Regional Hypertrophy with Resistance Training—Does Muscle Length Matter?
A Systematic Review and Meta-Analysis
DOI:
https://doi.org/10.51224/SRXIV.464Keywords:
muscle hypertrophy, muscle length, range of motion, resistance trainingAbstract
The aim of this systematic review and meta-analysis was to examine how mean muscle length during resistance training (RT) influences regional muscle hypertrophy. We included studies that manipulated muscle length through range of motion (ROM) or exercise selection and evaluated regional muscle hypertrophy (i.e., changes at proximal, mid-belly, and/or distal sites). After systematically searching through three databases with additional secondary searches 12 studies were included in a meta-analysis. The meta-analysis was performed within the Bayesian meta-analytic framework. Standardized mean changes indicated small hypertrophic effects favoring training at longer muscle lengths at distal sites (75% muscle length; SMD: 0.20; Exponentiated lnRR: 4.13%) while smaller effects were found mid-belly (50% muscle length; SMD: 0.15; Exponentiated lnRR: 2.61%) and proximal sites (25% muscle length; SMD: 0.10; Exponentiated lnRR: 1.1%). The probability of finding a meaningful positive effect at proximal, mid-belly and distal sites was 50.70%, 69.78%, and 80.75%, respectively. Our pre-registered model analysis revealed a high degree of imprecision and uncertainty in the interaction between mean muscle length and site of measurement. Substantial uncertainty and imprecision, as reflected by wide 95% quantile intervals, were observed in all secondary predictor models (upper- or lower-body muscle groups, individual muscle groups, and muscle actions). In summary, our results indicate that if positive effects of training at longer muscle lengths on regional muscle hypertrophy exist, they may be the greatest at the distal sites. However, due to the imprecision in the posterior distributions for effects, our findings should be considered exploratory.
Metrics
References
Akagi, R., Hinks, A., & Power, G. A. (2020). Differential changes in muscle architecture and neuromuscular fatigability induced by isometric resistance training at short and long muscle-tendon unit lengths. Journal of Applied Physiology, 129(1), 173–184. https://doi.org/10.1152/japplphysiol.00280.2020
Alegre, L. M., Ferri-Morales, A., Rodriguez-Casares, R., & Aguado, X. (2014). Effects of isometric training on the knee extensor moment–angle relationship and vastus lateralis muscle architecture. European Journal of Applied Physiology, 114(11), 2437–2446. https://doi.org/10.1007/s00421-014-2967-x
Antonio, J. (2000). Nonuniform Response of Skeletal Muscle to Heavy Resistance Training: Can Bodybuilders Induce Regional Muscle Hypertrophy? The Journal of Strength and Conditioning Research, 14(1), 102. https://doi.org/10.1519/1533-4287(2000)014<0102:NROSMT>2.0.CO;2
Bloomquist, K., Langberg, H., Karlsen, S., Madsgaard, S., Boesen, M., & Raastad, T. (2013). Effect of range of motion in heavy load squatting on muscle and tendon adaptations. European Journal of Applied Physiology, 113(8), 2133–2142. https://doi.org/10.1007/s00421-013-2642-7
Bonett, D. G. (2008). Confidence intervals for standardized linear contrasts of means. Psychological Methods, 13(2), 99–109. https://doi.org/10.1037/1082-989X.13.2.99
Brughelli, M., & Cronin, J. (2007). Altering the Length-Tension Relationship with Eccentric Exercise: Implications for Performance and Injury. Sports Medicine, 37(9), 807–826. https://doi.org/10.2165/00007256-200737090-00004
Costa, B. D. D. V., Kassiano, W., Nunes, J. P., Kunevaliki, G., Castro-E-Souza, P., Rodacki, A., Cyrino, L. T., Cyrino, E. S., & Fortes, L. D. S. (2021). Does Performing Different Resistance Exercises for the Same Muscle Group Induce Non-homogeneous Hypertrophy? International Journal of Sports Medicine, 42(09), 803–811. https://doi.org/10.1055/a-1308-3674
