This is an outdated version published on 2024-09-20. Read the most recent version.
Preprint / Version 1

Lengthened Partial Repetitions Elicit Similar Muscular Adaptations as a Full Range of Motion During Resistance Training in Trained Individuals

##article.authors##

  • Milo Wolf
  • Patroklos Androulakis Korakakis
  • Alec Piñero
  • Adam E. Mohan
  • Tom Hermann
  • Francesca Augustin
  • Max Sappupo
  • Brian Lin
  • Max Coleman
  • Ryan Burke
  • Jeff Nippard
  • Paul A. Swinton
  • Brad J. Schoenfeld

DOI:

https://doi.org/10.51224/SRXIV.455

Keywords:

range of motion, hypertrophy, strength, rom, lengthened partials, full rom

Abstract

Purpose: The purpose of this study was to compare the effects of lengthened partial repetitions versus full range of motion (ROM) resistance training (RT) on muscular adaptations. Methods: In this within-participant study, thirty healthy, resistance-trained participants had their upper extremities randomly assigned to either a lengthened partial or full ROM condition; all other training variables were equivalent between limbs. The RT intervention was a multi-exercise, multi-modality eight-week program targeting the upper-body musculature. Training consisted of two training sessions per week, with four exercises per session and four sets per exercise. Muscle hypertrophy of the elbow flexors and elbow extensors was evaluated using B-mode ultrasonography at 45 and 55% of humeral length. Muscle strength-endurance was assessed using a 10-repetition-maximum test on the lat pulldown exercise, both with a partial and full ROM. Data analysis employed a Bayesian framework with inferences made from posterior distributions and the strength of evidence for the existence of a difference through Bayes factors.  Results: Both muscle thickness and 10-repetition-maximum improvements were similar between the two conditions. Results were consistent across outcomes with point estimates close to zero, and Bayes factors (0.16 to 0.3) generally providing “moderate” support for the null hypothesis of equal improvement across interventions. Conclusions: Based on present findings and other studies, trainees seeking to maximize muscle size should likely emphasize the stretched position, either by using a full ROM or lengthened partials during upper-body resistance training. For muscle strength-endurance, our findings suggest that lengthened partials and full ROM elicit similar adaptations irrespective of the excursed ROM.

Metrics

Metrics Loading ...

References

Akagi, R., Hinks, A., & Power, G. A. (2020). Differential changes in muscle architecture and neuromuscular fatigability induced by isometric resistance training at short and long muscle-tendon unit lengths. Journal of Applied Physiology, 129(1), 173–184. https://doi.org/10.1152/japplphysiol.00280.2020

Alegre, L. M., Ferri-Morales, A., Rodriguez-Casares, R., & Aguado, X. (2014). Effects of isometric training on the knee extensor moment–angle relationship and vastus lateralis muscle architecture. European Journal of Applied Physiology, 114(11), 2437–2446. https://doi.org/10.1007/s00421-014-2967-x

Bell, Z. W., Wong, V., Spitz, R. W., Yamada, Y., Song, J. S., Kataoka, R., Chatakondi, R. N., Abe, T., & Loenneke, J. P. (2023). Unilateral high-load resistance training influences strength changes in the contralateral arm undergoing low-load training. Journal of Science and Medicine in Sport, 26(8), 440–445. https://doi.org/10.1016/j.jsams.2023.06.011

Bloomquist, K., Langberg, H., Karlsen, S., Madsgaard, S., Boesen, M., & Raastad, T. (2013). Effect of range of motion in heavy load squatting on muscle and tendon adaptations. European Journal of Applied Physiology, 113(8), 2133–2142. https://doi.org/10.1007/s00421-013-2642-7

Brughelli, M., & Cronin, J. (2007). Altering the Length-Tension Relationship with Eccentric Exercise: Implications for Performance and Injury. Sports Medicine, 37(9), 807–826. https://doi.org/10.2165/00007256-200737090-00004

Burke, R., Piñero, A., Coleman, M., Mohan, A., Sapuppo, M., Augustin, F., Aragon, A. A., Candow, D. G., Forbes, S. C., Swinton, P., & Schoenfeld, B. J. (2023). The Effects of Creatine Supplementation Combined with Resistance Training on Regional Measures of Muscle Hypertrophy: A Systematic Review with Meta-Analysis. Nutrients, 15(9), 2116. https://doi.org/10.3390/nu15092116

Burke, R., Piñero, A., Mohan, A. E., Hermann, T., Sapuppo, M., Augustin, F., Coleman, M., Korakakis, P. A., Wolf, M., Swinton, P. A., & Schoenfeld, B. J. (2024). Exercise Selection Differentially Influences Lower Body Regional Muscle Development. Journal of Science in Sport and Exercise. https://doi.org/10.1007/s42978-024-00299-4

Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. The R Journal, 10(1), 395–411.

