Practice schedules affect how learners correct their errors
Secondary analysis from a contextual interference study
DOI:
https://doi.org/10.51224/SRXIV.143Keywords:
errors, phase space, random practice, timingAbstract
Contextual interference is one of the most established effects in motor learning research; random practice schedules are associated with poorer performance (in the short-term) but superior learning (in the longer-term) when compared to block practice schedules. However, the way this interference affects learners on a trial-to-trial basis remains poorly understood. We present a secondary data analysis of N=84 healthy young adults, replicating the contextual interference effect in a time estimation task. We used the determinant of a correlation matrix to measure the amount of order in participants’ responses. The determinant is conceptually equivalent to the unexplained variance (1-r2) but applies to higher dimensional spaces. We calculated this determinant in two different phase spaces: (1) Trial Space, which was the determinant of the previous 5 trials (lagged constant error 0-4); and (2) Target Space, the determinant of the previous 5 trials of the same target. The distinction in phase space is critical because for blocked practice the previous trial is almost always the same target, but for random practice the previous trial is almost never the same target. In Trial Space, there was no significant difference between groups (p=0.98) and no Group x Lag interaction (p=0.54), although there was an effect of Lag (p<0.01). In Target Space, there were effects of Group (p=0.02), Lag (p<0.01), and a Group x Lag interaction (p=0.03). Participants who practiced using random schedules showed smaller determinants overall, which got smaller as more past trials were included (i.e., increasingly correlated responses). This increase in orderliness was due to the random group having positively correlated errors from trial-to-trial in Target Space. We argue this “response inertia” in the random practice group suggests a greater reliance on the retrieval of the target time from memory. Data from the novel analyses presented herein support the reconstruction account of the contextual interference effect and help integrate the effect with other learning principles in psychology (e.g., retrieval practice being beneficial for long-term recall).
Metrics
References
Albert, S. T., & Shadmehr, R. (2016). The neural feedback response to error as a teaching signal for the motor learning system. Journal of Neuroscience, 36(17), 4832-4845.
Albert, S. T., & Shadmehr, R. (2018). Estimating properties of the fast and slow adaptive processes during sensorimotor adaptation. Journal of Neurophysiology, 119(4), 1367- 1393. https://doi.org/10.1152/jn.00197.2017
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.
Bernstein, N. (1966). The co-ordination and regulation of movements. The co-ordination and regulation of movements. Pergamon Press, London.
Brady, F. (2004). Contextual interference: a meta-analytic study. Perceptual and motor skills, 99(1), 116-126.
Broadbent, D. P., Causer, J., Williams, A. M., & Ford, P. R. (2017). The role of error processing in the contextual interference effect during the training of perceptual-cognitive skills. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1329-1342. http://dx.doi.org/10.1037/xhp0000375
Coltman, S. K., Cashaback, J. G., & Gribble, P. L. (2019). Both fast and slow learning processes contribute to savings following sensorimotor adaptation. Journal of Neurophysiology, 121(4), 1575-1583. https://doi.org/10.1152/jn.00794.2018
Cross, E. S., Schmitt, P. J., & Grafton, S. T. (2007). Neural substrates of contextual interference during motor learning support a model of active preparation. Journal of Cognitive Neuroscience, 19(11), 1854–1871.
Galea, J. M., Vazquez, A., Pasricha, N., Orban de Xivry, J. J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21(8), 1761-1770.
Haith, A. M., & Krakauer, J. W. (2013). Model-based and model-free mechanisms of human motor learning. In Progress in motor control (pp. 1-21). Springer, New York, NY.
Kim, S., Oh, Y., & Schweighofer, N. (2015). Between-trial forgetting due to interference and time in motor adaptation. PloS one, 10(11), e0142963. https://doi.org/10.1371/journal.pone.0142963
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26.
Lawrence, M. A., & Lawrence, M. M. A. (2016). Package ‘ez’. R package version, 4(0).
Lee, T. D., Eliasz, K. L., Gonzalez, D., Alguire, K., Ding, K., & Dhaliwal, C. (2016). On the role of error in motor learning. Journal of Motor Behavior, 48(2), 99-115. DOI: 10.1080/00222895.2015.1046545
Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology: Human Learning and Memory, 9(4), 730–746. https://doi.org/10.1037/0278-7393.9.4.730
Lee, T. D., & Magill, R. A. (1985). Can forgetting facilitate skill acquisition? In D. Goodman, R. B. Wilberg, & I. M. Franks (Eds.), Differing perspectives in motor learning, memory, and control (pp. 3–21). Elsevier Science.