Dragicevic, P., Jansen, Y., Sarma, A., Kay, M., & Chevalier, F. (2019). Increasing the Transparency of Research Papers with Explorable Multiverse Analyses. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3290605.3300295
Earp, J. E., Angelino, D., Hatfield, D. L., Colantuono, V., Jackson, E. R., Morgan, K. D., Adami, A., Melanson, K. J., & Blazevich, A. J. (2023). Differing hypertrophy patterns from open and closed kinetic chain training affect quadriceps femoris center of mass and moment of inertia. Frontiers in Physiology, 14, 1074705. https://doi.org/10.3389/fphys.2023.1074705
Earp, J. E., Newton, R. U., Cormie, P., & Blazevich, A. J. (2015). Inhomogeneous Quadriceps Femoris Hypertrophy in Response to Strength and Power Training. Medicine & Science in Sports & Exercise, 47(11), 2389–2397. https://doi.org/10.1249/MSS.0000000000000669
Escalante, G., Stevenson, S. W., Barakat, C., Aragon, A. A., & Schoenfeld, B. J. (2021). Peak week recommendations for bodybuilders: An evidence based approach. BMC Sports Science, Medicine & Rehabilitation, 13(1), 68. https://doi.org/10.1186/s13102-021-00296-y
Franchi, M. V., Fitze, D. P., Hanimann, J., Sarto, F., & Spörri, J. (2020). Panoramic ultrasound vs. MRI for the assessment of hamstrings cross-sectional area and volume in a large athletic cohort. Scientific Reports, 10(1), 14144. https://doi.org/10.1038/s41598-020-71123-6
Franchi, M. V., Raiteri, B. J., Longo, S., Sinha, S., Narici, M. V., & Csapo, R. (2018). Muscle Architecture Assessment: Strengths, Shortcomings and New Frontiers of in Vivo Imaging Techniques. Ultrasound in Medicine & Biology, 44(12), 2492–2504. https://doi.org/10.1016/j.ultrasmedbio.2018.07.010
Goto, M., Maeda, C., Hirayama, T., Terada, S., Nirengi, S., Kurosawa, Y., Nagano, A., & Hamaoka, T. (2019). Partial Range of Motion Exercise Is Effective for Facilitating Muscle Hypertrophy and Function Through Sustained Intramuscular Hypoxia in Young Trained Men. Journal of Strength and Conditioning Research, 33(5), 1286–1294. https://doi.org/10.1519/JSC.0000000000002051
Gronau, Q. F., Singmann, H., & Wagenmakers, E.-J. (2020). bridgesampling: An R Package for Estimating Normalizing Constants. Journal of Statistical Software, 92, 1–29. https://doi.org/10.18637/jss.v092.i10
Haff, G., Triplett, N. T., & (U.S.), N. S. & C. A. (Eds.). (2016). Essentials of strength training and conditioning (Fourth edition). Human Kinetics.
Kallioinen, N., Paananen, T., Bürkner, P.-C., & Vehtari, A. (2023). Detecting and diagnosing prior and likelihood sensitivity with power-scaling. Statistics and Computing, 34(1), 57. https://doi.org/10.1007/s11222-023-10366-5
Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572
Kassiano, W., Costa, B., Kunevaliki, G., Soares, D., Zacarias, G., Manske, I., Takaki, Y., Ruggiero, M. F., Stavinski, N., Francsuel, J., Tricoli, I., Carneiro, M. A. S., & Cyrino, E. S. (2023). Greater Gastrocnemius Muscle Hypertrophy After Partial Range of Motion Training Performed at Long Muscle Lengths. Journal of Strength and Conditioning Research, 37(9), 1746–1753. https://doi.org/10.1519/JSC.0000000000004460
Kassiano, W., Costa, B., Nunes, J. P., Ribeiro, A. S., Schoenfeld, B. J., & Cyrino, E. S. (2023). Which ROMs Lead to Rome? A Systematic Review of the Effects of Range of Motion on Muscle Hypertrophy. Journal of Strength and Conditioning Research, 37(5), 1135–1144. https://doi.org/10.1519/JSC.0000000000004415
Kinoshita, M., Maeo, S., Kobayashi, Y., Eihara, Y., Ono, M., Sato, M., Sugiyama, T., Kanehisa, H., & Isaka, T. (2023). Triceps surae muscle hypertrophy is greater after standing versus seated calf-raise training. Frontiers in Physiology, 14, 1272106. https://doi.org/10.3389/fphys.2023.1272106
Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of Resistance Training: Progression and Exercise Prescription: Medicine & Science in Sports & Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. In Psychonomic Bulletin & Review (Vol. 25, pp. 178–206).
