Preprint / Version 1

Rally-Based Performance Evaluation Model for Highly Competitive Volleyball

##article.authors##

DOI:

https://doi.org/10.51224/SRXIV.452

Keywords:

Applied probability, Markov Chains, Volleyball, Winning probability

Abstract

We propose a simple stochastic model to evaluate the effect of different complexes’ performance on the probability of winning a rally. The model uses as input the probabilities of success and failure in various complexes, which can be extracted from standard match reports. Our model reproduces well-established results; for example, we found that a team that starts the rally with a serve is more likely to obtain a point in the phase of complex k2 than in the phases associated with complexes k0 and k1. Conversely, if a team starts the rally receiving, it is more likely to win the rally in complex k1. The proposed model also provides a new approach to quantify a team’s performance in a rally and diagnose performance issues in different complexes. As a case study, we analyze the performance of a top South American team in the CSV Men’s Tokyo Volleyball Qualification 2020. Although our model can be applied to various individual actions, our performance analysis focuses on one pivotal game action: the serve. It is found that only power jump serves that decrease the attacking efficiency in k1 of the rival team have the potential to be more effective than jump float serves. The proposed model makes it possible to determine when one player’s serve is more effective than another’s, not only based on the number of direct points scored for or against but also on their influence on the probability of winning the rally.

Metrics

Metrics Loading ...

References

A. Gabrio. Bayesian hierarchical models for the prediction of volleyball results. Journal of Applied Statistics, 48(2):301–321, 2020. doi: 10.1080/02664763.2020.1723506.

H. Xia et al. Advanced volleyball stats for all levels: Automatic setting tactic detection and classification with a single camera. In 2023 IEEE International Conference on Data Mining Workshops (ICDMW), pages 1407–1416, Shanghai, China, 2023.

H. J. Eom and R. W. Schutz. Statistical analyses of volleyball team performance. Research Quarterly for Exercise and Sport, 63(1):11–18, 1992. doi: 10.1080/02701367.1992.10607551.

M. Silva, D. Lacerda, and P. V. Joa ̃o. Game-related volleyball skills that influence victory. Journal

of Human Kinetics, 41(1):173–179, 2014. doi: 10.2478/hukin-2014-0045.

K. T. Lee and S. T. Chin. Strategies to serve or receive the service in volleyball. Mathematical

Methods of Operations Research, 59(1):53–67, 2004. doi: 10.1007/s001860300315.

E. Zetou, A. Moustakidis, N. Tsigilis, and A. Komninakidou. Does effectiveness of skill in complex i predict win in men’s olympic volleyball games? Journal of Quantitative Analysis in Sports, 3 (4), 2007. doi: 10.2202/1559-0410.1076.

D. A. Szabo, N. Neagu, S. Voidazan, I. S. Sopa, and C. A. Gliga. Health. Sports & Rehabilitation Medicine, 20(4):154, 2019.

J. Morante. La valoracio ́n de la eficacia t ́ecnica en el deporte, 2004. Retrieved from: www.rendimientodeportivo.com/N009/Artic044.htm.

M. Conejero, F. Claver, J. Gonza ́lez-Silva, C. Ferna ́ndez-Echeverr ́ıa, and P. Moreno. Analysis of performance in game actions in volleyball, according to the classification. Revista Portuguesa de Ciˆencias Do Desporto, 17(S1A):196–204, 2017. doi: 10.5628/rpcd.17.S1A.196.

I. Gonzalez-Cabrera, D. D. Herrera, and D. L. Gonza ́lez. Generalized model for scores in volleyball matches. Journal of Quantitative Analysis in Sports, 16(1):41–55, 2020. doi: 10.1515/jqas-2019-0060.

A. Kitsiou, K. Sotiropoulos, S. Drikos, K. Barzouka, and G. Malousaris. Tendencies of the volleyball serving skill with respect to the serve type across genders. Journal of Physical Education and Sport, 20(2):564–570, 2020. doi: 10.7752/jpes.2020.02083.

D. C. Lirola. Estudio y an ́alisis del saque en el voleibol masculino de alto rendimiento. Revista Internacional de Ciencias del Deporte, 2(5):12–28, 2006. doi: 10.5232/ricyde.