Crocker, J. E. (2000). A comparison of full range and limited range of motion strength training.

Depaoli, S., & van de Schoot, R. (2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22(2), 240–261. https://doi.org/10.1037/met0000065

Gabriel, D. A., Kamen, G., & Frost, G. (2006). Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Medicine (Auckland, N.Z.), 36(2), 133–149. https://doi.org/10.2165/00007256-200636020-00004

Gelfand, A. E., & Wang, F. (2002). A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. Statistical Science, 17(2), 193–208. https://doi.org/10.1214/ss/1030550861

Goto, M., Maeda, C., Hirayama, T., Terada, S., Nirengi, S., Kurosawa, Y., Nagano, A., & Hamaoka, T. (2019). Partial Range of Motion Exercise Is Effective for Facilitating Muscle Hypertrophy and Function Through Sustained Intramuscular Hypoxia in Young Trained Men. Journal of Strength and Conditioning Research, 33(5), 1286–1294. https://doi.org/10.1519/JSC.0000000000002051

Hartmann, H., Wirth, K., Klusemann, M., Dalic, J., Matuschek, C., & Schmidtbleicher, D. (2012). Influence of Squatting Depth on Jumping Performance. Journal of Strength and Conditioning Research, 26(12), 3243–3261. https://doi.org/10.1519/JSC.0b013e31824ede62

Hinks, A., Davidson, B., Akagi, R., & Power, G. A. (2021). Influence of isometric training at short and long muscle-tendon unit lengths on the history dependence of force. Scandinavian Journal of Medicine & Science in Sports, 31(2), 325–338. https://doi.org/10.1111/sms.13842

Kassiano, W., Costa, D., Kunevaliki, G., Soares, D., Zacarias, G., Manske, I., Takaki, Y., Ruggiero, M., Gomes de Lima Stavinski, N., Francsuel, J., Tricoli, I., Carneiro, M., & Cyrino, E. (2022). Greater gastrocnemius muscle hypertrophy after partial range of motion training carried out at long muscle lengths. The Journal of Strength and Conditioning Research.

Kassiano, W., Nunes, J. P., Costa, B., Ribeiro, A. S., Schoenfeld, B. J., & Cyrino, E. S. (2022). Does Varying Resistance Exercises Promote Superior Muscle Hypertrophy and Strength Gains? A Systematic Review. Journal of Strength and Conditioning Research, 36(6), 1753–1762. https://doi.org/10.1519/JSC.0000000000004258

Kinoshita, M., Maeo, S., Kobayashi, Y., Eihara, Y., Ono, M., Sato, M., Sugiyama, T., Kanehisa, H., & Isaka, T. (2023). Triceps surae muscle hypertrophy is greater after standing versus seated calf-raise training. Frontiers in Physiology, 14, 1272106. https://doi.org/10.3389/fphys.2023.1272106

Kubo, K., Ikebukuro, T., & Yata, H. (2019). Effects of squat training with different depths on lower limb muscle volumes. European Journal of Applied Physiology, 119(9), 1933–1942. https://doi.org/10.1007/s00421-019-04181-y

Kubo, K., Ohgo, K., Takeishi, R., Yoshinaga, K., Tsunoda, N., Kanehisa, H., & Fukunaga, T. (2006). Effects of isometric training at different knee angles on the muscle-tendon complex in vivo. Scandinavian Journal of Medicine and Science in Sports, 16(3), 159–167. https://doi.org/10.1111/j.1600-0838.2005.00450.x

Larsen, S., Kristiansen, B. S., Swinton, P. A., Wolf, M., Fredriksen, A. B., Falch, H. N., Tillaar, R. van den, & Sandberg, N. Ø. (2024). The effects of hip flexion angle on quadriceps femoris muscle hypertrophy in the leg extension exercise. SportRxiv. https://doi.org/10.51224/SRXIV.407

