Preprint has been submitted for publication in journal
Preprint / Version 1

Intrinsic motivation magnifies the effects of physical activity on perceived cognitive health

##article.authors##

  • Silvio Maltagliati Université Grenoble Alpes https://orcid.org/0000-0001-7199-0599
  • David Raichlen
  • Olivier Dupuy
  • Luc Pelletier
  • Philippe Sarrazin
  • Thibault Deschamps
  • Boris Cheval

DOI:

https://doi.org/10.51224/SRXIV.533

Keywords:

cognition, exercise, motivation, health, moderation

Abstract

Objective. Among its health benefits, physical activity improves cognitive health, but the strength of this association remains heterogeneous across studies. While previous research focused on structural factors of physical activity as potential moderating factors (e.g., duration, type), we aimed to examine whether the type of motivation (i.e., intrinsic versus extrinsic forms of motivation) could moderate the strength of the association between physical activity and cognitive health.

Methods. Participants were 512 Canadian students (72% female and a mean age = 20 ± 5 years). Seven days after assessing their intrinsic and more extrinsic motivations toward physical activity, moderate-to-vigorous physical activity and perceived cognitive health were measured by questionnaire. Linear regression models were used to examine the moderating effect of motivation on the association between physical activity and cognitive health.

Results. Intrinsic motivation moderated the association between moderate-to-vigorous physical activity and self-reported cognitive health (b = .12, 95CI = .04; .20, p = .004). As hypothesized, simple slope analyses showed that the association between moderate-to-vigorous physical and cognitive health was positive when intrinsic motivation was high (at sample mean + 1SD, b = .14, 95CI = .03; .25, p = .013), but not significant when intrinsic motivation was low (at sample mean - 1SD, b = -.09, 95CI = -.24; .06, p = .220). However, the moderating effect of extrinsic forms motivation was not significant (ps. > .071).

Conclusion. In addition to structural aspects of physical activity, it is important to consider motivation toward physical activity when examining its effect on cognitive health.

Metrics

Metrics Loading ...

References

Ando, S., Fujimoto, T., Sudo, M., Watanuki, S., Hiraoka, K., Takeda, K., Takagi, Y., Kitajima, D., Mochizuki, K., Matsuura, K., Katagiri, Y., Nasir, F. M., Lin, Y., Fujibayashi, M., Costello, J. T., McMorris, T., Ishikawa, Y., Funaki, Y., Furumoto, S., … Tashiro, M. (2024). The neuromodulatory role of dopamine in improved reaction time by acute cardiovascular exercise. The Journal of Physiology, 602(3), 461–484. https://doi.org/10.1113/JP285173

Boere, K., Lloyd, K., Binsted, G., & Krigolson, O. E. (2023). Exercising is good for the brain but exercising outside is potentially better. Scientific Reports, 13(1), 1140. https://doi.org/10.1038/s41598-022-26093-2

Cheval, B., Csajbók, Z., Formánek, T., Sieber, S., Boisgontier, M. P., Cullati, S., & Cermakova, P. (2021). Association between physical-activity trajectories and cognitive decline in adults 50 years of age or older. Epidemiology and Psychiatric Sciences, 30, e79. https://doi.org/10.1017/S2045796021000688

Cheval, B., Darrous, L., Choi, K. W., Klimentidis, Y. C., Raichlen, D. A., Alexander, G. E., Cullati, S., Kutalik, Z., & Boisgontier, M. P. (2023). Genetic insights into the causal relationship between physical activity and cognitive functioning. Scientific Reports, 13(1), 5310. https://doi.org/10.1038/s41598-023-32150-1

Cheval, B., Orsholits, D., Sieber, S., Courvoisier, D., Cullati, S., & Boisgontier, M. P. (2020). Relationship between decline in cognitive resources and physical activity. Health Psychology, 39(6), 519–528. https://doi.org/10.1037/hea0000857

Cheval, B., Sivaramakrishnan, H., Maltagliati, S., Fessler, L., Forestier, C., Sarrazin, P., Orsholits, D., Chalabaev, A., Sander, D., Ntoumanis, N., & Boisgontier, M. P. (2020). Relationships between changes in self-reported physical activity, sedentary behaviour and health during the coronavirus (COVID-19) pandemic in France and Switzerland. Journal of Sports Sciences, 1–6. https://doi.org/10.1080/02640414.2020.1841396

Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U. L. F., Yngve, A., & Sallis, J. F. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise, 35(8), 1381–1395.

de Pais, I. M. N. M., Rabelo, W. L., Ferreira, N. V., Ferri, C. P., Suemoto, C. K., & Gomes Gonçalves, N. (2024). Association of Moderate and Vigorous Physical Activity With Cognitive Performance. Alzheimer Disease & Associated Disorders, 38(3), 249–256. https://doi.org/10.1097/WAD.0000000000000637

