Peak Power and Body Mass as Predictors of Bone Strength in Healthy Male and Female Adults
DOI:
https://doi.org/10.51224/SRXIV.1Keywords:
pQCT, bone strength, peak power, body massAbstract
Objective: The purpose of this study was to examine whether a common, non-invasive, muscular fitness field test was a better predictor of bone strength compared to body mass in healthy adults. .
Methods: Hierarchical multiple regression analyses were used to determine the amount of variance that peak power explained for bone strength of the tibia compared to body mass. Peak power was estimated from maximal vertical jump height using the Sayer’s equation. Peripheral quantitative computed tomography scans were used to assess bone strength measures.
Results: Peak power (ꞵ=0.541, p<0.001) contributed more to the unique variance in bone strength index for compression compared to body mass (ꞵ=-0.102, p=0.332). For polar strength strain index, the beta coefficient for body mass remained significant (ꞵ=0.257, p<0.006), however peak power’s contribution was similar (ꞵ=0.213, p= 0.051).
Conclusion: Compared to body mass, peak power was a better predictor for trabecular bone strength but similar to body mass for cortical bone strength. These data provide additional support for the development of a vertical jump test as a simple, objective, valid and reliable measure to monitor bone strength among youth and adult populations.
Metrics
References
Novotny SA, Warren GL, Hamrick MW. Aging and the Muscle-Bone Relationship. Physiology. 2015;30(1):8-16. doi:10.1152/physiol.00033.2014
Runge M, Rittweger J, Russo CR, Schiessl H, Felsenberg D. Is muscle power output a key factor in the age-related decline in physical performance? A comparison of muscle cross section, chair-rising test and jumping power. Clin Physiol Funct Imaging. 2004;24(6):335-340. doi:10.1111/j.1475-097X.2004.00567.x
Rantalainen T, Nikander R, Heinonen A, et al. Neuromuscular performance and body mass as indices of bone loading in premenopausal and postmenopausal women. Bone. 2010;46(4):964-969. doi:10.1016/j.bone.2010.01.002
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726-1733. doi:10.1007/s00198-006-0172-4
von Friesendorff M, McGuigan FE, Wizert A, et al. Hip fracture, mortality risk, and cause of death over two decades. Osteoporos Int. 2016;27(10):2945-2953. doi:10.1007/s00198-016-3616-5
Guzon-Illescas O, Perez Fernandez E, Crespí Villarias N, et al. Mortality after osteoporotic hip fracture: incidence, trends, and associated factors. J Orthop Surg. 2019;14(1):203. doi:10.1186/s13018-019-1226-6
Cheung C-L, Lam KSL, Cheung BMY. Evaluation of Cutpoints for Low Lean Mass and Slow Gait Speed in Predicting Death in the National Health and Nutrition Examination Survey 1999–2004. J Gerontol A Biol Sci Med Sci. 2016;71(1):90-95. doi:10.1093/gerona/glv112
Bischoff-Ferrari HA, Orav JE, Kanis JA, et al. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int. 2015;26(12):2793-2802. doi:10.1007/s00198-015-3194-y
United Nations (2017) World Population Prospects: 2017 Revision, Department of Economic and Social Affairs, New York.
