Relationship between mandibular position, activation of the masticatory musculature and free throw accuracy in female basketball players
DOI:
https://doi.org/10.51224/SRXIV.440Keywords:
accuracy, basketball, electromyography, free throw, masticatory musclesAbstract
Background: Current research relates jaw clenching and athletic performance, in terms of force and agility. However, the impact of jaw clenching on accuracy sports is unclear.
Objectives: To analyze the impact of jaw position and chewing type on free throw accuracy and electromyographic (EMG) activity of masticatory muscles during free throws.
Methods: Cross-sectional study with 25 female basketball players aged 18-44. Each participant executed 18 free throws under three different jaw conditions: mandibular rest, maximum intercuspation, and with interdental cotton rolls, in randomized order.
Results: Chewing type and jaw position were not associated with shooting accuracy (p = 0.106; p = 0.778). There was a positive correlation between EMG activity of the right masseter and free-throw accuracy at maximum intercuspation (rs = 0.402; p = 0.046). In contrast, negative correlations were found with other muscles when the occlusal vertical dimension was altered (rs = -0.619, p = 0.001; rs = -0.490; p = 0.013; rs = -0.534; p = 0.006). The chewing type affected the EMG of the left masseter in the altered occlusal vertical dimension (H = 6.969; p = 0.031). Significant differences in EMG recordings were observed across different mandibular positions during free throws (p < 0.001).
Conclusions: While jaw positioning and chewing type do not impact free throw accuracy in amateur female basketball players, the EMG activity of masticatory muscles is linked to shooting performance. This highlights the need for further research on motor behavior of masticatory muscles in precision sports, especially for athletes using intraoral devices.
Metrics
References
Buscà B, Moreno-Doutres D, Peña J, Morales J, Solana-Tramunt M, Aguilera-Castells J. Effects of jaw clenching wearing customized mouthguards on agility, power and vertical jump in male high-standard basketball players. J Exerc Sci Fit. 2018;16(1):5-11. doi:10.1016/J.JESF.2017.11.001
Schulze A, Busse M. Prediction of Ergogenic Mouthguard Effects in Volleyball: A Pilot Trial. Sports Med Int Open. 2019;3(3):E96-E101. doi:10.1055/A-1036-5888
Venegas M, Valdivia J, Fresno MJ, et al. Clenching and grinding: effect on masseter and sternocleidomastoid electromyographic activity in healthy subjects. Cranio. 2009;27(3):159-166. doi:10.1179/CRN.2009.024
Ebben WP. A brief review of concurrent activation potentiation: theoretical and practical constructs. The Journal of Strength & Conditioning Research. 2006;20(4):985-991.
Mullane MD, Maloney SJ, Chavda S, Williams S, Turner AN. Effects of Concurrent Activation Potentiation on Countermovement Jump Performance. J Strength Cond Res. 2015;29(12):3311-3316. doi:10.1519/JSC.0000000000001010
Iida T, Kato M, Komiyama O, et al. Comparison of cerebral activity during teeth clenching and fist clenching: a functional magnetic resonance imaging study. Eur J Oral Sci. 2010;118(6):635-641. doi:10.1111/j.1600-0722.2010.00784.x
Sugawara K, Furubayashi T, Takahashi M, Ni Z, Ugawa Y, Kasai T. Remote effects of voluntary teeth clenching on excitability changes of the human hand motor area. Neurosci Lett. 2005;377(1):25-30. doi:10.1016/j.neulet.2004.11.059
Giannakopoulos NN, Schindler HJ, Rammelsberg P, Eberhard L, Schmitter M, Hellmann D. Co-activation of jaw and neck muscles during submaximum clenching in the supine position. Arch Oral Biol. 2013;58(12):1751-1760. doi:10.1016/j.archoralbio.2013.09.002
Giannakopoulos NN, Schindler HJ, Hellmann D. Co-contraction behaviour of masticatory and neck muscles during tooth grinding. J Oral Rehabil. 2018;45(7):504-511. doi:10.1111/joor.12646
Guo SX, Li BY, Zhang Y, et al. An electromyographic study on the sequential recruitment of bilateral sternocleidomastoid and masseter muscle activity during gum chewing. J Oral Rehabil. 2017;44(8):594-601. doi:10.1111/joor.12527
Häggman-Henrikson B, Nordh E, Eriksson PO. Increased sternocleidomastoid, but not trapezius, muscle activity in response to increased chewing load. Eur J Oral Sci. 2013;121(5):443-449. doi:10.1111/eos.12066
Ceneviz C, Mehta NR, Forgione A, et al. The immediate effect of changing mandibular position on the EMG activity of the masseter, temporalis, sternocleidomastoid, and trapezius muscles. Cranio. 2006;24(4):237-244. doi:10.1179/CRN.2006.038