Lee, J. Y., & Schweighofer, N. (2009). Dual adaptation supports a parallel architecture of motor memory. Journal of Neuroscience, 29(33), 10396-10404. https://doi.org/10.1523/JNEUROSCI.1294-09.2009
Lee, T. D., & Simon, D. A. (2004). Contextual interference. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory and practice, (pp. 29-44). Routledge.
Lohse, K. R., Jones, M., Healy, A. F., & Sherwood, D. E. (2014). The role of attention in motor control. Journal of Experimental Psychology: General, 143(2), 930. https://doi.org/10.1037/a0032817
Lohse, K.R., Miller, M.W., Daou, M., Valerius, W., Jones, M. (2020). Dissociating the contributions of reward-prediction errors to trial-level adaptation and long-term learning. Biological Psychology, 149, 107775. DOI: 10.1016/j.biopsycho.2019.107775
Long, J. D. (2012). Longitudinal data analysis for the behavioral sciences using R. Sage.
Marchal-Crespo, L., Michels, L., Jaeger, L., López-Olóriz, J., & Riener, R. (2017). Effect of error augmentation on brain activation and motor learning of a complex locomotor task. Frontiers in Neuroscience, 11, 526. doi: 10.3389/fnins.2017.00526
Margalit, D., Rabinoff, J., & Rolen, L. (2017). Interactive linear algebra. Georgia Institute of Technology.
Maxwell, J. P., Masters, R. S. W., Kerr, E., & Weedon, E. (2001). The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology Section A, 54(4), 1049-1068.
McDougle, S. D., Bond, K. M., & Taylor, J. A. (2015). Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. Journal of Neuroscience, 35(26), 9568-9579. doi: 10.1523/JNEUROSCI.5061-14.2015
Merbah, S., & Meulemans, T. (2011). Learning a motor skill: Effects of blocked versus random practice a review. Psychologica Belgica, 51, 15.
Pauwels, L., Swinnen, S. P., & Beets, I. A. (2014). Contextual interference in complex bimanual skill learning leads to better skill persistence. PloS one, 9(6), e100906. https://doi.org/10.1371/journal.pone.0100906
Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24(3), 362-378.
Pressing, J., & Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill. Biological Cybernetics, 76(5), 339-347.
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., & Zelaznik, H. N. (2018). Motor control and learning: A behavioral emphasis. Human Kinetics.
Shea, J. B. & Morgan R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 179-187.
Schweighofer, N., Lee, J. Y., Goh, H. T., Choi, Y., Kim, S. S., Stewart, J. C., ... & Winstein, C. J. (2011). Mechanisms of the contextual interference effect in individuals poststroke. Journal of Neurophysiology, 106(5), 2632-2641. DOI: 10.1152/jn.00399.2011
Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.
Snijders, T. A., & Bosker, R. J. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling. sage.
Thomas, J.L., Fawver, B., Taylor, S., Miller, M.W., Williams, A.M., & Lohse, K.R., (2021). Using error-estimation to probe the psychological processes underlying contextual interference effects. Human Movement Science, 79, 102854. https://doi.org/10.1016/j.humov.2021.102854
Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23-25.
van Beers, R. J., van der Meer, Y., & Veerman, R. M. (2013). What autocorrelation tells us about motor variability: insights from dart throwing. PloS ONE, 8(5), e64332. https://doi.org/10.1371/journal.pone.0064332
Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L., & Kievit, R. A. (2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7(6), 632-638. https://doi.org/10.1177/1745691612463078
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., ... & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.
Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312-321.
Wymbs, N. F., & Grafton, S. T. (2009). Neural substrates of practice structure that support future off-line learning. Journal of Neurophysiology, 102(4), 2462-2476. https://doi.org/10.1152/jn.00315.2009
Downloads
Posted
Versions
- 2022-07-12 (2)
- 2022-04-06 (1)
License
Copyright (c) 2022 Sarah Taylor, Bradley Fawver, Joseph Thomas, A. Mark Williams, Keith Lohse
This work is licensed under a Creative Commons Attribution 4.0 International License.