican, L. A., Ross, N., Pottgiesser, T., Gregory, J., & Martin, D. T. (2013). The distribution of pace adopted by cyclists during a cross-country mountain bike World Championships. Journal of Sports Sciences, 31(7), 787-794. https://doi.org/10.1080/02640414.2012.751118
Albertus, Y., Tucker, R., Gibson, A. S. C., Lambert, E. V., Hampson, D. B., & Noakes, T.
D. (2005). Effect of distance feedback on pacing strategy and perceived exertion during cycling. Medicine & Science in Sports & Exercise, 37(3), 461-468. https://doi.org/10.1249/01.mss.0000155700.72702.76
American Psychological Association. (n.d.). Active deception. In APA Dictionary of
Psychology. Retrieved May 14, 2024, from https://dictionary.apa.org/active-deception
Ansley, L., Noakes, T., Robson-Ansley, P., & St Clair Gibson, A. (2004). Anticipatory pacing
strategies during supra-maximal exercise lasting more than 30 s. Medicine & Science in Sports & Exercise, 36(2), 309-314. https://doi.org/10.1249/01.MSS.0000113474.31529.C6
Ansdell, P., Thomas, K., Howatson, G., Amann, M., & Goodall, S. (2018). Deception improves
TT performance in well-trained cyclists without augmented fatigue. Medicine and Science in Sports and Exercise, 50(4), 809–816. https://doi.org/10.1249/MSS.0000000000001483
Baden, D. A., Mclean, T. L., Tucker, R., Noakes, T. D., & St Clair Gibson, A. (2005). Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function. British Journal of Sports Medicine, 39, 742–746. http://doi.org/10.1136/bjsm.2004.016980
Baumrind, D. (1985). Research using intentional deception: Ethical issues revisited. American Psychologist, 40(2), 165–174. doi:10.1037/0003-066X.40.2.165
Baden, D. A., Warwick-Evans, L.A., & Lakomy, J. (2004). Am I nearly there? The effect of
anticipated running distance on perceived exertion and attentional focus. Journal of Sport and Exercise Psychology, 26, 1–17. https://doi.org/10.1123/jsep.26.2.215
Beedie, C.J., Lane, A.M. & Wilson, M.G. (2012) A possible role for emotion and emotion
regulation in physiological responses to false performance feedback in 10-mile laboratory cycling. Applied Psychophysiology and Biofeedback 37, 269–277. https://doi.org/10.1007/s10484-012-9200-7
Billaut, F., Bishop, D.J., Schaerz, S., Noakes, T.D (2001). Influence of knowledge of sprint
number on pacing during repeated-sprint exercise. Medicine & Science in Sports &
Exercise, 43(4), 665–72. https://doi.org/10.1249/MSS.0b013e3181f6ee3b
Brick, N. E., Fitzpatrick, B. L., Turkington, R., & Mallett, J. C. (2019). Anticipated task
difficulty provokes pace conservation and slower running performance. Medicine and Science in Sports and Exercise, 51(4), 734–743. https://doi.org/10.1249/MSS.0000000000001844
Castle, P. C., Maxwell, N., Allchorn, A., Mauger, A. R., & White, D. K. (2012). Deception of
ambient and body core temperature improves self-paced cycling in hot, humid conditions. European Journal of Applied Physiology, 112, 377-385. https://doi.org/10.1007/s00421-011-1988-y
Coquart, J. B., Stevenson, A., & Garcin, M. (2011). Causal influences of expected running length
on ratings of perceived exertion and estimation time limit scales. International Journal of Sport Psychology, 42(2), 149-66.
Corbett, J., Barwood, M. J., Ouzounoglou, A., Thelwell, R., & Dicks, M. (2012). Influence of
competition on performance and pacing during cycling exercise. Medicine & Science in
Sports & Exercise, 44(3), 509-515. https://doi.org/10.1249/MSS.0b013e31823378b1
Craig, A. D. (2008). Interoception and emotion: A neuroanatomical perspective. Handbook of
Emotions, 3(602), 272-88.