Di Domenico, S. I., & Ryan, R. M. (2017). The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00145

Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34–48. https://doi.org/10.1016/j.dcn.2015.11.005

Dupuy, O., Ludyga, S., Ortega, F. B., Hillman, C. H., Erickson, K. I., Herold, F., Kamijo, K., Wang, C.-H., Morris, T. P., Brown, B., Esteban-Cornejo, I., Solis-Urra, P., Bosquet, L., Gerber, M., Mekari, S., Berryman, N., Bherer, L., Rattray, B., Liu-Ambrose, T., … Cheval, B. (2024). Do not underestimate the cognitive benefits of exercise. Nature Human Behaviour, 8(8), 1460–1463. https://doi.org/10.1038/s41562-024-01949-x

Ekkekakis, P., Hall, E. E., & Petruzzello, S. J. (2005). Some like It Vigorous: Measuring Individual Differences in the Preference for and Tolerance of Exercise Intensity. Journal of Sport and Exercise Psychology, 27(3), 350–374. https://doi.org/10.1123/jsep.27.3.350

Ferreira-Vieira, T. H., Bastos, C. P., Pereira, G. S., Moreira, F. A., & Massensini, A. R. (2014). A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice. Hippocampus, 24(1), 79–88. https://doi.org/10.1002/hipo.22206

Furzer, B., Rebar, A., Dimmock, J. A., More, A., Thornton, A. L., Wright, K., Colthart, A., & Jackson, B. (2021). Exercise is medicine… when you enjoy it: Exercise enjoyment, relapse prevention efficacy, and health outcomes for youth within a drug and alcohol treatment service. Psychology of Sport and Exercise, 52, 101800. https://doi.org/10.1016/j.psychsport.2020.101800

Hakun, J. G., Benson, L., Qiu, T., Elbich, D. B., Katz, M., Shaw, P. A., Sliwinski, M. J., & Mossavar-Rahmani, Y. (2025). Cognitive Health Benefits of Everyday Physical Activity in a Diverse Sample of Middle-Aged Adults. Annals of Behavioral Medicine, 59(1). https://doi.org/10.1093/abm/kaae059

Hamer, M., Muniz Terrera, G., & Demakakos, P. (2018). Physical activity and trajectories in cognitive function: English Longitudinal Study of Ageing. Journal of Epidemiology and Community Health, 72(6), 477–483. https://doi.org/10.1136/jech-2017-210228

Hill, M. N., Titterness, A. K., Morrish, A. C., Carrier, E. J., Lee, T. T. ‐Y., Gil‐Mohapel, J., Gorzalka, B. B., Hillard, C. J., & Christie, B. R. (2010). Endogenous cannabinoid signaling is required for voluntary exercise‐induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus, 20(4), 513–523. https://doi.org/10.1002/hipo.20647

Hillman, C. H., McAuley, E., Erickson, K. I., Liu-Ambrose, T., & Kramer, A. F. (2019). On mindful and mindless physical activity and executive function: A response to Diamond and Ling (2016). Developmental Cognitive Neuroscience, 37, 100529. https://doi.org/10.1016/j.dcn.2018.01.006

Hou, M., Herold, F., Zhang, Z., Ando, S., Cheval, B., Ludyga, S., Erickson, K. I., Hillman, C. H., Yu, Q., Liu-Ambrose, T., Kuang, J., Kramer, A. F., Chen, Y., Costello, J. T., Chen, C., Dupuy, O., Pindus, D. M., McMorris, T., Stiernman, L., & Zou, L. (2024). Human dopaminergic system in the exercise-cognition link. Trends in Molecular Medicine, 30(8), 708–712. https://doi.org/10.1016/j.molmed.2024.04.011

Howland, M., Tatsuoka, C., Smyth, K. A., & Sajatovic, M. (2017). Evaluating PROMIS(®) applied cognition items in a sample of older adults at risk for cognitive decline. Psychiatry Research, 247, 39–42. https://doi.org/10.1016/j.psychres.2016.10.072

Iso-Markku, P., Kujala, U. M., Knittle, K., Polet, J., Vuoksimaa, E., & Waller, K. (2022). Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case–control studies. British Journal of Sports Medicine, 56(12), 701–709. https://doi.org/10.1136/bjsports-2021-104981

Kinnafick, F.-E., & Thøgersen-Ntoumani, C. (2014). The effect of the physical environment and levels of activity on affective states. Journal of Environmental Psychology, 38, 241–251. https://doi.org/10.1016/j.jenvp.2014.02.007

Knab, A. M., & Lightfoot, J. T. (2010). Does the difference between physically active and couch potato lie in the dopamine system? International Journal of Biological Sciences, 133–150. https://doi.org/10.7150/ijbs.6.133

