Preprint / Version 2

Practice schedules affect how learners correct their errors

Secondary analysis from a contextual interference study

##article.authors##

  • Sarah Taylor University of Utah
  • Bradley Fawver US Army Medical Research Directorate-West, Walter Reed Army Institute of Research
  • Joseph Thomas University of Utah
  • A. Mark Williams Institute for Human and Machine Cognition, Pensacola, FL
  • Keith Lohse Washington University School of Medicine https://orcid.org/0000-0002-7643-3887

DOI:

https://doi.org/10.51224/SRXIV.143

Keywords:

errors, phase space, random practice, timing

Abstract

Contextual interference is an established phenomenon in learning research; random practice schedules are associated with poorer performance, but superior learning compared to blocked practice schedules. We present a secondary analysis of N=84 healthy young adults, replicating the contextual interference effect in a time estimation task. We used the determinant of a correlation matrix to measure the amount of order in participant responses. We calculated this determinant in different phase spaces: Trial Space, the determinant of the previous 5 trials (lagged constant error 0-4); and Target Space, the determinant of the previous 5 trials of the same target. In Trial Space, there was no significant difference between groups (p=0.98) and no Group x Lag interaction (p=0.54), although there was an effect of Lag (p<0.01). In Target Space, there were effects of Group (p=0.02), Lag (p<0.01), and a Group x Lag interaction (p=0.03). Ultimately, randomly scheduled practice was associated with adaptive corrections but positive correlations between errors from trial to trial (e.g., overshoots followed by smaller overshoots). Blocked practice was associated with more adaptive corrections but uncorrelated responses. Our findings suggest that random practice leads to the retrieval and updating of the target from memory, facilitating long term retention and transfer.

Metrics

Metrics Loading ...

References

Adams, J. A. (1968). Response feedback and learning. Psychological Bulletin, 70, 486.

Albert, S. T., & Shadmehr, R. (2016). The neural feedback response to error as a teaching signal for the motor learning system. Journal of Neuroscience, 36(17), 4832-4845.

Albert, S. T., & Shadmehr, R. (2018). Estimating properties of the fast and slow adaptive processes during sensorimotor adaptation. Journal of Neurophysiology, 119(4), 1367-1393. https://doi.org/10.1152/jn.00197.2017

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Bernstein, N. (1966). The co-ordination and regulation of movements. The co-ordination and regulation of movements. Pergamon Press, London.

Bjork, R. A. (1988). Retrieval practice and the maintenance of knowledge. Practical aspects of memory: Current research and issues, 1, 396-401.

Brady, F. (2004). Contextual interference: a meta-analytic study. Perceptual and motor skills, 99(1), 116-126.

Broadbent, D. P., Causer, J., Williams, A. M., & Ford, P. R. (2017). The role of error processing in the contextual interference effect during the training of perceptual-cognitive skills. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1329-1342. http://dx.doi.org/10.1037/xhp0000375

Coltman, S. K., Cashaback, J. G., & Gribble, P. L. (2019). Both fast and slow learning processes contribute to savings following sensorimotor adaptation. Journal of Neurophysiology, 121(4), 1575-1583. https://doi.org/10.1152/jn.00794.2018

Cross, E. S., Schmitt, P. J., & Grafton, S. T. (2007). Neural substrates of contextual interference during motor learning support a model of active preparation. Journal of Cognitive Neuroscience, 19(11), 1854–1871.

Fox, J., & Weisberg, S. (2018). An R companion to applied regression. Sage publications.

Haith, A. M., & Krakauer, J. W. (2013). Model-based and model-free mechanisms of human motor learning. In Progress in motor control (pp. 1-21). Springer, New York, NY.

Kievit, R. A., Frankenhuis, W. E., Waldorp, L. J., & Borsboom, D. (2013). Simpson's paradox in psychological science: a practical guide. Frontiers in Psychology, 4, 513.

Kim, S., Oh, Y., & Schweighofer, N. (2015). Between-trial forgetting due to interference and time in motor adaptation. PloS ONE, 10(11), e0142963. https://doi.org/10.1371/journal.pone.0142963

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26.

Lawrence, M. A., & Lawrence, M. M. A. (2016). Package ‘ez’. R package version, 4(0).

Lee, T. D., & Carnahan, H. (1990). Bandwidth knowledge of results and motor learning: More than just a relative frequency effect. The Quarterly Journal of Experimental Psychology, 42(4), 777-789.

