Preprint / Version 1

Female youth triple jumpers execute two different step techniques

##article.authors##

  • Alessa Jaspert
  • Janina Tennler
  • Brent J. Raiteri
  • Daniel Hahn

DOI:

https://doi.org/10.51224/SRXIV.525

Keywords:

track and field, jumping, athletic performance, triple jump, OptoJump

Abstract

The optimal triple jump technique remains a matter of debate, particularly regarding the step execution among female youth athletes. Consequently, we assessed the triple jump kinematics of 37 female youth athletes with photocells to investigate how step execution affects triple jump performance. We found that step phase percentage was bimodally distributed and that step execution was not correlated with triple jump distance. The hop-step transition, determined as delta hop-step phase percentages and velocities, was also not correlated with triple jump distance. However, we identified two distinct triple jump techniques with a velocity gain (VG) or a velocity loss (VL) during the step. For the VG and VL techniques, athletes performed shorter and longer steps, and longer and shorter jumps, respectively. Moreover, the average horizontal velocity during the hop and step was positively correlated with triple jump distance. In contrast to previous literature focusing on step phase percentage, our results indicate that female youth athletes can either gain or lose velocity during the step phase of triple jump without comprising performance. Consequently, estimating hop and step phase velocities could allow coaches to better understand their athletes’ triple jump technique.

 

Metrics

Metrics Loading ...

References

Allen, S. J., Yeadon, M. R. F., & King, M. A. (2016). The effect of increasing strength and approach velocity on triple jump performance. Journal of Biomechanics, 49(16), 3796–3802. https://doi.org/10.1016/j.jbiomech.2016.10.009

Bae, Y.‑S. (2011). Biomechanics Research Project in the IAAF World Championships Daegu 2011.

Eurosport. (2020, August 1). Rojas breaks world record in Triple Jump | ATHLETICS - FINAL Highlights | Olympic Games - Tokyo 2020 [Video]. https://www.youtube.com/watch?v=PH_Yy50KlWg

Fukashiro, S., Iimoto, Y., Kobayashi, H., & Miyashita, M. (1981). A biomechanical study of the triple jump. Medicine and Science in Sports and Exercise, 13(4), 233–237. https://doi.org/10.1249/00005768-198104000-00005

Fukashiro, S., & Miyashita, M. (1983). An estimation of the velocities of three take-off phases in 18-m triple jump. Medicine and Science in Sports and Exercise, 15(4), 309–312. https://doi.org/10.1249/00005768-198315040-00010

Haberland, H.‑D., & Lohmann, W. (1985). Analyse des Dreisprungniveaus in der Altersklasse 15 und Ableitung für das Aufbautraining. Theorie Und Praxis Des Leistungssports, 23(1), 12–26.

Hay, J. G. (1993). Citius, altius, longius (faster, higher, longer): The biomechanics of jumping for distance. Journal of Biomechanics, 26, 7–21. https://doi.org/10.1016/0021-9290(93)90076-q

Hay, J. G. (1999). Effort Distribution and Performance of Olympic Triple Jumpers. Journal of Applied Biomechanics, 15(1), 36–51. https://doi.org/10.1123/jab.15.1.36

Hommel, H. (2009). Scientific Research Project. Biomechanical Analyses at the 12th IAAF World Championships in Athletics. Final Report. Triple Jump.

Jaitner, T., van Haren, A., & Hahn, D. (2016). Kinematic step-parameters and triple jump performance in female youth athletes.: 21st Annual Congress of the European College of Sport Science, 6th-9th July 2016, Vienne, Austria.

Jaspert, A., Jaitner, T., & Hahn, D. (2017). Differences and similarities of kinematic triple jump parameters between youth and elite athletes.: 22nd Annual Congress of the European College of Sport Science, 5th-8th July 2017, Essen, Germany.

Jaspert, A., Schmidt, M., Jaitner, T., & Hahn, D. (2016). Kinematische Analyse des Dreisprungs der männlichen und weiblichen Jugend U16: 12. Jahrestagung der dvs-Kommission Leichtathletik in Zusammenarbeit mit dem Deutschen Leichtathletik-Verband (DLV), 17.-18. Juni 2016, Kassel, Deutschland.

