Beyond FITT
How Density Can Improve the Understanding of the Dose-Response Relationship Between Physical Activity and Brain Health
DOI:
https://doi.org/10.51224/SRXIV.411Keywords:
exercise dose, sedentary behavior, Brain, Cognition, PersonalisedAbstract
Research on physical activity and health, including planned and structured forms such as acute and chronic physical exercise, has focused on understanding potential dose-response relationships. Traditionally, the variables of (i) Frequency, (ii) Intensity, (iii) Time, (iv) and Type (known as the FITT principle) have been used to operationalize the dose of physical activity. In this article, we describe the limitations of FITT and propose that it should be complemented by the underappreciated variable density, which defines the temporal distribution of physical activity stimuli within a single bout of physical activity or between successive bouts of physical activity relative to time spent resting (e.g., in napping/sleeping or sedentary behaviors). Using the field of physical activity and brain health as an example, we discuss challenges and opportunities for further research to use density to improve our understanding of dose-response relationships between physical activity and health-related outcomes.
Metrics
References
Erickson KI, Hillman C, Stillman CM, Ballard RM, Bloodgood B, Conroy DE, et al. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med Sci Sports Exerc. 2019;51:1242–51. doi:10.1249/MSS.0000000000001936.
Erickson KI, Donofry SD, Sewell KR, Brown BM, Stillman CM. Cognitive Aging and the Promise of Physical Activity. Annu Rev Clin Psychol. 2022;18:417–42. doi:10.1146/annurev-clinpsy-072720-014213.
Liu-Ambrose T, Barha C, Falck RS. Active body, healthy brain: Exercise for healthy cognitive aging. Int Rev Neurobiol. 2019;147:95–120. doi:10.1016/bs.irn.2019.07.004.
Liu-Ambrose T, Barha CK, Best JR. Physical activity for brain health in older adults. Appl Physiol Nutr Metab. 2018:1–8. doi:10.1139/apnm-2018-0260.
Stillman CM, Cohen J, Lehman ME, Erickson KI. Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis. Front. Hum. Neurosci. 2016;10:626. doi:10.3389/fnhum.2016.00626.
Stillman CM, Esteban-Cornejo I, Brown B, Bender CM, Erickson KI. Effects of Exercise on Brain and Cognition Across Age Groups and Health States. Trends Neurosci. 2020;43:533–43. doi:10.1016/j.tins.2020.04.010.
Stimpson NJ, Davison G, Javadi A-H. Joggin' the Noggin: Towards a Physiological Understanding of Exercise-Induced Cognitive Benefits. Neurosci Biobehav Rev. 2018;88:177–86. doi:10.1016/j.neubiorev.2018.03.018.
Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act. 2019;16:10. doi:10.1186/s11556-019-0217-2.
Dinoff A, Herrmann N, Swardfager W, Lanctôt KL. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. Eur J Neurosci 2017. doi:10.1111/ejn.13603.
Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, Lanctôt KL. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLOS ONE. 2016;11:e0163037. doi:10.1371/journal.pone.0163037.
Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64. doi:10.1016/j.jpsychires.2014.10.003.
Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40:765–801. doi:10.2165/11534530-000000000-00000.
Huang T, Larsen KT, Ried-Larsen M, Moller NC, Andersen LB. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand J Med Sci Sports. 2014;24:1–10. doi:10.1111/sms.12069.
Rodríguez-Gutiérrez E, Torres-Costoso A, Saz-Lara A, Bizzozero-Peroni B, Guzmán-Pavón MJ, Sánchez-López M, Martínez-Vizcaíno V. Effectiveness of high-intensity interval training on peripheral brain-derived neurotrophic factor in adults: A systematic review and network meta-analysis. Scand J Med Sci Sports 2023. doi:10.1111/sms.14496.
Marston KJ, Brown BM, Rainey-Smith SR, Peiffer JJ. Resistance Exercise-Induced Responses in Physiological Factors Linked with Cognitive Health. JAD. 2019;68:39–64. doi:10.3233/JAD-181079.
Yu Q, Herold F, Becker B, Klugah-Brown B, Zhang Y, Perrey S, et al. Cognitive benefits of exercise interventions: an fMRI activation likelihood estimation meta-analysis. Brain Struct Funct. 2021;226:601–19. doi:10.1007/s00429-021-02247-2.
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med. 2018;7:1–43. doi:10.3390/jcm7120466.
Herold F, Aye N, Lehmann N, Taubert M, Müller NG. The Contribution of Functional Magnetic Resonance Imaging to the Understanding of the Effects of Acute Physical Exercise on Cognition. Brain Sci. 2020;10:175. doi:10.3390/brainsci10030175.
Balbim GM, Boa Sorte Silva NC, Brinke L ten, Falck RS, Hortobágyi T, Granacher U, et al. Aerobic exercise training effects on hippocampal volume in healthy older individuals: a meta-analysis of randomized controlled trials. Geroscience 2023. doi:10.1007/s11357-023-00971-7.
Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiology of Aging. 2014;35:S20-S28. doi:10.1016/j.neurobiolaging.2014.03.034.
Wilckens KA, Stillman CM, Waiwood AM, Kang C, Leckie RL, Peven JC, et al. Exercise interventions preserve hippocampal volume: A meta-analysis. Hippocampus 2020. doi:10.1002/hipo.23292.
Ludyga S, Gerber M, Pühse U, Looser VN, Kamijo K. Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nat Hum Behav. 2020;4:603–12. doi:10.1038/s41562-020-0851-8.
Pontifex MB, McGowan AL, Chandler MC, Gwizdala KL, Parks AC, Fenn K, Kamijo K. A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychol Sport Exerc. 2019;40:1–22. doi:10.1016/j.psychsport.2018.08.015.
Ishihara T, Drollette ES, Ludyga S, Hillman CH, Kamijo K. The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neurosci Biobehav Rev. 2021;128:258–69. doi:10.1016/j.neubiorev.2021.06.026.
Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research. 2012;1453:87–101. doi:10.1016/j.brainres.2012.02.068.
Falck RS, Davis JC, Best JR, Crockett RA, Liu-Ambrose T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiology of Aging 2019. doi:10.1016/j.neurobiolaging.2019.03.007.
Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis: A systematic review with meta-analysis. Br J Sports Med. 2018;52:154–60. doi:10.1136/bjsports-2016-096587.
Gallardo-Gómez D, Del Pozo-Cruz J, Noetel M, Álvarez-Barbosa F, Alfonso-Rosa RM, Del Pozo Cruz B. Optimal Dose and Type of Exercise to Improve Cognitive Function in Older Adults: A Systematic Review and Bayesian Model-Based Network Meta-Analysis of RCTs. Ageing Research Reviews. 2022:101591. doi:10.1016/j.arr.2022.101591.
Erlenbach E, McAuley E, Gothe NP. The Association Between Light Physical Activity and Cognition Among Adults: A Scoping Review. J Gerontol A Biol Sci Med Sci. 2021;76:716–24. doi:10.1093/gerona/glab013.
Luo X, Herold F, Ludyga S, Gerber M, Kamijo K, Pontifex MB, et al. Association of physical activity and fitness with executive function among preschoolers. International Journal of Clinical and Health Psychology. 2023;23:100400. doi:10.1016/j.ijchp.2023.100400.
Iso-Markku P, Kujala UM, Knittle K, Polet J, Vuoksimaa E, Waller K. Physical activity as a protective factor for dementia and Alzheimer's disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. Br J Sports Med. 2022;56:701–9. doi:10.1136/bjsports-2021-104981.
Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14:653–66. doi:10.1038/s41582-018-0070-3.
Paillard T. Preventive effects of regular physical exercise against cognitive decline and the risk of dementia with age advancement. Sports Med Open. 2015;1:4. doi:10.1186/s40798-015-0016-x.
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies: A systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510. doi:10.1186/1471-2458-14-510.
Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research. 2013;2013:657508. doi:10.1155/2013/657508.
Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008;9:58–65. doi:10.1038/nrn2298.
Gronwald T, Törpel A, Herold F, Budde H. Perspective of Dose and Response for Individualized Physical Exercise and Training Prescription. JFMK. 2020;5:48. doi:10.3390/jfmk5030048.