Kubo, K., Ohgo, K., Takeishi, R., Yoshinaga, K., Tsunoda, N., Kanehisa, H., & Fukunaga, T. (2006). Effects of isometric training at different knee angles on the muscle–tendon complex in vivo. Scandinavian Journal of Medicine & Science in Sports, 16(3), 159–167. https://doi.org/10.1111/j.1600-0838.2005.00450.x
Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology, 92(11), 2049–2055. https://doi.org/10.1890/11-0423.1
Linke, W. A. (2018). Titin Gene and Protein Functions in Passive and Active Muscle. Annual Review of Physiology, 80(1), 389–411. https://doi.org/10.1146/annurev-physiol-021317-121234
Maeo, S., Huang, M., Wu, Y., Sakurai, H., Kusagawa, Y., Sugiyama, T., Kanehisa, H., & Isaka, T. (2021). Greater Hamstrings Muscle Hypertrophy but Similar Damage Protection after Training at Long versus Short Muscle Lengths. Medicine & Science in Sports & Exercise, 53(4), 825–837. https://doi.org/10.1249/MSS.0000000000002523
Maeo, S., Wu, Y., Huang, M., Sakurai, H., Kusagawa, Y., Sugiyama, T., Kanehisa, H., & Isaka, T. (2023). Triceps brachii hypertrophy is substantially greater after elbow extension training performed in the overhead versus neutral arm position. European Journal of Sport Science, 23(7), 1240–1250. https://doi.org/10.1080/17461391.2022.2100279
Marušič, J., Vatovec, R., Marković, G., & Šarabon, N. (2020). Effects of eccentric training at long‐muscle length on architectural and functional characteristics of the hamstrings. Scandinavian Journal of Medicine & Science in Sports, 30(11), 2130–2142. https://doi.org/10.1111/sms.13770
McMahon, G. E., Morse, C. I., Burden, A., Winwood, K., & Onambélé, G. L. (2014). Impact of Range of Motion During Ecologically Valid Resistance Training Protocols on Muscle Size, Subcutaneous Fat, and Strength. Journal of Strength and Conditioning Research, 28(1), 245–255. https://doi.org/10.1519/JSC.0b013e318297143a
McMahon, G., Morse, C. I., Burden, A., Winwood, K., & Onambélé, G. L. (2014). Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated: Length Modulates Adaptation. Muscle & Nerve, 49(1), 108–119. https://doi.org/10.1002/mus.23884
Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface, 14(134), 20170213. https://doi.org/10.1098/rsif.2017.0213
Noorkõiv, M., Nosaka, K., & Blazevich, A. J. (2014). Neuromuscular Adaptations Associated with Knee Joint Angle-Specific Force Change. Medicine & Science in Sports & Exercise, 46(8), 1525–1537. https://doi.org/10.1249/MSS.0000000000000269
Noorkõiv, M., Nosaka, K., & Blazevich, A. J. (2015). Effects of isometric quadriceps strength training at different muscle lengths on dynamic torque production. Journal of Sports Sciences, 33(18), 1952–1961. https://doi.org/10.1080/02640414.2015.1020843
Nunes, J. P., Blazevich, A. J., Schoenfeld, B. J., Kassiano, W., Costa, B. D. V., Ribeiro, A. S., Nakamura, M., Nosaka, K., & Cyrino, E. S. (2024). Determining Changes in Muscle Size and Architecture After Exercise Training: One Site Does Not Fit all. Journal of Strength & Conditioning Research, 38(4), 787–790. https://doi.org/10.1519/JSC.0000000000004722
Nunes, J. P., Jacinto, J. L., Ribeiro, A. S., Mayhew, J. L., Nakamura, M., Capel, D. M. G., Santos, L. R., Santos, L., Cyrino, E. S., & Aguiar, A. F. (2020). Placing Greater Torque at Shorter or Longer Muscle Lengths? Effects of Cable vs. Barbell Preacher Curl Training on Muscular Strength and Hypertrophy in Young Adults. International Journal of Environmental Research and Public Health, 17(16), 5859. https://doi.org/10.3390/ijerph17165859
Oranchuk, D. J., Storey, A. G., Nelson, A. R., & Cronin, J. B. (2019). Isometric training and long‐term adaptations: Effects of muscle length, intensity, and intent: A systematic review. Scandinavian Journal of Medicine & Science in Sports, 29(4), 484–503. https://doi.org/10.1111/sms.13375