Larsen, S., Swinton, P. A., Sandberg, N. Ø., Kristiansen, B. S., Fredriksen, A. B., Falch, H. N., Tillaar, R. van den, & Wolf, M. (2024). Resistance training beyond momentary failure: The effects of lengthened supersets on muscle hypertrophy in the gastrocnemius | SportRxiv. https://sportrxiv.org/index.php/server/preprint/view/414

Maeo, S., Meng, H., Yuhang, W., Sakurai, H., Kusagawa, Y., Sugiyama, T., Kanehisa, H., & Isaka, T. (2020). Greater Hamstrings Muscle Hypertrophy but Similar Damage Protection after Training at Long versus Short Muscle Lengths. Publish Ah(September). https://doi.org/10.1249/mss.0000000000002523

Maeo, S., Wu, Y., Huang, M., Sakurai, H., & Kusagawa, Y. (2022). Triceps brachii hypertrophy is substantially greater after elbow extension training performed in the overhead versus neutral arm position. European Journal of Sport Science, 0, 1–26. https://doi.org/10.1080/17461391.2022.2100279

Magezi, D. A. (2015). Linear mixed-effects models for within-participant psychology experiments: An introductory tutorial and free, graphical user interface (LMMgui). Frontiers in Psychology, 6, 2. https://doi.org/10.3389/fpsyg.2015.00002

McMahon, G., Morse, C., Burden, A., Winwood, K., & Onambélé, G. (2014). Valid resistance training protocols on muscle size,subcutaneous fat, and strength. Journal of the International Society of Sports Nutrition, 28(1), 245–255.

Mcmahon, G., Morse, C. I., Burden, A., Winwood, K., & Onambélé, G. L. (2014). Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated. Muscle and Nerve, 49(1), 108–119. https://doi.org/10.1002/mus.23884

Michael, D. L., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge: Cambridge University Press.

Noorkõiv, M., Nosaka, K., & Blazevich, A. J. (2014). Neuromuscular Adaptations Associated with Knee Joint Angle-Specific Force Change. Medicine & Science in Sports & Exercise, 46(8), 1525–1537. https://doi.org/10.1249/MSS.0000000000000269

NSCA. (2016). Essentials of strength training and conditioning—NLM Catalog—NCBI. https://www.ncbi.nlm.nih.gov/nlmcatalog?cmd=PureSearch&term=101647597%5Bnlmid%5D

Pedrosa, G. F., Lima, F. V., Schoenfeld, B. J., Lacerda, L. T., Simões, M. G., Pereira, M. R., Diniz, R. C. R., & Chagas, M. H. (2021). Partial range of motion training elicits favorable improvements in muscular adaptations when carried out at long muscle lengths. European Journal of Sport Science, 1–11. https://doi.org/10.1080/17461391.2021.1927199

Pedrosa, G. F., Simões, M. G., Figueiredo, M. O. C., Lacerda, L. T., Schoenfeld, B. J., Lima, F. V., Chagas, M. H., & Diniz, R. C. R. (2023). Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl. Sports, 11(2), 39. https://doi.org/10.3390/sports11020039

Raiteri, B. J., Beller, R., & Hahn, D. (2021). Biceps Femoris Long Head Muscle Fascicles Actively Lengthen During the Nordic Hamstring Exercise. Frontiers in Sports and Active Living, 3, 669813. https://doi.org/10.3389/fspor.2021.669813

Rhea, M. R., Kenn, J. G., Peterson, M. D., Massey, D., Simão, R., Marin, P. J., Favero, M., Cardozo, D., & Krein, D. (2016). Joint-Angle Specific Strength Adaptations Influence Improvements in Power in Highly Trained Athletes. Human Movement, 17(1), 43–49. https://doi.org/10.1515/humo-2016-0006

Roberts, M. D., McCarthy, J. J., Hornberger, T. A., Phillips, S. M., Mackey, A. L., Nader, G. A., Boppart, M. D., Kavazis, A. N., Reidy, P. T., Ogasawara, R., Libardi, C. A., Ugrinowitsch, C., Booth, F. W., & Esser, K. A. (2023). Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: Current understanding and future directions. Physiological Reviews, 103(4), 2679–2757. https://doi.org/10.1152/physrev.00039.2022