Herold F, Törpel A, Hamacher D, Budde H, Gronwald T. A Discussion on Different Approaches for Prescribing Physical Interventions - Four Roads Lead to Rome, but Which One Should We Choose? J Pers Med. 2020;10:55. doi:10.3390/jpm10030055.
Impellizzeri FM, Shrier I, McLaren SJ, Coutts AJ, McCall A, Slattery K, et al. Understanding Training Load as Exposure and Dose. Sports Med. 2023;53:1667–79. doi:10.1007/s40279-023-01833-0.
Herold F, Müller P, Gronwald T, Müller NG. Dose-Response Matters! - A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front. Psychology. 2019;10:2338. doi:10.3389/fpsyg.2019.02338.
Gronwald T, Bem Alves AC de, Murillo-Rodríguez E, Latini A, Schuette J, Budde H. Standardization of exercise intensity and consideration of a dose-response is essential. Commentary on "Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models", by Lourenco et al., published 2019 in Nature Medicine. J Sport Health Sci. 2019;8:353–4. doi:10.1016/j.jshs.2019.03.006.
Gronwald T, Velasques B, Ribeiro P, Machado S, Murillo-Rodríguez E, Ludyga S, et al. Increasing exercise's effect on mental health: Exercise intensity does matter. Proc Natl Acad Sci USA. 2018;115:E11890-E11891. doi:10.1073/pnas.1818161115.
Hansford HJ, Wewege MA, Cashin AG, Hagstrom AD, Clifford BK, McAuley JH, Jones MD. If exercise is medicine, why don't we know the dose? An overview of systematic reviews assessing reporting quality of exercise interventions in health and disease. Br J Sports Med. 2022;56:692–700. doi:10.1136/bjsports-2021-104977.
Bland KA, Neil-Sztramko SE, Zadravec K, Medysky ME, Kong J, Winters-Stone KM, Campbell KL. Attention to principles of exercise training: an updated systematic review of randomized controlled trials in cancers other than breast and prostate. BMC Cancer. 2021;21:1179. doi:10.1186/s12885-021-08701-y.
Solis-Urra P, Fernandez-Gamez B, Liu-Ambrose T, Erickson KI, Ortega FB, Esteban-Cornejo I. Exercise as medicine for the brain: moving towards precise and personalised recommendations. Br J Sports Med 2024. doi:10.1136/bjsports-2024-108158.
Barha CK, Falck RS, Skou ST, Liu-Ambrose T. Personalising exercise recommendations for healthy cognition and mobility in ageing: time to consider one's pre-existing function and genotype (Part 2). Br J Sports Med. 2021;55:301–3. doi:10.1136/bjsports-2020-102865.
Barha CK, Falck RS, Skou ST, Liu-Ambrose T. Personalising exercise recommendations for healthy cognition and mobility in aging: time to address sex and gender (Part 1). Br J Sports Med. 2021;55:300–1. doi:10.1136/bjsports-2020-102864.
Barha CK, Galea LA, Nagamatsu LS, Erickson KI, Liu-Ambrose T. Personalising exercise recommendations for brain health: Considerations and future directions. Br J Sports Med. 2017;51:636–9. doi:10.1136/bjsports-2016-096710.
Buford TW, Roberts MD, Church TS. Toward exercise as personalized medicine. Sports Med. 2013;43:157–65. doi:10.1007/s40279-013-0018-0.
Pickering C, Kiely J. Do Non-Responders to Exercise Exist—and If So, What Should We Do About Them? Sports Med. 2018;23:30. doi:10.1007/s40279-018-01041-1.
Ross R, Goodpaster BH, Koch LG, Sarzynski MA, Kohrt WM, Johannsen NM, et al. Precision exercise medicine: understanding exercise response variability. Br J Sports Med. 2019;53:1141–53. doi:10.1136/bjsports-2018-100328.
Buford TW, Pahor M. Making preventive medicine more personalized: Implications for exercise-related research. Preventive Medicine. 2012;55:34–6. doi:10.1016/j.ypmed.2012.05.001.
Herold F, Törpel A, Hamacher D, Budde H, Zou L, Strobach T, et al. Causes and Consequences of Interindividual Response Variability: A Call to Apply a More Rigorous Research Design in Acute Exercise-Cognition Studies. Front Physiol. 2021;12:682891. doi:10.3389/fphys.2021.682891.
Meyler S, Bottoms L, Muniz-Pumares D. Biological and methodological factors affecting V̇O2max response variability to endurance training and the influence of exercise intensity prescription. Exp Physiol 2021. doi:10.1113/EP089565.
Hrubeniuk TJ, Bonafiglia JT, Bouchard DR, Gurd BJ, Sénéchal M. Directions for Exercise Treatment Response Heterogeneity and Individual Response Research. Int J Sports Med. 2022;43:11–22. doi:10.1055/a-1548-7026.
Heisz JJ, Waddington EE. The Principles of Exercise Prescription for Brain Health in Aging. Exerc Sport Mov. 2024;2:1–5. doi:10.1249/ESM.0000000000000019.
Hecksteden A, Faude O, Meyer T, Donath L. How to Construct, Conduct and Analyze an Exercise Training Study? Front. Physiol. 2018;9:239. doi:10.3389/fphys.2018.01007.
Liguori G, Feito Y, Fountaine CJ, Roy B, editors. ACSM's guidelines for exercise testing and prescription. Philadelphia, Baltimore, New York, London, Hong Kong, Sydney, Tokyo: Wolters Kluwer; 2022.
Williams CJ, Gurd BJ, Bonafiglia JT, Voisin S, Li Z, Harvey N, et al. A Multi-Center Comparison of VO2peak Trainability Between Interval Training and Moderate Intensity Continuous Training. Front. Physiol. 2019;10:19. doi:10.3389/fphys.2019.00019.
Cabral DF, Rice J, Morris TP, Rundek T, Pascual-Leone A, Gomes-Osman J. Exercise for Brain Health: An Investigation into the Underlying Mechanisms Guided by Dose. Neurotherapeutics 2019. doi:10.1007/s13311-019-00749-w.
Wasfy MM, Baggish AL. Exercise Dose in Clinical Practice. Circulation. 2016;133:2297–313. doi:10.1161/CIRCULATIONAHA.116.018093.
Solomon TPJ. Sources of Inter-individual Variability in the Therapeutic Response of Blood Glucose Control to Exercise in Type 2 Diabetes: Going Beyond Exercise Dose. Front Physiol. 2018;9:896. doi:10.3389/fphys.2018.00896.
Sanders LMJ, Hortobágyi T, La Bastide-van Gemert S, van der Zee EA, van Heuvelen MJG. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. PLOS ONE. 2019;14:e0210036. doi:10.1371/journal.pone.0210036.
Oberg E. Physical Activity Prescription: Our Best Medicine. Integrative medicine. 2007;6:18–22.
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024. doi:10.1016/j.cmet.2023.12.025.
Li G, Wang Z, Hao Y, Qian J, Hu B, Wang Y, et al. Consensus statement of Chinese experts on exercise prescription (2023). Sports Medicine and Health Science 2024. doi:10.1016/j.smhs.2024.02.003.
Festa RR, Jofré-Saldía E, Candia AA, Monsalves-Álvarez M, Flores-Opazo M, Peñailillo L, et al. Next steps to advance general physical activity recommendations towards physical exercise prescription: a narrative review. BMJ Open Sport Exerc Med. 2023;9:e001749. doi:10.1136/bmjsem-2023-001749.
Zubin Maslov P, Schulman A, Lavie CJ, Narula J. Personalized exercise dose prescription. European Heart Journal. 2018;39:2346–55. doi:10.1093/eurheartj/ehx686.
Kasper K. Sports Training Principles. Curr Sports Med Rep. 2019;18:95–6. doi:10.1249/JSR.0000000000000576.
Bushman BA. Developing the P (for Progression) in a FITT-VP Exercise Prescription. ACSM's Health & Fitness Journal. 2018;22:6–9. doi:10.1249/FIT.0000000000000378.
Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97:643–63. doi:10.1007/s00421-006-0238-1.
Tschakert G, Handl T, Weiner L, Birnbaumer P, Mueller A, Groeschl W, Hofmann P. Exercise duration: Independent effects on acute physiologic responses and the need for an individualized prescription. Physiol Rep. 2022;10:e15168. doi:10.14814/phy2.15168.
