Preprint / Version 1

Development and Validation of the Physical Effort Scale (PES)

Physical Effort Scale (PES)

##article.authors##

  • Boris Cheval
  • Silvio Maltagliati
  • Delphine S Courvoisier
  • Samuele Marcora
  • Matthieu Boisgontier

DOI:

https://doi.org/10.51224/SRXIV.338

Keywords:

Exercise, Investigative Techniques, Motivation, Personality, Physical Exertion, Sports, Validation Study

Abstract

Objectives: Previous literature has primarily viewed physical effort as an aversive experience. However, recent research suggests that effort can also be valued positively. These differences in approach and avoidance tendencies toward physical effort may play a key role in the self- regulation of physical activity behaviors. The aim was to develop a scale that measures these tendencies and can contribute to a better understanding of physical effort and how it affects behavior.

Methods: The Physical Effort Scale (PES) was developed through expert evaluation and cognitive interviews. In sample 1 (n = 680), content validity and dimensional structure was examined through principal component analysis and confirmatory factor analysis. Item reduction was conducted using item response theory. Construct validity was then explored using regression. Sample 2 (n = 297) was used to validate dimensional structure, internal consistency, and construct validity, and to assess test-retest reliability.

Results: Out of 44 items evaluated for content validity by nine external experts, 18 were selected and refined based on cognitive interviews. Exploratory factor analysis and item response analysis of sample 1 allowed to reduce the scale to 8 items measuring the tendency to approach (n = 4) and avoid physical effort (n = 4). Confirmatory factor analyses validated the two dimensions structure in both samples. The two subscales showed high internal consistency (α > 0.897) and acceptable test-retest reliability (intraclass correlation > 0.66). Patterns of associations with other constructs showed expected relations.

Conclusions: The PES is a valid and reliable measure of individual differences in the valuation of physical effort. This scale can assess the propensity to engage in physically demanding tasks in non-clinical populations. The PES and its manual are available in the supplemental material.

Metrics

Metrics Loading ...

References

Abbiss, C. R., Peiffer, J. J., Meeusen, R., & Skorski, S. (2015). Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Medicine, 45(9), 1235-1243. https://doi.org/10.1007/s40279-015-0344-5

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T

Bernacer, J., Martinez-Valbuena, I., Martinez, M., Pujol, N., Luis, E. O., Ramirez-Castillo, D., & Pastor, M. A. (2019). An amygdala-cingulate network underpins changes in effort- based decision making after a fitness program. NeuroImage, 203, 116181. https://doi.org/10.1016/j.neuroimage.2019.116181

Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in public health, 6, 149. https://doi.org/10.3389/fpubh.2018.00149

Boisgontier, M.P. (2022). Research integrity requires to be aware of good and questionable research practices. European Rehabilitation Journal, 2(1), 1-3. https://doi.org/10.52057/erj.v2i1.24

Bonnelle, V., Manohar, S., Behrens, T., & Husain, M. (2016). Individual differences in premotor brain systems underlie behavioral apathy. Cerebral cortex, 26(2), 807-819. https://doi.org/10.1093/cercor/bhv247

Brunet, J., Gunnell, K. E., Gaudreau, P., & Sabiston, C. M. (2015). An integrative analytical framework for understanding the effects of autonomous and controlled motivation. Personality and Individual Differences, 84, 2-15. https://doi.org/10.1016/j.paid.2015.02.034

Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42(1), 116. https://doi.org/10.1037/0022-3514.42.1.116

Cacioppo, J. T., Petty, R. E., Feinstein, J. A., & Jarvis, W. B. G. (1996). Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychological bulletin, 119(2), 197-253. https://doi.org/10.1037/0033- 2909.119.2.197

Carver, C. S. (2006). Approach, avoidance, and the self-regulation of affect and action. Motivation and Emotion, 30(2), 105-110. https://doi.org/10.1007/s11031-006-9044-7

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67(2), 319-333. https://doi.org/10.1037/0022- 3514.67.2.319

Cheval, B., Bacelar, M., Daou, M., Cabral, A., Parma, J., Forestier, C., Orsholits, D., Sander, D., Boisgontier, M., & Miller , M. W. (2020). Higher inhibitory control is required to escape the innate attraction to effort minimization. Psychology of Sport and Exercise, 51, 101781. https://doi.org/10.1016/j.psychsport.2020.101781

Cheval, B., & Boisgontier, M. P. (2021). The theory of effort minimization in physical activity. Exercise and Sport Sciences Reviews, 49(3), 168-178. https://doi.org/10.1249/JES.0000000000000252

Cheval, B., & Boisgontier, M. P. (2023). Promouvoir une activité physique régulière chez les patients: l’importance de la perception de l’effort. STAPS. https://doi.org/10.3917/sta.pr1.0091

Cheval, B., Cabral, D. A. R., Daou, M., Bacelar, M., Parma, J. O., Forestier, C., Orsholits, D., Maltagliati, S., Sander, D., & Boisgontier, M. P. (2021). Inhibitory control elicited by

physical activity and inactivity stimuli: An EEG study. Motivation Science, 7(4), 386-

https://doi.org/10.1037/mot0000236

Cheval, B., Tipura, E., Burra, N., Frossard, J., Chanal, J., Orsholits, D., Radel, R., &

Boisgontier, M. P. (2018). Avoiding sedentary behaviors requires more cortical resources than avoiding physical activity: An EEG study. Neuropsychologia, 119, 68- 80. https://doi.org/10.1016/j.neuropsychologia.2018.07.029