Davies, M. J., Clark, B., Garvican-Lewis, L. A., Welvaert, M., Gore, C. J., & Thompson, K. G.
(2019). The potential to change pacing and performance during 4000-m cycling time trials using hyperoxia and inspired gas-content deception. International Journal of Sports Physiology and Performance, 14(7), 949–957. https://doi.org/10.1123/ijspp.2018-0335
Demarie, S., Pycke, J. R., Pizzuti, A., & Billat, V. (2023). Pacing of human locomotion on
land and in water: 1500 m swimming vs. 5000 m running. Applied Sciences, 13(11),
https://doi.org/10.3390/app13116455
Ducrocq, G. P., Hureau, T. J., Meste, O., & Blain, G. M. (2017). Increased fatigue
response to augmented deceptive feedback during cycling time trial. Medicine and Science in Sports and Exercise, 49(8), 1541–1551. https://doi.org/10.1249/MSS.0000000000001272
Edwards, A. M., & Polman, R. C. J. (2013). Pacing and awareness: brain regulation of physical activity. Sports Medicine, 43, 1057-1064. https://doi.org/10.1007/s40279-013-0091-4
Eston, R., Stansfield, R., Westoby, P., & Parfitt, G. (2012). Effect of deception and expected
exercise duration on psychological and physiological variables during treadmill running
and cycling. Psychophysiology, 49(4), 462-469. https://doi.org/10.1111/j.1469-8986.2011.01330.x
Faulkner, J., Arnold, T., & Eston, R. (2011). Effect of accurate and inaccurate distance feedback
on performance markers and pacing strategies during running. Scandinavian Journal of
Medicine & Science in Sports, 21(6), e176-e183. https://doi.org/10.1111/j.1600-0838.2010.01233.x
Hampson, D. B., Gibson, A. S. C., Lambert, M. I., Dugas, J. P., Lambert, E. V., & Noakes, T. D.
(2004). Deception and perceived exertion during high-intensity running bouts. Perceptual and Motor Skills, 98(3), 1027-1038. https://doi.org/10.2466/pms.98.3.1027-1038
Higgins, J. P. T., Li, T., Sterne, J., et al. (Eds.). (2021). Revised Cochrane risk of bias tool
for randomized trials (RoB 2) additional considerations for crossover trials. Retrieved from https://www.riskofbias.info/welcome/rob-2-0-tool/rob-2-for-crossover-trials
Hu, L., Motl, R. W., McAuley, E., & Konopack, J. F. (2007). Effects of self-efficacy on physical
activity enjoyment in college-aged women. International Journal of Behavioral
Medicine, 14, 92-96. https://doi.org/10.1007/BF03004174
Hutchinson, J.C. & De Lucia, B. (in press). Attention allocation during exercise performed at
various intensities. In M. Bigliassi & E. Filho (Eds.). Sport and Exercise
Psychophysiology. Springer.
Jones, H. S., Williams, E. L., Bridge, C. A., Marchant, D., Midgley, A. W., Micklewright, D., &
Mc Naughton, L. R. (2013). Physiological and psychological effects of deception on
pacing strategy and performance: A review. Sports Medicine, 43, 1243-1257.
https://doi.org/10.1007/s40279-013-0094-1
Jones, H. S., Williams, E. L., Marchant, D. C., Sparks, S. A., Bridge, C. A., Midgley, A. W., &
Mc Naughton, L. R. (2016a). Deception has no acute or residual effect on cycling time trial performance but negatively effects perceptual responses. Journal of Science and Medicine in Sport, 19(9), 771–776. https://doi.org/10.1016/j.jsams.2015.12.006
Jones, H. S., Williams, E. L., Marchant, D., Sparks, S. A., Bridge, C. A., Midgley, A. W., Mc
Naughton, L. R. (2016b). Improvements in cycling time trial performance are not sustained following the acute provision of challenging and deceptive feedback. Frontiers in Physiology, 7, 221884. https://doi.org/10.3389/fphys.2016.00399
Lima-Silva, A. E., Bertuzzi, R. C., Pires, F. O., Barros, R. V., Gagliardi, J. F., Hammond, J.,
Kiss, M.A., Bishop, D. J. (2010). Effect of performance level on pacing strategy during a 10-km running race. European Journal of Applied Physiology, 108, 1045-1053. https://doi.org/10.1007/s00421-009-1300-6
McCormick, A., Meijen, C., & Marcora, S. (2015). Psychological determinants of whole-body
endurance performance. Sports Medicine, 45(7), 997–1015.