Hofmann P, Tschakert G. Intensity- and Duration-Based Options to Regulate Endurance Training. Front Physiol. 2017;8:337. doi:10.3389/fphys.2017.00337.
Gronwald T, Ludyga S, Hoos O, Hottenrott K. Non-linear dynamics of cardiac autonomic activity during cycling exercise with varied cadence. Human Movement Science. 2018;60:225–33. doi:10.1016/j.humov.2018.06.013.
Beneke R, Leithäuser RM. Maximal Lactate Steady State's Dependence on Cycling Cadence. Int J Sports Physiol Perform. 2017;12:304–9. doi:10.1123/ijspp.2015-0573.
Hottenrott K, Taubert M, Gronwald T. Cortical Brain Activity is Influenced by Cadence in Cyclists. The Open Sports Science Journal. 2013:9–14.
Ludyga S, Gronwald T, Hottenrott K. Effects of high vs. low cadence training on cyclists' brain cortical activity during exercise. J Sci Med Sport 2015. doi:10.1016/j.jsams.2015.04.003.
Ludyga S, Hottenrott K, Gronwald T. Four weeks of high cadence training alter brain cortical activity in cyclists. J Sports Sci. 2017;35:1377–82. doi:10.1080/02640414.2016.1198045.
Herold F, Gronwald T, Scholkmann F, Zohdi H, Wyser D, Müller NG, Hamacher D. New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020. doi:10.3390/brainsci10060342.
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43:313–38. doi:10.1007/s40279-013-0029-x.
Zou L, Herold F, Cheval B, Wheeler MJ, Pindus DM, Erickson KI, et al. Sedentary behavior and lifespan brain health. Trends in Cognitive Sciences. 2024;28:369–82. doi:10.1016/j.tics.2024.02.003.
Wang Y, Pan Y, Li H. What is brain health and why is it important? BMJ. 2020;371:m3683. doi:10.1136/bmj.m3683.
Herold F, Theobald P, Gronwald T, Rapp MA, Müller NG. Going digital – a commentary on the terminology used at the intersection of physical activity and digital health. Eur Rev Aging Phys Act 2022. doi:10.1186/s11556-022-00296-y.
Herold F, Hamacher D, Schega L, Müller NG. Thinking While Moving or Moving While Thinking - Concepts of Motor-Cognitive Training for Cognitive Performance Enhancement. Front. Ag. Neurosci. 2018;10:228. doi:10.3389/fnagi.2018.00228.
Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–31.
Budde H, Schwarz R, Velasques B, Ribeiro P, Holzweg M, Machado S, et al. The need for differentiating between exercise, physical activity, and training. Autoimmun Rev. 2016;15:110–1. doi:10.1016/j.autrev.2015.09.004.
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451–62. doi:10.1136/bjsports-2020-102955.
World Health Organization. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization; 2020.
World Health Organization. Global status report on physical activity 2022 2022.
Mansoubi M, Pearson N, Clemes SA, Biddle SJ, Bodicoat DH, Tolfrey K, et al. Energy expenditure during common sitting and standing tasks: Examining the 1.5 MET definition of sedentary behaviour. BMC Public Health. 2015;15:516. doi:10.1186/s12889-015-1851-x.
Howley ET. Type of activity: Resistance, aerobic and leisure versus occupational physical activity. Medicine & Science in Sports & Exercise. 2001;33:S364-9; discussion S419-20.
Falck RS, Davis JC, Khan KM, Handy TC, Liu-Ambrose T. A Wrinkle in Measuring Time Use for Cognitive Health: How should We Measure Physical Activity, Sedentary Behaviour and Sleep? American Journal of Lifestyle Medicine. 2021:155982762110314. doi:10.1177/15598276211031495.
Pettee Gabriel KK, Morrow JR, Woolsey A-LT. Framework for physical activity as a complex and multidimensional behavior. J Phys Act Health. 2012;9 Suppl 1:S11-8. doi:10.1123/jpah.9.s1.s11.
Dipietro L, Al-Ansari SS, Biddle SJH, Borodulin K, Bull FC, Buman MP, et al. Advancing the global physical activity agenda: recommendations for future research by the 2020 WHO physical activity and sedentary behavior guidelines development group. Int J Behav Nutr Phys Act. 2020;17:143. doi:10.1186/s12966-020-01042-2.
Strath SJ, Kaminsky LA, AINSWORTH BE, Ekelund U, Freedson PS, Gary RA, et al. Guide to the assessment of physical activity: Clinical and research applications: a scientific statement from the American Heart Association. Circulation. 2013;128:2259–79. doi:10.1161/01.cir.0000435708.67487.da.
Wegner M, Amatriain-Fernández S, Kaulitzky A, Murillo-Rodriguez E, Machado S, Budde H. Systematic Review of Meta-Analyses: Exercise Effects on Depression in Children and Adolescents. Front. Psychiatry 2020. doi:10.3389/fpsyt.2020.00081.
Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14:75. doi:10.1186/s12966-017-0525-8.
Sedentary Behaviour Research Network. Letter to the editor: standardized use of the terms "sedentary" and "sedentary behaviours". Appl Physiol Nutr Metab. 2012;37:540–2. doi:10.1139/h2012-024.
Dunstan DW, Howard B, Healy GN, Owen N. Too much sitting--a health hazard. Diabetes Res Clin Pract. 2012;97:368–76. doi:10.1016/j.diabres.2012.05.020.
Dunstan DW, Dogra S, Carter SE, Owen N. Sit less and move more for cardiovascular health: emerging insights and opportunities. Nat Rev Cardiol 2021. doi:10.1038/s41569-021-00547-y.
Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. Physiol Rev. 2023;103:2561–622. doi:10.1152/physrev.00022.2022.
Katzmarzyk PT, Powell KE, Jakicic JM, Troiano RP, Piercy K, Tennant B. Sedentary Behavior and Health: Update from the 2018 Physical Activity Guidelines Advisory Committee. Med Sci Sports Exerc. 2019;51:1227–41. doi:10.1249/MSS.0000000000001935.
Hallgren M, Dunstan DW, Owen N. Passive Versus Mentally Active Sedentary Behaviors and Depression. Exerc Sport Sci Rev. 2020;48:20–7. doi:10.1249/JES.0000000000000211.
Yang L, Cao C, Kantor ED, Nguyen LH, Zheng X, Park Y, et al. Trends in Sedentary Behavior Among the US Population, 2001-2016. JAMA. 2019;321:1587–97. doi:10.1001/jama.2019.3636.
Raichlen DA, Aslan DH, Sayre MK, Bharadwaj PK, Ally M, Maltagliati S, et al. Sedentary Behavior and Incident Dementia Among Older Adults. JAMA. 2023;330:934–40. doi:10.1001/jama.2023.15231.
Bauman A, AINSWORTH BE, SALLIS JF, Hagströmer M, CRAIG CL, Bull FC, et al. The descriptive epidemiology of sitting. A 20-country comparison using the International Physical Activity Questionnaire (IPAQ). American Journal of Preventive Medicine. 2011;41:228–35. doi:10.1016/j.amepre.2011.05.003.
Schnabel G, Harre D, Krug J, editors. Trainingslehre - Trainingswissenschaft: Leistung - Training - Wettkampf. 3rd ed. Aachen, Auckland, Beirut, Budapest, Kairo, Cape Town, Dubai, Hägendorf, Indianapolis, Maidenhead, Singapur, Sydney, Teheran, Wien: Meyer & Meyer Verlag; 2014.
Törpel A, Herold F, Hamacher D, Müller NG, Schega L. Strengthening the Brain-Is Resistance Training with Blood Flow Restriction an Effective Strategy for Cognitive Improvement? J Clin Med. 2018;7:377. doi:10.3390/jcm7100337.
Ghosal R, Varma VR, Volfson D, Urbanek J, Hausdorff JM, Watts A, Zipunnikov V. Scalar on time-by-distribution regression and its application for modelling associations between daily-living physical activity and cognitive functions in Alzheimer's Disease. Sci Rep. 2022;12:11558. doi:10.1038/s41598-022-15528-5.
Farrahi V, Kangas M, Kiviniemi A, Puukka K, Korpelainen R, Jämsä T. Accumulation patterns of sedentary time and breaks and their association with cardiometabolic health markers in adults. Scand J Med Sci Sports. 2021;31:1489–507. doi:10.1111/sms.13958.