Pedrosa, G. F., Lima, F. V., Schoenfeld, B. J., Lacerda, L. T., Simões, M. G., Pereira, M. R., Diniz, R. C. R., & Chagas, M. H. (2022). Partial range of motion training elicits favorable improvements in muscular adaptations when carried out at long muscle lengths. European Journal of Sport Science, 22(8), 1250–1260. https://doi.org/10.1080/17461391.2021.1927199
Pedrosa, G. F., Simões, M. G., Figueiredo, M. O. C., Lacerda, L. T., Schoenfeld, B. J., Lima, F. V., Chagas, M. H., & Diniz, R. C. R. (2023). Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl. Sports, 11(2), 39. https://doi.org/10.3390/sports11020039
Pinto, R. S., Gomes, N., Radaelli, R., Botton, C. E., Brown, L. E., & Bottaro, M. (2012). Effect of Range of Motion on Muscle Strength and Thickness. Journal of Strength and Conditioning Research, 26(8), 2140–2145. https://doi.org/10.1519/JSC.0b013e31823a3b15
Raiteri, B. J., Beller, R., & Hahn, D. (2021). Biceps Femoris Long Head Muscle Fascicles Actively Lengthen During the Nordic Hamstring Exercise. Frontiers in Sports and Active Living, 3, 669813. https://doi.org/10.3389/fspor.2021.669813
Rodriguez-Sanchez, F., cre, cph, Jackson, C. P., Hutchins, S. D., & Clawson, J. M. (2023). grateful: Facilitate Citation of R Packages (Version 0.2.4) [Computer software]. https://cloud.r-project.org/web/packages/grateful/index.html
Rohrer, J. M., & Arslan, R. C. (2021). Precise Answers to Vague Questions: Issues With Interactions. Advances in Methods and Practices in Psychological Science, 4(2), 25152459211007368. https://doi.org/10.1177/25152459211007368
Rukstela, A., Lafontant, K., Helms, E., Escalante, G., Phillips, K., & Campbell, B. I. (2023). Bodybuilding Coaching Strategies Meet Evidence-Based Recommendations: A Qualitative Approach. Journal of Functional Morphology and Kinesiology, 8(2), 84. https://doi.org/10.3390/jfmk8020084
Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nunes, J. P., Nosaka, K., & Nakamura, M. (2021). Elbow Joint Angles in Elbow Flexor Unilateral Resistance Exercise Training Determine Its Effects on Muscle Strength and Thickness of Trained and Non-trained Arms. Frontiers in Physiology, 12, 734509. https://doi.org/10.3389/fphys.2021.734509
Schoenfeld, B., Fisher, J., Grgic, J., Haun, C., Helms, E., Phillips, S., Steele, J., & Vigotsky, A. (2021). Resistance Training Recommendations to Maximize Muscle Hypertrophy in an Athletic Population: Position Stand of the IUSCA. International Journal of Strength and Conditioning, 1(1). https://doi.org/10.47206/ijsc.v1i1.81
Schoenfeld, B. J., Androulakis-Korakakis, P., Coleman, M., Burke, R., & Piñero, A. (2023, April). SMART-LD: A tool for critically appraising risk of bias and reporting quality in longitudinal resistance training interventions. https://doi.org/10.31219/osf.io/nhva2
Spake, R., Bowler, D. E., Callaghan, C. T., Blowes, S. A., Doncaster, C. P., Antão, L. H., Nakagawa, S., McElreath, R., & Chase, J. M. (2023). Understanding ‘it depends’ in ecology: A guide to hypothesising, visualising and interpreting statistical interactions. Biological Reviews, 98(4), 983–1002. https://doi.org/10.1111/brv.12939
Stasinaki, A.-N., Zaras, N., Methenitis, S., Tsitkanou, S., Krase, A., Kavvoura, A., & Terzis, G. (2018). Triceps Brachii Muscle Strength and Architectural Adaptations with Resistance Training Exercises at Short or Long Fascicle Length. Journal of Functional Morphology and Kinesiology, 3(2), 28. https://doi.org/10.3390/jfmk3020028
Steele, J., Fisher, J. P., Smith, D., Schoenfeld, B. J., Yang, Y., & Nakagawa, S. (2023a). Meta-analysis of variation in sport and exercise science: Examples of application within resistance training research. Journal of Sports Sciences, 41(17), 1617–1634. https://doi.org/10.1080/02640414.2023.2286748