Lai, J.-S., Wagner, L. I., Jacobsen, P. B., & Cella, D. (2014). Self-reported cognitive concerns and abilities: two sides of one coin? Psycho-Oncology, 23(10), 1133–1141. https://doi.org/10.1002/pon.3522

Ludyga, S., Gerber, M., Pühse, U., Looser, V. N., & Kamijo, K. (2020). Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nature Human Behaviour, 4(6), 603–612. https://doi.org/10.1038/s41562-020-0851-8

Maltagliati, S., Rebar, A., Fessler, L., Forestier, C., Sarrazin, P., Chalabaev, A., Sander, D., Sivaramakrishnan, H., Orsholits, D., Boisgontier, M. P., Ntoumanis, N., Gardner, B., & Cheval, B. (2021). Evolution of physical activity habits after a context change: The case of COVID‐19 lockdown. British Journal of Health Psychology, bjhp.12524. https://doi.org/10.1111/bjhp.12524

Maltagliati, S., Sarrazin, P., Fessler, L., Lebreton, M., & Cheval, B. (2022). Why people should run after positive affective experiences instead of health benefits. Journal of Sport and Health Science. https://doi.org/10.1016/j.jshs.2022.10.005

Maltagliati, S., Sarrazin, P., Isoard-Gautheur, S., Pelletier, L., Rocchi, M., & Cheval, B. (2023). Automaticity mediates the association between action planning and physical activity, especially when autonomous motivation is high. Psychology & Health, 1–17. https://doi.org/10.1080/08870446.2023.2188886

McMorris, T., Barwood, M., & Corbett, J. (2018). Central fatigue theory and endurance exercise: Toward an interoceptive model. Neuroscience & Biobehavioral Reviews, 93, 93–107. https://doi.org/10.1016/j.neubiorev.2018.03.024

Raichlen, D. A., Foster, A. D., Gerdeman, G. L., Seillier, A., & Giuffrida, A. (2012). Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the ‘runner’s high.’ Journal of Experimental Biology, 215(8), 1331–1336. https://doi.org/10.1242/jeb.063677

Ryan, R., & Deci, E. (2017a). Self-determination theory. Basic psychological needs in motivation, development and wellness (G. Press, Ed.).

Ryan, R., & Deci, E. (2017b). Self-determination theory. Basic psychological needs in motivation, development and wellness (G. Press, Ed.).

Sheldon, K. M., & Elliot, A. J. (1998). Not all Personal Goals are Personal: Comparing Autonomous and Controlled Reasons for Goals as Predictors of Effort and Attainment. Personality and Social Psychology Bulletin, 24(5), 546–557. https://doi.org/10.1177/0146167298245010

Singh, B., Bennett, H., Miatke, A., Dumuid, D., Curtis, R., Ferguson, T., Brinsley, J., Szeto, K., Petersen, J. M., Gough, C., Eglitis, E., Simpson, C. E., Ekegren, C. L., Smith, A. E., Erickson, K. I., & Maher, C. (2025). Effectiveness of exercise for improving cognition, memory and executive function: a systematic umbrella review and meta-meta-analysis. British Journal of Sports Medicine, bjsports-2024-108589. https://doi.org/10.1136/bjsports-2024-108589

Teixeira, P. J., Carraça, E. V, Markland, D., Silva, M. N., & Ryan, R. M. (2012). Exercise, physical activity, and self-determination theory: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 78. https://doi.org/10.1186/1479-5868-9-78

Vella, S. A., Aidman, E., Teychenne, M., Smith, J. J., Swann, C., Rosenbaum, S., White, R. L., & Lubans, D. R. (2023). Optimising the effects of physical activity on mental health and wellbeing: A joint consensus statement from Sports Medicine Australia and the Australian Psychological Society. Journal of Science and Medicine in Sport, 26(2), 132–139. https://doi.org/10.1016/j.jsams.2023.01.001

Warburton, D. E. R. (2006). Health benefits of physical activity: the evidence. Canadian Medical Association Journal, 174(6), 801–809. https://doi.org/10.1503/cmaj.051351

White, R. L., Parker, P. D., Lubans, D. R., MacMillan, F., Olson, R., Astell-Burt, T., & Lonsdale, C. (2018). Domain-specific physical activity and affective wellbeing among adolescents: an observational study of the moderating roles of autonomous and controlled motivation. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 87. https://doi.org/10.1186/s12966-018-0722-0

Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin & Review, 23(5), 1382–1414. https://doi.org/10.3758/s13423-015-0999-9

Zou, L., Herold, F., Cheval, B., Wheeler, M. J., Pindus, D. M., Erickson, K. I., Raichlen, D. A., Alexander, G. E., Müller, N. G., Dunstan, D. W., Kramer, A. F., Hillman, C. H., Hallgren, M., Ekelund, U., Maltagliati, S., & Owen, N. (2024). Sedentary behavior and lifespan brain health. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2024.02.003

Downloads

Posted

2025-04-16