Niemelä M, Kangas M, Farrahi V, Kiviniemi A, Leinonen A-M, Ahola R, et al. Intensity and temporal patterns of physical activity and cardiovascular disease risk in midlife. Preventive Medicine. 2019;124:33–41. doi:10.1016/j.ypmed.2019.04.023.
Farrahi V, Rostami M, Dumuid D, Chastin SFM, Niemelä M, Korpelainen R, et al. Joint Profiles of Sedentary Time and Physical Activity in Adults and Their Associations with Cardiometabolic Health. Med Sci Sports Exerc. 2022;54:2118–28. doi:10.1249/MSS.0000000000003008.
Farrahi V, Collings PJ, Oussalah M. Deep learning of movement behavior profiles and their association with markers of cardiometabolic health. BMC Med Inform Decis Mak. 2024;24:74. doi:10.1186/s12911-024-02474-7.
Farrahi V, Rostami M. Machine learning in physical activity, sedentary, and sleep behavior research. JASSB 2024. doi:10.1186/s44167-024-00045-9.
Farrahi V, Niemelä M, Kangas M, Korpelainen R, Jämsä T. Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches. Gait & Posture. 2019;68:285–99. doi:10.1016/j.gaitpost.2018.12.003.
Clark S, Lomax N, Morris M, Pontin F, Birkin M. Clustering Accelerometer Activity Patterns from the UK Biobank Cohort. Sensors (Basel) 2021. doi:10.3390/s21248220.
Farrahi V, Clare P. Artificial Intelligence and Machine Learning-Powerful Yet Underutilized Tools and Algorithms in Physical Activity and Sedentary Behavior Research. J Phys Act Health. 2024:1–3. doi:10.1123/jpah.2024-0021.
Fuller D, Ferber R, Stanley K. Why machine learning (ML) has failed physical activity research and how we can improve. BMJ Open Sport Exerc Med. 2022;8:e001259. doi:10.1136/bmjsem-2021-001259.
Stamatakis E, Ahmadi MN, Gill JMR, Thøgersen-Ntoumani C, Gibala MJ, Doherty A, Hamer M. Association of wearable device-measured vigorous intermittent lifestyle physical activity with mortality. Nat Med 2022. doi:10.1038/s41591-022-02100-x.
Ahmadi MN, Hamer M, Gill JMR, Murphy M, Sanders JP, Doherty A, Stamatakis E. Brief bouts of device-measured intermittent lifestyle physical activity and its association with major adverse cardiovascular events and mortality in people who do not exercise: a prospective cohort study. The Lancet Public Health. 2023;8:e800-e810. doi:10.1016/S2468-2667(23)00183-4.
Stamatakis E, Ahmadi MN, Friedenreich CM, Blodgett JM, Koster A, Holtermann A, et al. Vigorous Intermittent Lifestyle Physical Activity and Cancer Incidence Among Nonexercising Adults: The UK Biobank Accelerometry Study. JAMA Oncol 2023. doi:10.1001/jamaoncol.2023.1830.
Rowlands AV, Gomersall SR, Tudor-Locke C, Bassett DR, Kang M, Fraysse F, et al. Introducing novel approaches for examining the variability of individuals' physical activity. J Sports Sci. 2015;33:457–66. doi:10.1080/02640414.2014.951067.
Arsac LM, Deschodt-Arsac V. Detrended fluctuation analysis in a simple spreadsheet as a tool for teaching fractal physiology. Adv Physiol Educ. 2018;42:493–9. doi:10.1152/advan.00181.2017.
Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng C-K, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002;99 Suppl 1:2466–72. doi:10.1073/pnas.012579499.
Paraschiv-Ionescu A, Buchser E, Rutschmann B, Aminian K. Nonlinear analysis of human physical activity patterns in health and disease. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77:21913. doi:10.1103/PhysRevE.77.021913.
Pittman-Polletta BR, Scheer FAJL, Butler MP, Shea SA, Hu K. The role of the circadian system in fractal neurophysiological control. Biol Rev Camb Philos Soc. 2013;88:873–94. doi:10.1111/brv.12032.
Hardstone R, Poil S-S, Schiavone G, Jansen R, Nikulin VV, Mansvelder HD, Linkenkaer-Hansen K. Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front Physiol. 2012;3:450. doi:10.3389/fphys.2012.00450.
Brown LE, Greenwood M. Periodization Essentials and Innovations in Resistance Training Protocols. Strength & Conditioning Journal. 2005;27:80–5. doi:10.1519/00126548-200508000-00014.
Gronwald T, Berk S, Altini M, Mourot L, Hoos O, Rogers B. Real-Time Estimation of Aerobic Threshold and Exercise Intensity Distribution Using Fractal Correlation Properties of Heart Rate Variability: A Single-Case Field Application in a Former Olympic Triathlete. Front. Sports Act. Living 2021. doi:10.3389/fspor.2021.668812.
Gronwald T, Hoos O, Hottenrott K. Effects of Acute Normobaric Hypoxia on Non-linear Dynamics of Cardiac Autonomic Activity During Constant Workload Cycling Exercise. Front. Physiol. 2019;10:865. doi:10.3389/fphys.2019.00999.
Gronwald T, Hoos O, Hottenrott K. Influence Of Performance Level Of Male Runners On Non-linear Dynamics Of Heart Rate Variability During a 10Km Race. International Journal of Performance Analysis in Sport. 2020:1–15. doi:10.1080/24748668.2020.1764746.
Gronwald T, Hoos O, Ludyga S, Hottenrott K. Non-linear dynamics of heart rate variability during incremental cycling exercise. Research in Sports Medicine. 2018;59:1–11. doi:10.1080/15438627.2018.1502182.
Gronwald T, Rogers B, Hottenrott L, Hoos O, Hottenrott K. Correlation Properties of Heart Rate Variability during a Marathon Race in Recreational Runners: Potential Biomarker of Complex Regulation during Endurance Exercise. jsportscimed. 2021:557–63. doi:10.52082/jssm.2021.557.
Rogers B, Berk S, Gronwald T. An Index of Non-Linear HRV as a Proxy of the Aerobic Threshold Based on Blood Lactate Concentration in Elite Triathletes. Sports. 2022;10:25. doi:10.3390/sports10020025.
Rogers B, Giles D, Draper N, Hoos O, Gronwald T. A New Detection Method Defining the Aerobic Threshold for Endurance Exercise and Training Prescription Based on Fractal Correlation Properties of Heart Rate Variability. Front. Physiol. 2021. doi:10.3389/fphys.2020.596567.
Rogers B, Giles D, Draper N, Mourot L, Gronwald T. Detection of the Anaerobic Threshold in Endurance Sports: Validation of a New Method Using Correlation Properties of Heart Rate Variability. JFMK. 2021;6:38. doi:10.3390/jfmk6020038.
Rogers B, Gronwald T, Mourot L. Analysis of Fractal Correlation Properties of Heart Rate Variability during an Initial Session of Eccentric Cycling. IJERPH. 2021;18:10426. doi:10.3390/ijerph181910426.
Rogers B, Mourot L, Doucende G, Gronwald T. Fractal correlation properties of heart rate variability as a biomarker of endurance exercise fatigue in ultramarathon runners. Physiol Rep 2021. doi:10.14814/phy2.14956.
Rogers B, Mourot L, Gronwald T. Aerobic Threshold Identification in a Cardiac Disease Population Based on Correlation Properties of Heart Rate Variability. J Clin Med 2021. doi:10.3390/jcm10184075.
Rogers B, Schaffarczyk M, Gronwald T. Improved Estimation of Exercise Intensity Thresholds by Combining Dual Non-Invasive Biomarker Concepts: Correlation Properties of Heart Rate Variability and Respiratory Frequency. Sensors. 2023;23:1973. doi:10.3390/s23041973.
Schaffarczyk M, Rogers B, Reer R, Gronwald T. Validation of a non-linear index of heart rate variability to determine aerobic and anaerobic thresholds during incremental cycling exercise in women. Eur J Appl Physiol 2022. doi:10.1007/s00421-022-05050-x.
van Hooren B, Bongers BC, Rogers B, Gronwald T. The Between-Day Reliability of Correlation Properties of Heart Rate Variability During Running. Appl Psychophysiol Biofeedback 2023. doi:10.1007/s10484-023-09599-x.
van Hooren B, Mennen B, Gronwald T, Bongers BC, Rogers B. Correlation properties of heart rate variability to assess the first ventilatory threshold and fatigue in runners. J Sports Sci. 2023:1–10. doi:10.1080/02640414.2023.2277034.