Steele, J., Fisher, J. P., Smith, D., Schoenfeld, B. J., Yang, Y., & Nakagawa, S. (2023b). Meta-analysis of variation in sport and exercise science: Examples of application within resistance training research. Journal of Sports Sciences, 41(17), 1617–1634. https://doi.org/10.1080/02640414.2023.2286748
Stokes, T., Tripp, T. R., Murphy, K., Morton, R. W., Oikawa, S. Y., Lam Choi, H., McGrath, J., McGlory, C., MacDonald, M. J., & Phillips, S. M. (2021). Methodological considerations for and validation of the ultrasonographic determination of human skeletal muscle hypertrophy and atrophy. Physiological Reports, 9(1). https://doi.org/10.14814/phy2.14683
Valamatos, M. J., Tavares, F., Santos, R. M., Veloso, A. P., & Mil-Homens, P. (2018). Influence of full range of motion vs. Equalized partial range of motion training on muscle architecture and mechanical properties. European Journal of Applied Physiology, 118(9), 1969–1983. https://doi.org/10.1007/s00421-018-3932-x
Wakahara, T. (2015). Nonuniform Muscle Hypertrophy Along the Length Induced by Resistance Training. In K. Kanosue, T. Nagami, & J. Tsuchiya (Eds.), Sports Performance (pp. 157–173). Springer Japan. https://doi.org/10.1007/978-4-431-55315-1_14
Wakahara, T., Ema, R., Miyamoto, N., & Kawakami, Y. (2017). Inter‐ and intramuscular differences in training‐induced hypertrophy of the quadriceps femoris: Association with muscle activation during the first training session. Clinical Physiology and Functional Imaging, 37(4), 405–412. https://doi.org/10.1111/cpf.12318
Wakahara, T., Fukutani, A., Kawakami, Y., & Yanai, T. (2013). Nonuniform Muscle Hypertrophy: Its Relation to Muscle Activation in Training Session. Medicine & Science in Sports & Exercise, 45(11), 2158–2165. https://doi.org/10.1249/MSS.0b013e3182995349
Wakahara, T., Miyamoto, N., Sugisaki, N., Murata, K., Kanehisa, H., Kawakami, Y., Fukunaga, T., & Yanai, T. (2012). Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. European Journal of Applied Physiology, 112(4), 1569–1576. https://doi.org/10.1007/s00421-011-2121-y
Wolf, M., Androulakis-Korakakis, P., Fisher, J., Schoenfeld, B., & Steele, J. (2023a). Partial Vs Full Range of Motion Resistance Training: A Systematic Review and Meta-Analysis. International Journal of Strength and Conditioning, 3(1). https://doi.org/10.47206/ijsc.v3i1.182
Wolf, M., Androulakis-Korakakis, P., Fisher, J., Schoenfeld, B., & Steele, J. (2023b). Partial Vs Full Range of Motion Resistance Training: A Systematic Review and Meta-Analysis. International Journal of Strength and Conditioning, 3(1), Article 1. https://doi.org/10.47206/ijsc.v3i1.182
Zabaleta-Korta, A., Fernández-Peña, E., & Santos-Concejero, J. (2020a). Regional Hypertrophy, the Inhomogeneous Muscle Growth: A Systematic Review. Strength & Conditioning Journal, 42(5), 94. https://doi.org/10.1519/SSC.0000000000000574
Zabaleta-Korta, A., Fernández-Peña, E., & Santos-Concejero, J. (2020b). Regional Hypertrophy, the Inhomogeneous Muscle Growth: A Systematic Review. Strength & Conditioning Journal, 42(5), 94–101. https://doi.org/10.1519/SSC.0000000000000574
Zabaleta-Korta, A., Fernández-Peña, E., Torres-Unda, J., Francés, M., Zubillaga, A., & Santos-Concejero, J. (2023). Regional Hypertrophy: The Effect of Exercises at Long and Short Muscle Lengths in Recreationally Trained Women. Journal of Human Kinetics. https://doi.org/10.5114/jhk/163561
Zabaleta-Korta, A., Fernández-Peña, E., Torres-Unda, J., Garbisu-Hualde, A., & Santos-Concejero, J. (2021). The role of exercise selection in regional Muscle Hypertrophy: A randomized controlled trial. Journal of Sports Sciences, 39(20), 2298–2304. https://doi.org/10.1080/02640414.2021.1929736
Downloads
Posted
Versions
- 2024-10-12 (3)
- 2024-10-07 (2)
- 2024-10-07 (1)
License
Copyright (c) 2024 Dorian Varovic, Milo Wolf, James Steele, Brad J. Schoenfeld, Jozo Grgic, Pavle Mikulic (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.