Jürgens, A. (1998). Biomechanical investigation of the transition between the hop and the step. New Studies in Athletics, 13(4), 29–39.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863

Larkins, C. (1988). The Optimal Contribution of the Phase Distances in the Triple Jump: Novices Versus Elites. In E. Kreighbaum & A. McNeill (Chairs), 6 International Symposium on Biomechanics in Sports, Bozeman, Montana. https://ojs.ub.uni-konstanz.de/cpa/article/view/1803

Liu, H., & Yu, B. (2012). Effects of phase ratio and velocity conversion coefficient on the performance of the triple jump. Journal of Sports Sciences, 30(14), 1529–1536. https://doi.org/10.1080/02640414.2012.713502

Mendoza, L., & Nixdorf, E. (2011). Biomechanical Analysis of the Horizontal Jump Events at the 2009 IAAF World Championships in Athletics. New Studies in Athletics, 26(3/4), 25–60.

Panoutsakopoulos, V., & Kollias, I. A. (2008). Essential parameters in female triple jump technique. New Studies in Athletics, 23(4), 52–61.

Panoutsakopoulos, V., Theodorou, A. S., Katsavelis, D., Roxanas, P., Paradisis, G., & Argeitaki, P. (2016). Gender differences in triple jump phase ratios and arm swing motion of international level athletes. Acta Gymnica, 46(4), 174–183. https://doi.org/10.5507/ag.2016.016

Perttunen, J. O., Kyröläinen, H., Komi, P. V., & Heinonen, A. (2000). Biomechanical loading in the triple jump. Journal of Sports Sciences, 18(5), 363–370. https://doi.org/10.1080/026404100402421

Ramey, M. R., & Williams, K. R. (1985). Ground Reaction Forces in the Triple Jump. International Journal of Sport Biomechanics, 1(3), 233–239. https://doi.org/10.1123/ijsb.1.3.233

Simpson, S. E., Wilson, C., & Kerwin, D. G. (2007). The Changes in Effort Distribution from Novice to Experienced Performers in the Triple Jump. In H.-J. Menzel & M. H. Chagas (Chairs), XXV ISBS Symposium 2007, Ouro Preto - Brazil.

Tena, S., Revilla, Á., & Polanco, R. (2021). Athletics Results Book (Ver. 1.0). The Tokyo Organising Committee of the Olympics and Paralympic Games. www.pzla.pl/file/8673-rezultaty.pdf

Tucker, C., & Bissas, A. (2018a). Biomechanical Report for the IAAF World Indoor Championships 2018: Triple Jump Men.

Tucker, C., & Bissas, A. (2018b). Biomechanical Report for the IAAF World Indoor Championships 2018: Triple Jump Women.

Tucker, C., Nicholson, G., Cooke, M., & Bissas, A. (2017a). Biomechanical Report for the IAAF World Championships London 2017: Triple Jump Men's.

Tucker, C., Nicholson, G., Cooke, M., & Bissas, A. (2017b). Biomechanical Report for the IAAF World Championships London 2017: Triple Jump Women's.

Wilson, C., Simpson, S. E., van Emmerik, R. E. A., & Hamill, J. (2008). Coordination variability and skill development in expert triple jumpers. Sports Biomechanics, 7(1), 2–9. https://doi.org/10.1080/14763140701682983

Woo, S.‑Y., & Kim, Y.‑W. (2011a). Men's Triple Jump Biomechanics Research Report from the IAAF World Championships Daegu, 2011.

Woo, S.‑Y., & Kim, Y.‑W. (2011b). Women's Triple Jump Biomechanics Research Report from the IAAF World Championships Daegu, 2011.

Yu, B., & Hay, J. G. (1996). Optimum phase ratio in the triple jump. Journal of Biomechanics, 29(10), 1283–1289. https://doi.org/10.1016/0021-9290(96)00048-6

Downloads

Posted

2025-02-25