Rogers B, Giles D, Draper N, Mourot L, Gronwald T. Influence of Artefact Correction and Recording Device Type on the Practical Application of a Non-Linear Heart Rate Variability Biomarker for Aerobic Threshold Determination. Sensors. 2021;21:821. doi:10.3390/s21030821.
Gronwald T, Hoos O, Hottenrott K. Effects of a Short-Term Cycling Interval Session and Active Recovery on Non-Linear Dynamics of Cardiac Autonomic Activity in Endurance Trained Cyclists. JCM. 2019;8:194. doi:10.3390/jcm8020194.
Kaufmann S, Gronwald T, Herold F, Hoos O. Heart Rate Variability-Derived Thresholds for Exercise Intensity Prescription in Endurance Sports: A Systematic Review of Interrelations and Agreement with Different Ventilatory and Blood Lactate Thresholds. Sports Med Open. 2023;9:59. doi:10.1186/s40798-023-00607-2.
Raichlen DA, Klimentidis YC, Hsu C-H, Alexander GE. Fractal Complexity of Daily Physical Activity Patterns Differs With Age Over the Life Span and Is Associated With Mortality in Older Adults. J Gerontol A Biol Sci Med Sci. 2019;74:1461–7. doi:10.1093/gerona/gly247.
Hu K, Riemersma-van der Lek RF, Patxot M, Li P, Shea SA, Scheer FAJL, van Someren EJW. Progression of Dementia Assessed by Temporal Correlations of Physical Activity: Results From a 3.5-Year, Longitudinal Randomized Controlled Trial. Sci Rep. 2016;6:27742. doi:10.1038/srep27742.
Cavanaugh JT, Kochi N, Stergiou N. Nonlinear analysis of ambulatory activity patterns in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2010;65:197–203. doi:10.1093/gerona/glp144.
Blodgett JM, Ahmadi M, Stamatakis E, Rockwood K, Hamer M. Fractal complexity of daily physical activity and cognitive function in a midlife cohort. Sci Rep. 2023;13:20340. doi:10.1038/s41598-023-47200-x.
Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994;49:1685–9. doi:10.1103/physreve.49.1685.
Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, Goldberger AL. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. Journal of Electrocardiology. 1995;28 Suppl:59–65. doi:10.1016/s0022-0736(95)80017-4.
Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82–7. doi:10.1063/1.166141.
Barha CK, Best JR, Rosano C, Yaffe K, Catov JM, Liu-Ambrose T. Sex-Specific Relationship Between Long-Term Maintenance of Physical Activity and Cognition in the Health ABC Study: Potential Role of Hippocampal and Dorsolateral Prefrontal Cortex Volume. J Gerontol A Biol Sci Med Sci. 2020;75:764–70. doi:10.1093/gerona/glz093.
Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans: A systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85. doi:10.1016/j.yfrne.2017.04.002.
Barha CK, Hsiung G-YR, Best JR, Davis JC, Eng JJ, Jacova C, et al. Sex Difference in Aerobic Exercise Efficacy to Improve Cognition in Older Adults with Vascular Cognitive Impairment: Secondary Analysis of a Randomized Controlled Trial. J Alzheimers Dis. 2017;60:1397–410. doi:10.3233/JAD-170221.
Barha CK, Hsu C-L, Brinke L ten, Liu-Ambrose T. Biological Sex: A Potential Moderator of Physical Activity Efficacy on Brain Health. Front. Aging Neurosci. 2019;11:67. doi:10.3389/fnagi.2019.00329.
Barha CK, Liu-Ambrose T. Exercise and the Aging Brain: Considerations for Sex Differences. BPL. 2018;3:1–11. doi:10.3233/BPL-1867.
Barha CK, Liu-Ambrose T. Sex differences in exercise efficacy: Is midlife a critical window for promoting healthy cognitive aging? FASEB J. 2020;34:11329–36. doi:10.1096/fj.202000857R.
Barha CK, Starkey SY, Hsiung GYR, Tam R, Liu-Ambrose T. Aerobic exercise improves executive functions in females, but not males, without the BDNF Val66Met polymorphism. Biol Sex Differ. 2023;14:16. doi:10.1186/s13293-023-00499-7.
CRAIG CL, MARSHALL AL, SJÖSTROM M, BAUMAN AE, BOOTH ML, AINSWORTH BE, et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Medicine & Science in Sports & Exercise. 2003;35:1381–95. doi:10.1249/01.MSS.0000078924.61453.FB.
Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115. doi:10.1186/1479-5868-8-115.
Kastelic K, Löfler S, Matko Š, Šarabon N. Validity of the German Version of Daily Activity Behaviours Questionnaire Among Older Adults. J Aging Phys Act. 2023:1–7. doi:10.1123/japa.2022-0417.
Kastelic K, Pedišić Ž, Lipovac D, Kastelic N, Chen S-T, Šarabon N. Associations of meeting 24-h movement guidelines with stress and self-rated health among adults: is meeting more guidelines associated with greater benefits? BMC Public Health. 2021;21:929. doi:10.1186/s12889-021-10979-3.
Kastelic K, Šarabon N, Burnard MD, Pedišić Ž. Validity and Reliability of the Daily Activity Behaviours Questionnaire (DABQ) for Assessment of Time Spent in Sleep, Sedentary Behaviour, and Physical Activity. Int J Environ Res Public Health 2022. doi:10.3390/ijerph19095362.
Kastelic K, Sarabon N. VALIDITY AND RELIABILITY OF THE DAILY ACTIVITY BEHAVIOURS QUESTIONNAIRE (DABQ) FOR THE ASSESSMENT OF 24-H MOVEMENT BEHAVIOURS AMONG ADOLESCENTS. Kinesiology. 2023;55:289–97. doi:10.26582/k.55.2.12.
Prince SA, Cardilli L, Reed JL, Saunders TJ, Kite C, Douillette K, et al. A comparison of self-reported and device measured sedentary behaviour in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2020;17:31. doi:10.1186/s12966-020-00938-3.
Nigg CR, Fuchs R, Gerber M, Jekauc D, Koch T, Krell-Roesch J, et al. Assessing physical activity through questionnaires – A consensus of best practices and future directions. Psychology of Sport and Exercise. 2020;50:101715. doi:10.1016/j.psychsport.2020.101715.
Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L. Assessment of physical activity - a review of methodologies with reference to epidemiological research: A report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17:127–39. doi:10.1097/HJR.0b013e32832ed875.
Argent R, Hetherington-Rauth M, Stang J, Tarp J, Ortega FB, Molina-Garcia P, et al. Recommendations for Determining the Validity of Consumer Wearables and Smartphones for the Estimation of Energy Expenditure: Expert Statement and Checklist of the INTERLIVE Network. Sports Med 2022. doi:10.1007/s40279-022-01665-4.
Mühlen JM, Stang J, Lykke Skovgaard E, Judice PB, Molina-Garcia P, Johnston W, et al. Recommendations for determining the validity of consumer wearable heart rate devices: expert statement and checklist of the INTERLIVE Network. Br J Sports Med 2021. doi:10.1136/bjsports-2020-103148.
Johnston W, Judice PB, Molina García P, Mühlen JM, Lykke Skovgaard E, Stang J, et al. Recommendations for determining the validity of consumer wearable and smartphone step count: expert statement and checklist of the INTERLIVE network. Br J Sports Med 2020. doi:10.1136/bjsports-2020-103147.
Migueles JH, Aadland E, Andersen LB, Brønd JC, Chastin SF, Hansen BH, et al. GRANADA consensus on analytical approaches to assess associations with accelerometer-determined physical behaviours (physical activity, sedentary behaviour and sleep) in epidemiological studies. Br J Sports Med 2021. doi:10.1136/bjsports-2020-103604.
Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017;47:1821–45. doi:10.1007/s40279-017-0716-0.
Pulsford RM, Brocklebank L, Fenton SAM, Bakker E, Mielke GI, Tsai L-T, et al. The impact of selected methodological factors on data collection outcomes in observational studies of device-measured physical behaviour in adults: A systematic review. Int J Behav Nutr Phys Act. 2023;20:26. doi:10.1186/s12966-022-01388-9.