Ferrario VF, Sforza C, Serrao G, Fragnito N, Grassi G. The influence of different jaw positions on the endurance and electromyographic pattern of the biceps brachii muscle in young adults with different occlusal characteristics. J Oral Rehabil. 2001;28(8):732-739. doi:10.1046/J.1365-2842.2001.00749.X
Pakosz P, Domaszewski P, Konieczny M, Bączkowicz D. Muscle activation time and free-throw effectiveness in basketball. Sci Rep. 2021;11(1):7489. doi:10.1038/s41598-021-87001-8
Lonsdale C, Tam JTM. On the temporal and behavioural consistency of pre-performance routines: an intra-individual analysis of elite basketball players’ free throw shooting accuracy. J Sports Sci. 2008;26(3):259-266. doi:10.1080/02640410701473962
Moradi J. Benefits of a Guided Motor-Mental Preperformance Routine on Learning the Basketball Free Throw. Percept Mot Skills. 2020;127(1):248-262. doi:10.1177/0031512519870648
Nakano N, Inaba Y, Fukashiro S, Yoshioka S. Basketball players minimize the effect of motor noise by using near-minimum release speed in free-throw shooting. Hum Mov Sci. 2020;70. doi:10.1016/J.HUMOV.2020.102583
Kartiko DC, Tuasikal ARS, Al Ardha MA, Yang CB. Biomechanical Analysis of Ball Trajectory Direction in Free Throw. In: Proceedings of the 1st International Conference on Education Social Sciences and Humanities (ICESSHum 2019). Atlantis Press; 2019. doi:10.2991/icesshum-19.2019.73
Verhoeven FM, Newell KM. Coordination and control of posture and ball release in basketball free-throw shooting. Hum Mov Sci. 2016;49:216-224. doi:10.1016/j.humov.2016.07.007
Julià-Sánchez S, Álvarez-Herms J, Gatterer H, Burtscher M, Pagès T, Viscor G. The influence of dental occlusion on the body balance in unstable platform increases after high intensity exercise. Neurosci Lett. 2016;617:116-121. doi:10.1016/j.neulet.2016.02.003
Julià-Sánchez S, Álvarez-Herms J, Cirer-Sastre R, Corbi F, Burtscher M. The Influence of Dental Occlusion on Dynamic Balance and Muscular Tone. Front Physiol. 2019;10:1626. doi:10.3389/fphys.2019.01626
Manfredini D, Castroflorio T, Perinetti G, Guarda-Nardini L. Dental occlusion, body posture and temporomandibular disorders: where we are now and where we are heading for. J Oral Rehabil. 2012;39(6):463-471. doi:10.1111/j.1365-2842.2012.02291.x
Perinetti G, Primozic J, Manfredini D, Di Lenarda R, Contardo L. The diagnostic potential of static body-sway recording in orthodontics: a systematic review. Eur J Orthod. 2013;35(5):696-705. doi:10.1093/ejo/cjs085
Miró A, Buscà B, Arboix-Alió J, Huertas P, Aguilera-Castells J. Acute effects of jaw clenching while wearing a customized bite-aligning mouthguard on muscle activity and force production during maximal upper body isometric strength. J Exerc Sci Fit. 2023;21(1):157-164. doi:10.1016/j.jesf.2022.12.004
Ginszt M, Zieliński G, Szkutnik J, et al. The Difference in Electromyographic Activity While Wearing a Medical Mask in Women with and without Temporomandibular Disorders. Int J Environ Res Public Health. 2022;19(23):15559. doi:10.3390/ijerph192315559
Haralur SB, Majeed MI, Chaturvedi S, Alqahtani NM, Alfarsi M. Association between preferred chewing side and dynamic occlusal parameters. J Int Med Res. 2019;47(5):1908-1915. doi:10.1177/0300060519827165
Mc Donnell ST, Hector MP, Hannigan A. Chewing side preferences in children. J Oral Rehabil. 2004;31(9):855-860. doi:10.1111/J.1365-2842.2004.01316.X
Molina-Molina A, Ruiz-Malagón EJ, Carrillo-Pérez F, et al. Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment. Front Physiol. 2020;11. doi:10.3389/fphys.2020.606287
Bouisset S, Do MC. Posture, dynamic stability, and voluntary movement. Neurophysiol Clin. 2008;38(6):345-362. doi:10.1016/j.neucli.2008.10.001
Bouisset S, Zattara M. Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. J Biomech. 1987;20(8):735-742. doi:10.1016/0021-9290(87)90052-2
Fourcade P, Bouisset S, Le Bozec S, Memari S. Consecutive postural adjustments (CPAs): A kinetic analysis of variable velocity during a pointing task. Neurophysiol Clin. 2018;48(6):387-396. doi:10.1016/j.neucli.2018.01.004
Consejo Superior de Deportes. Licencias — Portal del Consejo Superior de Deportes. Published 2016. Accessed September 23, 2017. http://www.csd.gob.es/csd/asociaciones/1fedagclub/03Lic/
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361-374.
