Preprint / Version 1

Motor variability regulation analysis in trampolinists

##article.authors##

  • Eve Charbonneau Université de Montréal
  • Mathieu Bourgeois Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, Université de Montréal, Laval, Québec, Canada
  • Craig Turner Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, Université de Montréal, Laval, Québec, Canada
  • Mickaël Begon Laboratoire de Simulation et Modélisation du Mouvement, Faculté de Médecine, Université de Montréal, Laval, Québec, Canada

DOI:

https://doi.org/10.51224/SRXIV.432

Keywords:

variability regulation, motor control, twisting somersaults, aerial acrobatics, sensory acquisition

Abstract

In trampolining, optimizing body orientation during landing reduces injury risk and enhances performance. As athletes are subject to motor variability, anticipatory inflight corrections are necessary to regulate their body orientation before landing. This study first investigated the evolution of body orientation and limb position variability during twisting somersaults of various difficulties. A secondary objective was to examine the link between acrobatics difficulty and the variability accumulation and to identify links between body orientation variability and gaze orientation. Kinematics and gaze orientation were captured using inertial measurement units and a portable eye tracker, respectively. Seventeen trampolinists performed up to 13 different acrobatics. Pelvis orientation and limb positions inter-trial variability was computed at three key timestamps: take-off, 75% completion of the twist for the most twisting somersault, and landing. Pelvis orientation variability significantly increased (+75%) and then decreased (-39%) while there was an opposite pattern for the limbs where variability decreased (upper limbs:
-66% and lower limbs: -46%) and increased (+357% and +127%), suggesting that trampolinists adapted their limb kinematics to regulate pelvis orientation before landing. A decreased body orientation variability was observed when athletes looked at the trampoline bed before landing. Thus, coaches should ensure that the acrobatic technique allows for getting the appropriate visual information to facilitate landings. Moreover, there was a moderate correlation between the number of twists in a straight somersault and the variability accumulation at 75% of the twist, highlighting that athletes accumulate more variability as the number of twist rotations increases.

Metrics

Metrics Loading ...

References

Bardy, B. G., & Laurent, M. (1998). How is body orientation controlled during somersaulting? Journal of Experimental Psychology: Human Perception and Performance, 24(3), 963–977. https://doi.org/10.1037/0096-1523.24.3.963

Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists? Sports Biomechanics, 6(2), 224–243. https://doi.org/10.1080/14763140701322994

Bernshteĭn, N. A. (1967). The co-ordination and regulation of movements (Pergamon Press, Ed.; 1st English ed.).

Busquets, A., Marina, M., Davids, K., & Angulo-Barroso, R. (2016). Differing Roles of Functional Movement Variability as Experience Increases in Gymnastics. Journal of Sports Science & Medicine, 15(2), 268–276.

Charbonneau, E., Begon, M., & Romeas, T. (2023). A temporal quantitative analysis of visuomotor behavior during different twisting somersaults in elite and sub-elite trampolinists.

Cowin, J., Nimphius, S., Fell, J., Culhane, P., & Schmidt, M. (2022). A Proposed Framework to Describe Movement Variability within Sporting Tasks: A Scoping Review. Sports Medicine - Open, 8(1), 85. https://doi.org/10.1186/s40798-022-00473-4

Davlin, C. D., Sands, W. A., & Shultz, B. B. (2001). The Role of Vision in Control of Orientation in a Back Tuck Somersault. Motor Control, 5(4), 337–346. https://doi.org/10.1123/mcj.5.4.337

Fitzpatrick, R. C., & Day, B. L. (2004). Probing the human vestibular system with galvanic stimulation. Journal of Applied Physiology (Bethesda, Md.: 1985), 96(6), 2301–2316. https://doi.org/10.1152/japplphysiol.00008.2004

Heinen, T. (2011). Evidence for the Spotting Hypothesis in Gymnasts. Motor Control, 15(2), 267–284. https://doi.org/10.1123/mcj.15.2.267

Hiley, M. J., Zuevsky, V. V., & Yeadon, M. R. (2013). Is skilled technique characterized by high or low variability? An analysis of high bar giant circles. Human Movement Science, 32(1), 171–180. https://doi.org/10.1016/j.humov.2012.11.007

Hondzinski, J. M., & Darling, W. G. (2001). Aerial Somersault Performance under Three Visual Conditions. Motor Control, 5(3), 281–300. https://doi.org/10.1123/mcj.5.3.281 Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior(3). MIT Press.

Lee, D. N., Young, D. S., & Rewt, D. (1992). How do somersaulters land on their feet? Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1195–1202. https://doi.org/10.1037/0096-1523.18.4.1195

Luis, M., & Tremblay, L. (2008). Visual Feedback Use during a Back Tuck Somersault: Evidence for Optimal Visual Feedback Utilization. Motor Control, 12(3), 210–218. https://doi.org/10.1123/mcj.12.3.210

Natrup, J., Bramme, J., De Lussanet, M. H. E., Boström, K. J., Lappe, M., & Wagner, H. (2020). Gaze behavior of trampoline gymnasts during a back tuck somersault. Human Movement Science, 70, 102589. https://doi.org/10.1016/j.humov.2020.102589

Newell, K. M., & Corcos, D. M. (Eds.). (1993). Variability and motor control: This book is a product of a conference on variability and motor control, held in Chicago, April 19-21, 1991. Human Kinetics Publ.

Preatoni, E., Hamill, J., Harrison, A. J., Hayes, K., Van Emmerik, R. E. A., Wilson, C., & Rodano, R. (2013). Movement variability and skills monitoring in sports. Sports Biomechanics, 12(2), 69–92. https://doi.org/10.1080/14763141.2012.738700

Rézette, D., & Amblard, B. (1985). Orientation versus motion visual cues to control sensorimotor skills in some acrobatic leaps. Human Movement Science, 4(4), 297–306. https://doi.org/10.1016/0167-9457(85)90016-8

Sayyah, M., Hiley, M. J., King, M. A., & Yeadon, M. R. (2018). Functional variability in the flight phase of one metre springboard forward dives. Human Movement Science, 59, 234–243. https://doi.org/10.1016/j.humov.2018.04.014

Schepers, M., Giuberti, M., & Bellusci, G. (2018). Xsens MVN: Consistent Tracking of Human Motion Using Inertial Sensing. https://doi.org/10.13140/RG.2.2.22099.07205

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915. https://doi.org/10.1038/nn1309

Wilson, C., Simpson, S. E., Van Emmerik, R. E. A., & Hamill, J. (2008). Coordination variability and skill development in expert triple jumpers. Sports Biomechanics, 7(1), 2–9. https://doi.org/10.1080/14763140701682983

Yeadon, M. R. (1993). The biomechanics of twisting somersaults Part I: Rigid body motions. Journal of Sports Sciences, 11(3), 187–198. https://doi.org/10.1080/02640419308729985

Downloads

Posted

2024-07-17