Timm I, Reichert M, Ebner-Priemer UW, Giurgiu M. Momentary within-subject associations of affective states and physical behavior are moderated by weather conditions in real life: an ambulatory assessment study. Int J Behav Nutr Phys Act. 2023;20:117. doi:10.1186/s12966-023-01507-0.
Reichert M, Giurgiu M, Koch E, Wieland LM, Lautenbach S, Neubauer AB, et al. Ambulatory Assessment for Physical Activity Research: State of the Science, Best Practices and Future Directions. Psychology of Sport and Exercise 2020. doi:10.1016/j.psychsport.2020.101742.
Giurgiu M, Koch ED, Ottenbacher J, Plotnikoff RC, Ebner-Priemer UW, Reichert M. Sedentary behavior in everyday life relates negatively to mood: An ambulatory assessment study. Scand J Med Sci Sports. 2019;29:1340–51. doi:10.1111/sms.13448.
Giurgiu M, Koch ED, Plotnikoff RC, Ebner-Priemer UW, Reichert M. Breaking Up Sedentary Behavior Optimally to Enhance Mood. Med Sci Sports Exerc. 2020;52:457–65. doi:10.1249/MSS.0000000000002132.
Giurgiu M, Plotnikoff RC, Nigg CR, Koch ED, Ebner-Priemer UW, Reichert M. Momentary mood predicts upcoming real-life sedentary behavior. Scand J Med Sci Sports. 2020;30:1276–86. doi:10.1111/sms.13652.
Giurgiu M, Niermann C, Ebner-Priemer U, Kanning M. Accuracy of Sedentary Behavior-Triggered Ecological Momentary Assessment for Collecting Contextual Information: Development and Feasibility Study. JMIR Mhealth Uhealth. 2020;8:e17852. doi:10.2196/17852.
Ebner-Priemer UW, Koudela S, Mutz G, Kanning M. Interactive Multimodal Ambulatory Monitoring to Investigate the Association between Physical Activity and Affect. Front Psychol. 2012;3:596. doi:10.3389/fpsyg.2012.00596.
Haaren-Mack B von, Kanning M, Ebner-Priemer UW, Reichert M. “Capturing life as it is lived”—Ambulatory Assessment for physical activity, sport and exercise research. Ger J Exerc Sport Res. 2022;52:215–7. doi:10.1007/s12662-022-00824-z.
Trull TJ, Ebner-Priemer U. Ambulatory assessment. Annu Rev Clin Psychol. 2013;9:151–76. doi:10.1146/annurev-clinpsy-050212-185510.
Chaput J-P, Carson V, Gray CE, Tremblay MS. Importance of all movement behaviors in a 24 hour period for overall health. Int J Environ Res Public Health. 2014;11:12575–81. doi:10.3390/ijerph111212575.
Rollo S, Antsygina O, Tremblay MS. The whole day matters: Understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. Journal of Sport and Health Science. 2020;9:493–510. doi:10.1016/j.jshs.2020.07.004.
Holtermann A, Rasmussen CL, Hallman DM, Ding D, Dumuid D, Gupta N. 24-Hour Physical Behavior Balance for Better Health for All: "The Sweet-Spot Hypothesis". Sports Med Open. 2021;7:98. doi:10.1186/s40798-021-00394-8.
Pedišić Ž. MEASUREMENT ISSUES AND POOR ADJUSTMENTS FOR PHYSICAL ACTIVITY AND SLEEP UNDERMINE SEDENTARY BEHAVIOUR RESEARCH — THE FOCUS SHOULD SHIFT TO THE BALANCE BETWEEN SLEEP, SEDENTARY BEHAVIOUR, STANDING AND ACTIVITY. Kinesiology. 2014;46:135–46.
Pedišić Ž, Dumuid D, Olds TS. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:1–18.
Falck RS, Davis JC, Li L, Stamatakis E, Liu-Ambrose T. Preventing the '24-hour Babel': the need for a consensus on a consistent terminology scheme for physical activity, sedentary behaviour and sleep. Br J Sports Med 2021. doi:10.1136/bjsports-2021-104487.
Falck RS, Sorte Silva NCB, Balbim GM, Li LC, Barha CK, Liu-Ambrose T. Addressing the elephant in the room: the need to examine the role of social determinants of health in the relationship of the 24-hour activity cycle and adult cognitive health. Br J Sports Med 2023. doi:10.1136/bjsports-2023-106893.
Collins AM, Molina-Hidalgo C, Aghjayan SL, Fanning J, Erlenbach ED, Gothe NP, et al. Differentiating the influence of sedentary behavior and physical activity on brain health in late adulthood. Experimental Gerontology. 2023:112246. doi:10.1016/j.exger.2023.112246.
Mellow ML, Dumuid D, Thacker JS, Dorrian J, Smith AE. Building your best day for healthy brain aging-The neuroprotective effects of optimal time use. Maturitas. 2019;125:33–40. doi:10.1016/j.maturitas.2019.04.204.
Janssen I, Campbell JE, Zahran S, Saunders TJ, Tomasone JR, Chaput J-P. Timing of physical activity within the 24-hour day and its influence on health: a systematic review. [Timing of physical activity within the 24-hour day and its influence on health: a systematic review]. Health Promot Chronic Dis Prev Can. 2022;42:129–38. doi:10.24095/hpcdp.42.4.02.
Bruggisser F, Knaier R, Roth R, Wang W, Qian J, Scheer FAJL. Best Time of Day for Strength and Endurance Training to Improve Health and Performance? A Systematic Review with Meta-analysis. Sports Med Open. 2023;9:34. doi:10.1186/s40798-023-00577-5.
Sabag A, Ahmadi MN, Francois ME, Postnova S, Cistulli PA, Fontana L, Stamatakis E. Timing of Moderate to Vigorous Physical Activity, Mortality, Cardiovascular Disease, and Microvascular Disease in Adults With Obesity. Diabetes Care 2024. doi:10.2337/dc23-2448.
Rosen P von. Analysing time-use composition as dependent variables in physical activity and sedentary behaviour research: different compositional data analysis approaches. JASSB 2023. doi:10.1186/s44167-023-00033-5.
Dumuid D, Pedišić Ž, Palarea-Albaladejo J, Martín-Fernández JA, Hron K, Olds T. Compositional Data Analysis in Time-Use Epidemiology: What, Why, How. Int J Environ Res Public Health 2020. doi:10.3390/ijerph17072220.
Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2019;28:846–57. doi:10.1177/0962280217737805.
Gupta N, Mathiassen SE, Mateu-Figueras G, Heiden M, Hallman DM, Jørgensen MB, Holtermann A. A comparison of standard and compositional data analysis in studies addressing group differences in sedentary behavior and physical activity. Int J Behav Nutr Phys Act. 2018;15:53. doi:10.1186/s12966-018-0685-1.
Gupta N, Rasmussen CL, Holtermann A, Mathiassen SE. Time-Based Data in Occupational Studies: The Whys, the Hows, and Some Remaining Challenges in Compositional Data Analysis (CoDA). Ann Work Expo Health. 2020;64:778–85. doi:10.1093/annweh/wxaa056.
Janssen I, Clarke AE, Carson V, Chaput J-P, Giangregorio LM, Kho ME, et al. A systematic review of compositional data analysis studies examining associations between sleep, sedentary behaviour, and physical activity with health outcomes in adults. Appl Physiol Nutr Metab. 2020;45:S248-S257. doi:10.1139/apnm-2020-0160.
Miatke A, Olds T, Maher C, Fraysse F, Mellow ML, Smith AE, et al. The association between reallocations of time and health using compositional data analysis: a systematic scoping review with an interactive data exploration interface. Int J Behav Nutr Phys Act 2023. doi:10.1186/s12966-023-01526-x.
Zahran S, Visser C, Ross-White A, Janssen I. A systematic review of compositional analysis studies examining the associations between sleep, sedentary behaviour, and physical activity with health indicators in early childhood. JASSB 2023. doi:10.1186/s44167-022-00012-2.
Lewis P, Korf HW, Kuffer L, Groß JV, Erren TC. Exercise time cues (zeitgebers) for human circadian systems can foster health and improve performance: a systematic review. BMJ Open Sport Exerc Med. 2018;4:e000443. doi:10.1136/bmjsem-2018-000443.