J. Afonso, F. Esteves, R. Arau ́jo, L. Thomas, and I. Mesquita. Tactical determinants of setting zone in elite men’s volleyball. Journal of Sports Science & Medicine, 11(1):64–70, 2012.

A. Carrari, M. Ferrante, and G. Fonseca. A new markovian model for tennis matches. Electronic Journal of Applied Statistical Analysis, 10(3):693–711, 2017. doi: 10.1285/i20705948v10n3p693.

M. Ferrante and G. Fonseca. On the winning probabilities and mean durations of volleyball. Journal of Quantitative Analysis in Sports, 10(2), 2014. doi: 10.1515/jqas-2013-0098.

D. L. Gonza ́lez. Un modelo exactamente soluble para los marcadores en partidos de voleibol. Revista Brasileira de Ensino de F ́ısica, 35(2), 2013. doi: 10.1590/S1806-11172013000200002.

P. K. Newton and K. Aslam. Monte carlo tennis: A stochastic markov chain model. Journal of Quantitative Analysis in Sports, 5(3), 2009. doi: 10.2202/1559-0410.1169.

S. Shoval and Y. Barron. A probabilistic approach to the analysis of a volleyball set performance. Journal of the Operational Research Society, 72(3):714–725, 2021. doi: 10.1080/01605682.2019. 1700182.

K. Siegrist. N-point, win-by-k games. Journal of Applied Probability, 26(4):807–814, 1989. doi: 10.2307/3214385.

J. Haigh. More on n-point, win-by-k games. Journal of Applied Probability, 33(2):382–387, 1996.

doi: 10.2307/3215061.

P. E. Pfeifer and S. J. Deutsch. A probabilistic model for evaluation of volleyball scoring systems. Research Quarterly for Exercise and Sport, 52(3):330–338, 1981. doi: 10.1080/02701367.1981. 10607880.

D. Strauss and B. C. Arnold. The rating of players in racquetball tournaments. Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(2):163–173, 1987. doi: 10.2307/ 2347548.

J. Simmons. A probabilistic model of squash: Strategies and applications. Journal of the Royal Statistical Society: Series C (Applied Statistics), 38(1):95–110, 1989. doi: 10.2307/2347684.

S. Avugos, J. Ko ̈ppen, U. Czienskowski, M. Raab, and M. Bar-Eli. The “hot hand” reconsidered: A meta-analytic approach. Psychology of Sport and Exercise, 14(1):21–27, 2013. doi: 10.1016/j. psychsport.2012.07.005.

T. Gilovich, R. Vallone, and A. Tversky. The hot hand in basketball: On the misperception of random sequences. Cognitive Psychology, 17(3):295–314, 1985. doi: 10.1016/0010-0285(85) 90010-6.

A. Ciuffarella, L. Russo, F. Masedu, M. Valenti, R. E. Izzo, and M. De Angelis. Notational analysis of the volleyball serve. Timisoara Physical Education and Rehabilitation Journal, 6(11): 29–35, 2013. doi: 10.2478/tperj-2013-0013.

J. M. Palao, J. A. Santos, and A. Uren ̃a. Effect of the manner of spike execution on spike performance in volleyball. International Journal of Performance Analysis in Sport, 7(2):126–138, 2007. doi: 10.1080/24748668.2007.11868402.

G. W. Fellingham, B. J. Collings, and C. M. McGown. Developing an optimal scoring system with a special emphasis on volleyball. Research Quarterly for Exercise and Sport, 65(3):237–243, 1994. doi: 10.1080/02701367.1994.10607624.

G. Giatsis, S. Drikos, and A. Lola. Analysis of match report indicators in men’s volleyball olympics and world championships (2014–2021) depending on the type of final score. International Journal of Sports Science & Coaching, 2022. doi: 10.1177/1747954122108677.

S. Drikos, K. Barzouka, M. E. Nikolaidou, and K. Sotiropoulos. Game variables that predict success and performance level in elite men’s volleyball. International Journal of Performance Analysis in Sport, 21(5):767–779, 2021. doi: 10.1080/24748668.2021.1945879.

S. Drikos, K. Barzouka, D. G. Balasas, and K. Sotiropoulos. Effect of quality of opposition on game performance indicators in elite male volleyball. International Journal of Sports Science & Coaching, 17(1):169–177, 2022. doi: 10.1177/174795412110137.

Downloads

Posted

2024-09-16