Tartaglia GM, Testori T, Pallavera A, Marelli B, Sforza C. Electromyographic analysis of masticatory and neck muscles in subjects with natural dentition, teeth‐supported and implant‐supported prostheses. Clin Oral Implants Res. 2008;19(10):1081-1088.
Weinberg LA. Vertical dimension: A research and clinical analysis. J Prosthet Dent. 1982;47(3):290-302. doi:10.1016/0022-3913(82)90159-7
Pae A, Yoo RK, Noh K, Paek J, Kwon KR. The effects of mouthguards on the athletic ability of professional golfers. Dent Traumatol. 2013;29(1):47-51. doi:10.1111/j.1600-9657.2012.01123.x
Dias AA, Redinha LA, Silva LM, Pezarat-Correia PC. Effects of Dental Occlusion on Body Sway, Upper Body Muscle Activity and Shooting Performance in Pistol Shooters. Appl Bionics Biomech. 2018;2018:1-9. doi:10.1155/2018/9360103
Cesanelli L, Cesaretti G, Ylaitė B, Iovane A, Bianco A, Messina G. Occlusal Splints and Exercise Performance: A Systematic Review of Current Evidence. Int J Environ Res Public Health. 2021;18(19). doi:10.3390/ijerph181910338
Wunderlich F, Heuer H, Furley P, Memmert D. A serial-position curve in high-performance darts: The effect of visuomotor calibration on throwing accuracy. Psychol Res. 2020;84(7):2057-2064. doi:10.1007/s00426-019-01205-2
Leroux E, Leroux S, Maton F, Ravalec X, Sorel O. Influence of dental occlusion on the athletic performance of young elite rowers: a pilot study. Clinics (Sao Paulo). 2018;73:e453-e453. doi:10.6061/clinics/2017/e453
Shooli M, Saemi E, Boushehri NS, Seifourian M, Simpson T. Effects of self-controlled practice and focus of attention on free throw accuracy: Exploring optimal theory among skilled basketball players. Hum Mov Sci. 2024;94:103187. doi:10.1016/j.humov.2024.103187
Wilke J, Schleip R, Yucesoy CA, Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J Appl Physiol. 2018;124(1):234-244.
Conde-Vázquez O, Suárez-Quintanilla JA. Anatomical and Physiological Considerations in the ‘Hip Rotators Test’ Related to the Stomatognathic System. A Brief Commentary. International Journal of Morphology. 2020;38(2):363-366. doi:10.4067/S0717-95022020000200363
Knapik JJ, Hoedebecke BL, Rogers GG, Sharp MA, Marshall SW. Effectiveness of Mouthguards for the Prevention of Orofacial Injuries and Concussions in Sports: Systematic Review and Meta-Analysis. Sports Med. 2019;49(8):1217-1232. doi:10.1007/S40279-019-01121-W
Shelley A, Winwood K, Allen T, Horner K. Effectiveness of hard inserts in sports mouthguards: a systematic review. Br Dent J. Published online 2022. doi:10.1038/S41415-022-4089-X
Dias A, Redinha L, Tavares F, Silva L, Malaquias F, Pezarat-Correia P. The effect of a controlled mandible position mouthguard on upper body strength and power in trained rugby athletes–A randomized within subject study. Injury. 2022;53(2):457-462.
Gage CC, Bliven KCH, Bay RC, Sturgill JS, Park JH. Effects of mouthguards on vertical dimension, muscle activation, and athlete preference: a prospective cross-sectional study. Gen Dent. 2015;63(6):48-55.
Julià-Sánchez S, Álvarez-Herms J, Burtscher M. Dental occlusion and body balance: A question of environmental constraints? J Oral Rehabil. 2019;46(4):388-397. doi:10.1111/joor.12767
Buisseret-Delmas C, Compoint C, Delfini C, Buisseret P. Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat. J Comp Neurol. 1999;409(1):153-168. doi:10.1002/(sici)1096-9861(19990621)409:1<153::aid-cne11>3.0.co;2-#
Suvinen TI, Kemppainen P. Review of clinical EMG studies related to muscle and occlusal factors in healthy and TMD subjects. J Oral Rehabil. 2007;34(9):631-644. doi:10.1111/J.1365-2842.2007.01769.X
Downloads
Additional Files
Posted
Categories
License
Copyright (c) 2024 Raquel Delgado-Delgado, Isabel Benito-de-Pedro, Ángela Aguilera-Rubio, Orlando Conde-Vázquez, Maura Jiménez Herranz, Isabel Albarova-Corral, María Benito-de-Pedro (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.