Sewell K, Erickson KI, Rainey-Smith SR, Peiffer JJ, Sohrabi HR, Brown BM. Relationships Between Physical Activity, Sleep and Cognitive Function: A Narrative Review. Neurosci Biobehav Rev 2021. doi:10.1016/j.neubiorev.2021.09.003.
Banno M, Harada Y, Taniguchi M, Tobita R, Tsujimoto H, Tsujimoto Y, et al. Exercise can improve sleep quality: a systematic review and meta-analysis. PeerJ. 2018;6:e5172. doi:10.7717/peerj.5172.
Kelley GA, Kelley KS. Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med. 2017;10:26–36. doi:10.1111/jebm.12236.
Kredlow MA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW. The effects of physical activity on sleep: a meta-analytic review. J Behav Med. 2015;38:427–49. doi:10.1007/s10865-015-9617-6.
Lang C, Kalak N, Brand S, Holsboer-Trachsler E, Pühse U, Gerber M. The relationship between physical activity and sleep from mid adolescence to early adulthood. A systematic review of methodological approaches and meta-analysis. Sleep Medicine Reviews. 2016;28:28–41. doi:10.1016/j.smrv.2015.07.004.
Vanderlinden J, Boen F, van Uffelen JGZ. Effects of physical activity programs on sleep outcomes in older adults: a systematic review. Int J Behav Nutr Phys Act. 2020;17:11. doi:10.1186/s12966-020-0913-3.
Kovacevic A, Mavros Y, Heisz JJ, Fiatarone Singh MA. The effect of resistance exercise on sleep: A systematic review of randomized controlled trials. Sleep Medicine Reviews. 2018;39:52–68. doi:10.1016/j.smrv.2017.07.002.
Chennaoui M, Arnal PJ, Sauvet F, Léger D. Sleep and exercise: a reciprocal issue? Sleep Medicine Reviews. 2015;20:59–72. doi:10.1016/j.smrv.2014.06.008.
Kline CE, Hillman CH, Bloodgood Sheppard B, Tennant B, Conroy DE, Macko RF, et al. Physical activity and sleep: An updated umbrella review of the 2018 Physical Activity Guidelines Advisory Committee report. Sleep Medicine Reviews. 2021;58:101489. doi:10.1016/j.smrv.2021.101489.
Stutz J, Eiholzer R, Spengler CM. Effects of Evening Exercise on Sleep in Healthy Participants: A Systematic Review and Meta-Analysis. Sports Med 2018. doi:10.1007/s40279-018-1015-0.
Frimpong E, Mograss M, Zvionow T, Dang-Vu TT. The effects of evening high-intensity exercise on sleep in healthy adults: A systematic review and meta-analysis. Sleep Medicine Reviews. 2021;60:101535. doi:10.1016/j.smrv.2021.101535.
Yue T, Liu X, Gao Q, Wang Y. Different Intensities of Evening Exercise on Sleep in Healthy Adults: A Systematic Review and Network Meta-Analysis. Nat Sci Sleep. 2022;14:2157–77. doi:10.2147/NSS.S388863.
Ingham-Hill E, Hewitt A, Lester A, Bond B. Morning compared to afternoon school-based exercise on cognitive function in adolescents. Brain and Cognition. 2024;175:106135. doi:10.1016/j.bandc.2024.106135.
Liu-Ambrose T, Falck RS. Sleep, Physical Activity, and Cognitive Health in Older Adults. In: Handbook of Sleep Research: Elsevier; 2019. p. 665–676. doi:10.1016/B978-0-12-813743-7.00044-X.
Bezerra TA, Clark CCT, Souza Filho AN de, Fortes LDS, Mota JAPS, Duncan MJ, Martins CMDL. 24-hour movement behaviour and executive function in preschoolers: A compositional and isotemporal reallocation analysis. European Journal of Sport Science. 2021;21:1064–72. doi:10.1080/17461391.2020.1795274.
Lau PWC, Song H, Di Song, Wang J-J, Zhen S, Shi L, Yu R. 24-Hour movement behaviors and executive functions in preschoolers: A compositional and isotemporal reallocation analysis. Child Development 2023. doi:10.1111/cdev.14013.
Lu Z, Qu X, Chang J, Xu M, Song G, Wang X, et al. Reallocation of time between preschoolers' 24-h movement behaviours and executive functions: A compositional data analysis. J Sports Sci. 2023;41:1187–95. doi:10.1080/02640414.2023.2260632.
Mitchell JJ, Blodgett JM, Chastin SF, Jefferis BJ, Wannamethee SG, Hamer M. Exploring the associations of daily movement behaviours and mid-life cognition: a compositional analysis of the 1970 British Cohort Study. J Epidemiol Community Health 2023. doi:10.1136/jech-2022-219829.
Hyodo K, Kitano N, Ueno A, Yamaguchi D, Watanabe Y, Noda T, et al. Association between intensity or accumulating pattern of physical activity and executive function in community-dwelling older adults: A cross-sectional study with compositional data analysis. Front Hum Neurosci. 2022;16:1018087. doi:10.3389/fnhum.2022.1018087.
Moreau D, Wiebels K. A precision-mapping approach to physical exercise interventions targeting cognitive function. In: : Elsevier; 2024. doi:10.1016/bs.pbr.2023.12.001.
Bushman BA. Determining the I (Intensity) for a FITT-VP Aerobic Exercise Prescription. ACSM's Health & Fitness Journal. 2014;18:4–7. doi:10.1249/FIT.0000000000000030.
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43:927–54. doi:10.1007/s40279-013-0066-5.
Voss MW. The Chronic Exercise–Cognition Interaction: fMRI Research. In: McMorris T, editor. Exercise-Cognition Interaction: Elsevier; 2016. p. 187–209. doi:10.1016/B978-0-12-800778-5.00009-8.
McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int J Psychophysiol. 2021;170:75–88. doi:10.1016/j.ijpsycho.2021.10.005.
Zou L, Herold F, Ludyga S, Kamijo K, Müller NG, Pontifex MB, et al. Look into my eyes: What can eye-based measures tell us about the relationship between physical activity and cognitive performance? J Sport Health Sci. 2023;12:568–91. doi:10.1016/j.jshs.2023.04.003.
Dora K, Suga T, Tomoo K, Sugimoto T, Mok E, Tsukamoto H, et al. Similar improvements in cognitive inhibitory control following low-intensity resistance exercise with slow movement and tonic force generation and high-intensity resistance exercise in healthy young adults: a preliminary study. J Physiol Sci 2021. doi:10.1186/s12576-021-00806-0.
Tomoo K, Suga T, Sugimoto T, Tanaka D, Shimoho K, Dora K, et al. Work volume is an important variable in determining the degree of inhibitory control improvements following resistance exercise. Physiol Rep. 2020;8:e14527. doi:10.14814/phy2.14527.
Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, et al. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior. 2016;155:224–30. doi:10.1016/j.physbeh.2015.12.021.
Martínez-Díaz IC, Carrasco Páez L. Little but Intense: Using a HIIT-Based Strategy to Improve Mood and Cognitive Functioning in College Students. Healthcare (Basel) 2023. doi:10.3390/healthcare11131880.
Ludyga S, Pühse U, Lucchi S, Marti J, Gerber M. Immediate and sustained effects of intermittent exercise on inhibitory control and task-related heart rate variability in adolescents. J Sci Med Sport. 2019;22:96–100. doi:10.1016/j.jsams.2018.05.027.
Hung T-M, Tsai C-L, Chen F-T, Wang C-C, Chang Y-K. The immediate and sustained effects of acute exercise on planning aspect of executive function. Psychology of Sport and Exercise. 2013;14:728–36. doi:10.1016/j.psychsport.2013.05.004.
Tian S, Mou H, Qiu F. Sustained Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Inhibitory Control. IJERPH. 2021;18:2687. doi:10.3390/ijerph18052687.
van Dongen EV, Kersten IHP, Wagner IC, Morris RGM, Fernandez G. Physical Exercise Performed Four Hours after Learning Improves Memory Retention and Increases Hippocampal Pattern Similarity during Retrieval. Curr Biol 2016. doi:10.1016/j.cub.2016.04.071.
Wunsch K, Eckert T, Fiedler J, Woll A. Just-in-time adaptive interventions in mobile physical activity interventions - A synthesis of frameworks and future directions. The European Health Psychologist. 2022;22:834–42.