https://doi.org/10.1007/s40279-015-0319-6
McGibbon, K. E., Pyne, D. B., Shephard, M. E., & Thompson, K. G. (2018). Pacing in swimming: A systematic review. Sports Medicine, 48, 1621-1633. https://doi.org/10.1007/s40279-018-0901-9
Marquez, D.X., Jerome, G.J., McAuley, E. (2002). Self-efficacy manipulation and state anxiety
responses to exercise in low active women. Psychology and Health. 17(6):783–91.
https://doi.org/10.1080/0887044021000054782
Mauger, A. R., Jones, A. M., & Williams, C. A. (2011). The effect of non-contingent and
accurate performance feedback on pacing and time trial performance in 4-km track cycling. British Journal of Sports Medicine, 45(3), 225–229. https://doi.org/10.1136/bjsm.2009.062844
Micklewright, D., Papadopoulou, E., Swart, J., & Noakes, T. (2010). Previous experience
influences pacing during 20 km time trial cycling. British Journal of Sports Medicine, 44(13), 952-960. https://doi.org/10.1136/bjsm.2009.057315
Motl, R. W., Konopack, J. F., Hu, L., & McAuley, E. (2006). Does self-efficacy influence leg
muscle pain during cycling exercise?. The Journal of Pain, 7(5), 301-307.
https://doi.org/10.1016/j.jpain.2005.11.009
Morton, R. H. (2009). Deception by manipulating the clock calibration influences cycle
ergometer endurance time in males. Journal of Science and Medicine in Sport, 12(2), 332-337. https://doi.org/10.1016/j.jsams.2007.11.006
Nikolopoulos, V., Arkinstall, M.J., & Hawley, J.A. (2001). Pacing strategy in simulated cycle
time- trials is based on perceived rather than actual distance, Journal of Science and Medicine in Sport, 4(2): 212-219. https://doi.org/10.1016/S1440-2440(01)80031-1
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... &
Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews. British Medical Journal, 372. https://doi.org/10.1136/bmj.n71
Paterson, S., & Marino, F. E. (2004). Effect of deception of distance on prolonged cycling
performance. Perceptual and Motor Skills, 98(3), 1017-1026. https://doi.org/10.2466/pms.98.3.1017-1026
Parry, D., & Micklewright, D. (2014). Optic flow influences perceived exertion and distance
estimation but not running pace. Medicine & Science in Sports & Exercise, 46(8), 1658-1665. https://doi.org/10.1249/MSS.0000000000000257
Pires, F. O., & Hammond, J. (2012). Manipulation effects of prior exercise intensity
feedback by the borg scale during open-loop cycling. British Journal of Sports Medicine, 46(1), 18–22. https://doi.org/10.1136/bjsm.2010.079053
Puleo, N. A., & Abraham, K. A. (2018). External feedback does not affect running pace in
recreational runners. International Journal of Exercise Science, 11(5), 384.