Lee, T. D., Eliasz, K. L., Gonzalez, D., Alguire, K., Ding, K., & Dhaliwal, C. (2016). On the role of error in motor learning. Journal of Motor Behavior, 48(2), 99-115. DOI: 10.1080/00222895.2015.1046545

Lee, T. D., & Magill, R. A. (1983). The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology: Human Learning and Memory, 9(4), 730–746. https://doi.org/10.1037/0278-7393.9.4.730

Lee, T. D., & Magill, R. A. (1985). Can forgetting facilitate skill acquisition? In D. Goodman, R. B. Wilberg, & I. M. Franks (Eds.), Differing perspectives in motor learning, memory, and control (pp. 3–21). Elsevier Science.

Lee, J. Y., & Schweighofer, N. (2009). Dual adaptation supports a parallel architecture of motor memory. Journal of Neuroscience, 29(33), 10396-10404. https://doi.org/10.1523/JNEUROSCI.1294-09.2009

Lee, T. D., & Simon, D. A. (2004). Contextual interference. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory and practice, (pp. 29-44). Routledge.

Li, Y., & Wright, D. L. (2000). An assessment of the attention demands during random-and blocked-practice schedules. The Quarterly Journal of Experimental Psychology Section A, 53(2), 591-606.

Lohse, K. R., Jones, M., Healy, A. F., & Sherwood, D. E. (2014). The role of attention in motor control. Journal of Experimental Psychology: General, 143(2), 930. https://doi.org/10.1037/a0032817

Lohse, K.R., Miller, M.W., Daou, M., Valerius, W., Jones, M. (2019). Dissociating the contributions of reward-prediction errors to trial-level adaptation and long-term learning. Biological Psychology, 149, 107775. DOI: 10.1016/j.biopsycho.2019.107775

Margalit, D., Rabinoff, J., & Rolen, L. (2017). Interactive linear algebra. Georgia Institute of Technology.

McDougle, S. D., Bond, K. M., & Taylor, J. A. (2015). Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. Journal of Neuroscience, 35(26), 9568-9579. doi: 10.1523/JNEUROSCI.5061-14.2015

Merbah, S., & Meulemans, T. (2011). Learning a motor skill: Effects of blocked versus random practice a review. Psychologica Belgica, 51, 15.

Pauwels, L., Swinnen, S. P., & Beets, I. A. (2014). Contextual interference in complex bimanual skill learning leads to better skill persistence. PloS one, 9(6), e100906. https://doi.org/10.1371/journal.pone.0100906

Roediger III, H. L., & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in cognitive sciences, 15(1), 20-27.

RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.

Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th Ed.). Human kinetics.

Schmidt, R. A., Young, D. E., Swinnen, S., & Shapiro, D. C. (1989). Summary knowledge of results for skill acquisition: support for the guidance hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 352.

Shea, J. B. & Morgan R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 179-187.

Shea, J. B., & Zimny, S. T. (1983). Context effects in memory and learning movement information. Advances in Psychology, 12, 345-366.

Shea, J. B., & Zimny, S. T. (1988). Knowledge incorporation in motor representation. In Advances in psychology (Vol. 50, pp. 289-314). North-Holland.

Schweighofer, N., Lee, J. Y., Goh, H. T., Choi, Y., Kim, S. S., Stewart, J. C., ... & Winstein, C. J. (2011). Mechanisms of the contextual interference effect in individuals poststroke. Journal of Neurophysiology, 106(5), 2632-2641. DOI: 10.1152/jn.00399.2011

Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Thomas, J.L., Fawver, B., Taylor, S., Miller, M.W., Williams, A.M., & Lohse, K.R., (2021). Using error-estimation to probe the psychological processes underlying contextual interference effects. Human Movement Science, 79, 102854. https://doi.org/10.1016/j.humov.2021.102854

Thorndike, E. L. (1927). The law of effect. The American Journal of Psychology, 39(1/4), 212-222.

Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23-25.

van Beers, R. J., van der Meer, Y., & Veerman, R. M. (2013). What autocorrelation tells us about motor variability: insights from dart throwing. PloS ONE, 8(5), e64332. https://doi.org/10.1371/journal.pone.0064332

Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L., & Kievit, R. A. (2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7(6), 632-638. https://doi.org/10.1177/1745691612463078

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., ... & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.

Winstein, C. J., & Schmidt, R. A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 677.

Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312-321.

Wymbs, N. F., & Grafton, S. T. (2009). Neural substrates of practice structure that support future off-line learning. Journal of Neurophysiology, 102(4), 2462-2476. https://doi.org/10.1152/jn.00315.2009

Downloads

Posted

2022-04-06 — Updated on 2022-07-12

Versions