Müller AM, Blandford A, Yardley L. The conceptualization of a Just-In-Time Adaptive Intervention (JITAI) for the reduction of sedentary behavior in older adults. Mhealth. 2017;3:37. doi:10.21037/mhealth.2017.08.05.
Hardeman W, Houghton J, Lane K, Jones A, Naughton F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int J Behav Nutr Phys Act. 2019;16:31. doi:10.1186/s12966-019-0792-7.
Hashimoto T, Tsukamoto H, Takenaka S, Olesen ND, Petersen LG, Sørensen H, et al. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. 2018;32:1417–27. doi:10.1096/fj.201700381RR.
Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, et al. Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology & Behavior. 2016;160:26–34. doi:10.1016/j.physbeh.2016.03.029.
Yamada Y, Frith EM, Wong V, Spitz RW, Bell ZW, Chatakondi RN, et al. Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction. Medical Hypotheses. 2021;151:110586. doi:10.1016/j.mehy.2021.110586.
Hashimoto T, Tsukamoto H, Ando S, Ogoh S. Effect of Exercise on Brain Health: The Potential Role of Lactate as a Myokine. Metabolites. 2021;11:813. doi:10.3390/metabo11120813.
Brooks GA. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018;27:757–85. doi:10.1016/j.cmet.2018.03.008.
Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi:10.1016/j.redox.2020.101454.
Brooks GA. The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. J Sport Health Sci. 2020;9:446–60. doi:10.1016/j.jshs.2020.02.006.
Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP. Lactate in contemporary biology: a phoenix risen. J Physiol. 2021:1–23. doi:10.1113/JP280955.
Brooks GA, Osmond AD, Arevalo JA, Curl CC, Duong JJ, Horning MA, et al. Lactate as a major myokine and exerkine. Nat Rev Endocrinol 2022. doi:10.1038/s41574-022-00724-0.
Brooks GA, Osmond AD, Arevalo JA, Duong JJ, Curl CC, Moreno-Santillan DD, Leija RG. Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J Appl Physiol. 2023;134:529–48. doi:10.1152/japplphysiol.00497.2022.
Riske L, Thomas RK, Baker GB, Dursun SM. Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder. Ther Adv Psychopharmacol. 2017;7:85–9. doi:10.1177/2045125316675579.
Quistorff B, Secher NH, van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22:3443–9. doi:10.1096/fj.08-106104.
Taher M, Leen WG, Wevers RA, Willemsen MA. Lactate and its many faces. Eur J Paediatr Neurol. 2016;20:3–10. doi:10.1016/j.ejpn.2015.09.008.
Herold F, Behrendt T, Meißner C, Müller NG, Schega L. The Influence of Acute Sprint Interval Training on Cognitive Performance of Healthy Younger Adults. Int J Environ Res Public Health. 2022;19:613. doi:10.3390/ijerph19010613.
Ballester-Ferrer JA, Bonete-López B, Roldan A, Cervelló E, Pastor D. Effect of acute exercise intensity on cognitive inhibition and well-being: Role of lactate and BDNF polymorphism in the dose-response relationship. Front. Psychol. 2022. doi:10.3389/fpsyg.2022.1057475.
Nunes Pereira Oliva H, Miranda Oliveira G, Oliveira Oliva I, Cardoso Cassilhas R, Maurício Batista de Paula A, Monteiro-Junior RS. Middle cerebral artery blood velocity and cognitive function after high- and moderate-intensity aerobic exercise sessions. Neuroscience Letters. 2023:137511. doi:10.1016/j.neulet.2023.137511.
Li R-H, Karageorghis CI, Chen Y-C, Chen Y-C, Liao Y-H, Hung T-M, Chang Y-K. Effect of acute concurrent exercise training and the mediating role of lactate on executive function: An ERP study. Psychology of Sport and Exercise. 2023;70:102531. doi:10.1016/j.psychsport.2023.102531.
Yamada Y, Kataoka R, Bell ZW, Wong V, Spitz RW, Song JS, et al. Improved interference control after exercise with blood flow restriction and cooling is associated with but not mediated by increased lactate. Physiology & Behavior. 2023;270:114291. doi:10.1016/j.physbeh.2023.114291.
Ferris LT, Williams JS, Shen C-L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39:728–34. doi:10.1249/mss.0b013e31802f04c7.
Schiffer T, Schulte S, Sperlich B, Achtzehn S, Fricke H, Struder HK. Lactate infusion at rest increases BDNF blood concentration in humans. Neuroscience Letters. 2011;488:234–7. doi:10.1016/j.neulet.2010.11.035.
Walsh EI, Smith L, Northey J, Rattray B, Cherbuin N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Research Reviews. 2020;60:101044. doi:10.1016/j.arr.2020.101044.
Walsh JJ, Tschakovsky ME. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab. 2018;43:1095–104. doi:10.1139/apnm-2018-0192.
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–22. doi:10.1073/pnas.1015950108.
Leckie RL, Oberlin LE, Voss MW, Prakash RS, Szabo-Reed A, Chaddock-Heyman L, et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci. 2014;8:985. doi:10.3389/fnhum.2014.00985.
Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci. 2010;30:5368–75. doi:10.1523/JNEUROSCI.6251-09.2010.
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, et al. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci. 2023;16:1275924. doi:10.3389/fnmol.2023.1275924.
Hwang J, Brothers RM, Castelli DM, Glowacki EM, Chen YT, Salinas MM, et al. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neuroscience Letters. 2016;630:247–53. doi:10.1016/j.neulet.2016.07.033.
Borror A. Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise. Medical Hypotheses. 2017;106:1–5. doi:10.1016/j.mehy.2017.06.024.
Kennedy CM, Burma JS, Newel KT, Brassard P, Smirl JD. Time-course recovery of cerebral blood velocity metrics post aerobic exercise: a systematic review. J Appl Physiol. 2022;133:471–89. doi:10.1152/japplphysiol.00630.2021.
Mulser L, Moreau D. Effect of acute cardiovascular exercise on cerebral blood flow: A systematic review. Brain Research. 2023;1809:148355. doi:10.1016/j.brainres.2023.148355.
Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Progress in Neurobiology. 2000;61:397–414. doi:10.1016/S0301-0082(99)00057-X.
Tymko MM, Ainslie PN, Smith KJ. Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans. Eur J Appl Physiol. 2018;118:1527–38. doi:10.1007/s00421-018-3887-y.
Tari B, Vanhie JJ, Belfry GR, Shoemaker JK, Heath M. Increased cerebral blood flow supports a single-bout postexercise benefit to executive function: evidence from hypercapnia. Journal of Neurophysiology. 2020;124:930–40. doi:10.1152/jn.00240.2020.
Shirzad M, Tari B, Dalton C, van Riesen J, Marsala MJ, Heath M. Passive exercise increases cerebral blood flow velocity and supports a postexercise executive function benefit. Psychophysiol. 2022;59:e14132. doi:10.1111/psyp.14132.
Tomoo K, Suga T, Dora K, Sugimoto T, Mok E, Tsukamoto H, et al. Impact of Inter-Set Short Rest Interval Length on Inhibitory Control Improvements Following Low-Intensity Resistance Exercise in Healthy Young Males. Front. Physiol. 2021. doi:10.3389/fphys.2021.741966.
DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. doi:10.1038/nrdp.2015.19.
B Zhou, Y Lu, K Hajifathalian, J Bentham, M Di Cesare, G Danaei, et al. Worldwide trends in diabetes since 1980: a p
Downloads
Posted
Categories
License
Copyright (c) 2024 Fabian Herold, Liye Zou, Paula Theobald, Patrick Manser, Ryan S. Falck, Qian Yu, Teresa Liu-Ambrose, Charles H. Hillman, Arthur K. Kramer, Kirk I. Erickson, Boris Cheval, Yanixa Chen, Matthew Heath, Zhihao Zhang, Toru Ishihara, Keita Kamijo, Soichi Ando, Yanping Gao, Joseph P. Costello, Meijun Hou, Mats Hallgren, Zhuhui Chen, David Moreau, Vahid Farrahi, David A. Raichlen, Emmanuel Stamatakis, Michael J. Wheeler, Neville Owen, Sebastian Ludyga, Henning Budde, Thomas Gronwald (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.