Frost HM. Bone’s mechanostat: A 2003 update. Anat Rec. 2003;275A(2):1081-1101. doi:10.1002/ar.a.10119
Haapasalo H, Kontulainen S, Sievänen H, Kannus P, Järvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone. 2000;27(3):351-357. doi:10.1016/S8756-3282(00)00331-8
Kontulainen S, Sievänen H, Kannus P, Pasanen M, Vuori I. Effect of Long-Term Impact-Loading on Mass, Size, and Estimated Strength of Humerus and Radius of Female Racquet-Sports Players: A Peripheral Quantitative Computed Tomography Study Between Young and Old Starters and Controls. J Bone Miner Res. 2003;18(2):352-359. doi:10.1359/jbmr.2003.18.2.352
Hind K, Hayes L, Basterfield L, Pearce MS, Birrell F. Objectively-measured sedentary time, habitual physical activity and bone strength in adults aged 62 years: the Newcastle Thousand Families Study. J Public Health. 2020;42(2):325-332. doi:10.1093/pubmed/fdz029
Gabel L, Macdonald HM, Nettlefold L, McKay HA. Physical Activity, Sedentary Time, and Bone Strength From Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT study. J Bone Miner Res. 2017;32(7):1525-1536. doi:https://doi.org/10.1002/jbmr.3115
Warden SJ, Mantila Roosa SM, Kersh ME, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci. 2014;111(14):5337-5342. doi:10.1073/pnas.1321605111
Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z. Does Obesity Really Make the Femur Stronger? BMD, Geometry, and Fracture Incidence in the Women’s Health Initiative-Observational Study. J Bone Miner Res. 2009;24(8):1369-1379. doi:10.1359/jbmr.090307
Janz KF, Letuchy EM, Burns TL, Francis SL, Levy SM. Muscle Power Predicts Adolescent Bone Strength: Iowa Bone Development Study. Med Sci Sports Exerc. 2015;47(10):2201-2206. doi:10.1249/MSS.0000000000000648
Baptista F, Mil-Homens P, Carita A, Janz K, Sardinha L. Peak Vertical Jump Power as a Marker of Bone Health in Children. Int J Sports Med. 2016;37(08):653-658. doi:10.1055/s-0042-105290
Higgins S, Sokolowski CM, Vishwanathan M, et al. Predicting Diaphyseal Cortical Bone Status Using Measures of Muscle Force Capacity: Med Sci Sports Exerc. 2018;50(7):1433-1441. doi:10.1249/MSS.0000000000001581
Yingling V, Reichert R, Denys A, et al. Peak vertical jump power predicts radial bone strength better than hand grip strength in healthy individuals. Commun Kinesiol. 2021;1(2). doi:10.51224/cik.v1i2.13
Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA. Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact. 2008;8(4):401-409.
Cointry G, Ferretti JL, Reina PS, Nocciolono LM, Rittweger J, Capozza RF. The pQCT “Bone Strength Indices”(BSIs, SSI). Relative mechanical impact and diagnostic value of the indicators of bone tissue and design quality employed in their calculation in healthy men and pre-and post-menopausal women. J Musculoskelet Neuronal Interact. 2014;14(1):29-40.
Glüer C-C, Blake G, Lu Y, Blunt1 BA, Jergas1 M, Genant1 HK. Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5(4):262-270. doi:10.1007/BF01774016
Sayers SP, Harackiewicz DV, Harman EA, Frykman PN, Rosenstein MT. Cross-validation of three jump power equations. Med Sci Sports Exerc. 1999;31(4):572-577.
Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191. doi:10.3758/BF03193146
Yingling VR, Webb S, Inouye C, O J, Sherwood JJ. Muscle power predicts bone strength in Division II athletes. J Strength Cond Res. Published online August 29, 2017. doi:10.1519/JSC.0000000000002222
Frank AW, Labas MC, Johnston JD, Kontulainen SA. Site-Specific Variance in Radius and Tibia Bone Strength as Determined by Muscle Size and Body Mass. Physiother Can. 2012;64(3):292-301. doi:10.3138/ptc.2010-40BH
Binkley TL, Specker BL. Muscle-bone relationships in the lower leg of healthy pre-pubertal females and males. :5.
Ashe MC, Liu-Ambrose TYL, Cooper DML, Khan KM, McKay HA. Muscle power is related to tibial bone strength in older women. Osteoporos Int. 2008;19(12):1725-1732. doi:10.1007/s00198-008-0655-6
King MM. The vertical jump test as a health promotion screening tool for predicting bone strength in young adults. Published online May 1, 2016. doi:10.17077/etd.py5a63vq
Ferretti JL, Cointry GR, Capozza RF, Capiglioni R, Chiappe MA. Analysis of biomechanical effects on bone and on the muscle-bone interactions in small animal models. J Musculoskelet Neuronal Interact. 2001;1(3):263-274.
Augat P, Iida H, Jiang Y, Diao E, Genant HK. Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res Off Publ Orthop Res Soc. 1998;16(5):629-635. doi:10.1002/jor.1100160517
Additional Files
Posted
Versions
- 2021-09-07 (3)
- 2021-08-12 (2)
- 2021-08-11 (1)
Categories
License
Copyright (c) 2021 Vanessa Yingling, Jastine Bugayong, Candace Juhala, Eric Ma, Katelyn Carvalho, Sarah Kwong, Andrew Denys
This work is licensed under a Creative Commons Attribution 4.0 International License.