Shei, R. J., Thompson, K., Chapman, R., Raglin, J., & Mickleborough, T. (2016). Using
deception to establish a reproducible improvement in 4-km cycling time trial performance. International Journal of Sports Medicine, 37(5), 341-346. https://doi.org/10.1055/s-0035-1565139
Smits, B. L., Polman, R. C., Otten, B., Pepping, G. J., & Hettinga, F. J. (2016). Cycling
in the absence of task-related feedback: Effects on pacing and performance. Frontiers in Physiology, 7, 348. https://doi.org/10.3389/fphys.2016.00348
Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates,
C. J., Cheng, H. Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., McAleenan, A., … Higgins, J. P. T. (2019). RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed.), 366, l4898. https://doi.org/10.1136/bmj.l4898
Stoate, I., Wulf, G., Lewthwaite, R. (2012). Enhanced expectancies improve movement
efficiency in runners. Journal of Sports Science. 30(8), 37–41.
https://doi.org/10.1080/02640414.2012.671533
Stone, M. R., Thomas, K., Wilkinson, M., Stevenson, E., St. Clair Gibson, A., Jones, A. M., &
Thompson, K. G. (2017). Exploring the performance reserve: Effect of different magnitudes of power output deception on 4,000 m cycling time-trial performance. PloS One, 12(3), e0173120. https://doi.org/10.1371/journal.pone.017312
Stone, M., Thomas, K., Wilkinson, M., Jones, A., St Clair Gibson, A., & Thompson, K. (2012).
Effects of deception on exercise performance: Implications for determinants of fatigue in humans. Medicine & Science in Sports & Exercise, 44(3), 534-541. https://doi.org/10.1249/MSS.0b013e318232cf77
Taylor, D., & Smith, M. F. (2014). Effects of deceptive running speed on physiology, perceptual
responses, and performance during sprint-distance triathlon. Physiology & Behavior, 133,
-52. https://doi.org/10.1016/j.physbeh.2014.05.002
Taylor, D., & Smith, M. F. (2017). The influence of mid-event deception on psychophysiological
status and pacing can persist across consecutive disciplines and enhance self-paced multi-modal endurance performance. Frontiers in Physiology, 8, 6. https://doi.org/10.3389/fphys.2017.00006
Thomas, G., & Renfree, A. (2010). The effect of secret clock manipulation on 10 km cycle
time trial performance. International Journal of Arts and Sciences, 3(9), 193-202.
Terra, A., Paulucio, D., Machado, M., Bishop, D. J., Koch, A. J., Alvarenga, R., & Pompeu, F.
A. (2021). Effect of unaware clock manipulation on pacing strategy and performance in recreational athletes. Applied Sciences, 11(17), 8062. https://doi.org/10.3390/app11178062
Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic.
Faily Medicine, 37(5), 360-363.
Waldron, M., Villerius, V., & Murphy, A. (2014). Augmenting performance feedback does
not affect 4 km cycling time-trials in the heat. Journal of Sports Sciences, 33(8), 786–794. https://doi.org/10.1080/02640414.2014.962579
Wingfield, G., Marino, F. E., & Skein, M. (2019). Deception of cycling distance on pacing
strategies, perceptual responses, and neural activity. European Journal of Physiology, 471, 285-299. https://doi.org/10.1007/s00424-018-2218-9
Williams, E. L., Jones, H. S., Sparks, S. A., Marchant, D. C., Midgley, A. W., Bridge,
C. A., & McNaughton, L. R. (2016). Deceptive manipulation of competitive starting strategies influences subsequent pacing, physiological status, and perceptual responses during cycling time trials. Frontiers in Physiology, 7, 536. https://doi.org/10.3389/fphys.2016.00536
Williams, E. L., Jones, H. S., Sparks, S. A., Marchant, D. C., Midgley, A. W., & Mc Naughton, L. R. (2015). Competitor presence reduces internal attentional focus and improves 16.1 km cycling time trial performance. Journal of Science and Medicine in Sport, 18(4), 486-491. https://doi.org/10.1016/j.jsams.2014.07.003
Wilson, M. G., Lane, A. M., Beedie, C. J., & Farooq, A. (2012). Influence of accurate and
inaccurate ‘split-time’ feedback upon 10-mile time trial cycling performance. European Journal of Applied Physiology, 112(1), 231-236. https://doi.org/10.1007/s00421-011-1977-1
Downloads
Posted
License
Copyright (c) 2024 Bianca De Lucia, Jasmin Hutchinson , Anna Bottino (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.