Rossi, F. E., Schoenfeld, B. J., Ocetnik, S., Young, J., Vigotsky, A., Contreras, B., Krieger, J. W., Miller, M. G., & Cholewa, J. (2018). Strength, body composition, and functional outcomes in the squat versus leg press exercises. Journal of Sports Medicine and Physical Fitness, 58(3), 263–270. https://doi.org/10.23736/S0022-4707.16.06698-6

Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nunes, J. P., Nosaka, K., & Nakamura, M. (2021). Elbow Joint Angles in Elbow Flexor Unilateral Resistance Exercise Training Determine Its Effects on Muscle Strength and Thickness of Trained and Non-trained Arms. Frontiers in Physiology, 12(September), 1–9. https://doi.org/10.3389/fphys.2021.734509

Schad, D. J., Nicenboim, B., Bürkner, P.-C., Betancourt, M., & Vasishth, S. (2023). Workflow techniques for the robust use of bayes factors. Psychological Methods, 28(6), 1404–1426. https://doi.org/10.1037/met0000472

Schoenfeld, B., Fisher, J., Grgic, J., Haun, C., Helms, E., Phillips, S., Steele, J., & Vigotsky, A. (2021). Resistance Training Recommendations to Maximize Muscle Hypertrophy in an Athletic Population: Position Stand of the IUSCA. International Journal of Strength and Conditioning, 1(1), Article 1. https://doi.org/10.47206/ijsc.v1i1.81

Stasinaki, A. N., Zaras, N., Methenitis, S., Tsitkanou, S., Krase, A., Kavvoura, A., & Terzis, G. (2018). Triceps brachii muscle strength and architectural adaptations with resistance training exercises at short or long fascicle length. Journal of Functional Morphology and Kinesiology, 3(2). https://doi.org/10.3390/jfmk3020028

Straub, R. K., & Powers, C. M. (2024). A Biomechanical Review of the Squat Exercise: Implications for Clinical Practice. International Journal of Sports Physical Therapy, 19(4), 490–501. https://doi.org/10.26603/001c.94600

Swinton, P. A., Burgess, K., Hall, A., Greig, L., Psyllas, J., Aspe, R., Maughan, P., & Murphy, A. (2022). Interpreting magnitude of change in strength and conditioning: Effect size selection, threshold values and Bayesian updating. Journal of Sports Sciences, 40(18), 2047–2054. https://doi.org/10.1080/02640414.2022.2128548

Swinton, P., & Murphy, A. (2022). Comparative effect size distributions in strength and conditioning and implications for future research: A meta-analysis. SportRxiv. https://doi.org/10.51224/SRXIV.202

Valamatos, M. J., Tavares, F., Santos, R. M., Veloso, A. P., & Mil-Homens, P. (2018). Influence of full range of motion vs. Equalized partial range of motion training on muscle architecture and mechanical properties. European Journal of Applied Physiology, 118(9), 1969–1983. https://doi.org/10.1007/s00421-018-3932-x

van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., & Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1), 1–26. https://doi.org/10.1038/s43586-020-00001-2

Warneke, K., Brinkmann, A., Hillebrecht, M., & Schiemann, S. (2022). Influence of Long-Lasting Static Stretching on Maximal Strength, Muscle Thickness and Flexibility. Frontiers in Physiology, 13(May), 1–13. https://doi.org/10.3389/fphys.2022.878955

Werkhausen, A., Solberg, C. E., Paulsen, G., Bojsen‐Møller, J., & Seynnes, O. R. (2021). Adaptations to explosive resistance training with partial range of motion are not inferior to full range of motion. Scandinavian Journal of Medicine & Science in Sports, 0–2. https://doi.org/10.1111/sms.13921

Wolf, M., Androulakis-Korakakis, P., Fisher, J., Schoenfeld, B., & Steele, J. (2023). Partial Vs Full Range of Motion Resistance Training: A Systematic Review and Meta-Analysis. International Journal of Strength and Conditioning, 3(1), Article 1. https://doi.org/10.47206/ijsc.v3i1.182

Wolf, M., Korakakis, P. A., Roberts, M. D., Plotkin, D. L., Franchi, M. V., Contreras, B., Henselmans, M., & Schoenfeld, B. J. (2024). Does longer-muscle length resistance training cause greater longitudinal growth in humans? A systematic review. SportRxiv. https://doi.org/10.51224/SRXIV.423

Posted

2024-09-20

Versions