Clay, G., Mlynski, C., Korb, F. M., Goschke, T., & Job, V. (2022). Rewarding cognitive effort increases the intrinsic value of mental labor. Proceedings of the National Academy of Sciences, 119(5), e2111785119. https://doi.org/10.1073/pnas.2111785119

Corr, P. J., & Cooper, A. J. (2016). The reinforcement sensitivity theory of personality questionnaire (RST-PQ): Development and validation. Psychological Assessment, 28(11), 1427-1440. https://doi.org/10.1037/pas0000273

Craig, C. L., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sports and Exercise, 35(8), 1381-1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB

Davidson, R. J. (1998). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition & Emotion, 12(3), 307-330. https://doi.org/10.1080/026999398379628

Dornic, S., Ekehammar, B., & Laaksonen, T. (1991). Tolerance for mental effort: Self-ratings related to perception, performance and personality. Personality and Individual Differences, 12(3), 313-319. https://doi.org/10.1016/0191-8869(91)90118-U

Eisenberger, R. (1992). Learned industriousness. Psychological review, 99(2), 248-267. https://doi.org/10.1037/0033-295X.99.2.248

Ekkekakis, P., Hall, E. E., & Petruzzello, S. J. (2005). Some like it vigorous: Measuring individual differences in the preference for and tolerance of exercise intensity. Journal of Sport and Exercise Psychology, 27(3), 350-374. https://doi.org/10.1123/jsep.27.3.350

Ekkekakis, P., Zenko, Z., & Vazou, S. (2021). Do you find exercise pleasant or unpleasant? The Affective Exercise Experiences (AFFEXX) questionnaire. Psychology of Sport and Exercise, 55(10), 101930. https://doi.org/10.1016/j.psychsport.2021.101930

Elliot, A. J., & Thrash, T. M. (2010). Approach and avoidance temperament as basic

dimensions of personality. Journal of Personality,

https://doi.org/10.1111/j.1467-6494.2010.00636.x

(3),

Journal,

-906.

, e21.

Farajzadeh

Boisgontier, M.P. (2023).

https://doi.org/

Peer Community

, A., Goubran, M., Beehler, A., Cherkaoui, N., Morrison, P., de Chanaleilles, M.,

Maltagliati, S., Cheval, B., Millers M. W., Sheehy, L., Bilodeau, M., Orsholits, D., &

Automatic approach-avoidance tendency toward physical

activity, sedentary, and neutral stimuli as a function of age, explicit affective attitude,

and intention to be active.

24072/pcjournal.246

Friedrich, A. M., & Zentall, T. R. (2004). Pigeons shift their preference toward locations of food that take more effort to obtain. Behavioural Processes, 67(3), 405-415. https://doi.org/10.1016/j.beproc.2004.07.001

Gardner, B., Abraham, C., Lally, P., & de Bruijn, G.-J. (2012). Towards parsimony in habit measurement: Testing the convergent and predictive validity of an automaticity subscale of the Self-Report Habit Index. International Journal of Behavioral Nutrition and Physical Activity, 9, 102. https://doi.org/10.1186/1479-5868-9-102

Grimby, G., Börjesson, M., Jonsdottir, I., Schnohr, P., Thelle, D., & Saltin, B. (2015). The “Saltin–Grimby physical activity level scale” and its application to health research.

Scandinavian Journal of Medicine & Science in Sports, 25, 119-125.

https://doi.org/10.1111/sms.12611

Gunderson, E. A., Gripshover, S. J., Romero, C., Dweck, C. S., Goldin‐Meadow, S., & Levine, S. C. (2013). Parent praise to 1‐to 3‐year‐olds predicts children's motivational frameworks 5 years later. Child Development, 84(5), 1526-1541. https://doi.org/10.1111/cdev.12064

Hinkin, T. R. (1995). A review of scale development practices in the study of organizations. Journal of Management, 21(5), 967-988. https://doi.org/10.1016/0149-2063(95)90050- 0

Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox: Effort is both costly and valued. Trends in Cognitive Sciences, 22(4), 337-349. https://doi.org/10.1016/j.tics.2018.01.007

Kent, M. (2006). Oxford dictionary of sports science and medicine. Oxford University Press. https://doi.org/10.1093/acref/9780198568506.001.0001

Klein-Flügge, M. C., Kennerley, S. W., Friston, K., & Bestmann, S. (2016). Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort- reward trade-off. Journal of Neuroscience, 36(39), 10002-10015. https://doi.org/10.1523/JNEUROSCI.0292-16.2016

Leonard, J. A., Lee, Y., & Schulz, L. E. (2017). Infants make more attempts to achieve a goal when they see adults persist. Science, 357(6357), 1290-1294. https://doi.org/10.1126/science.aan2317.

Levine, J. A., Noyes, E. T., Gius, B. K., Ahlich, E., Rancourt, D., Houston, R. J., & Schlauch, R. C. (2019). Development and psychometric evaluation of a brief approach and avoidance of alcohol questionnaire. Alcoholism: Clinical and Experimental Research, 43(2), 353-366. https://doi.org/10.1111/acer.13939

Lin, H., Westbrook, A., Fan, F., & Inzlicht, M. (2021). Instilling the value of effort (Registered report stage 2). https://doi.org/10.31234/osf.io/gnk4m

Lydall, E. S., Gilmour, G., & Dwyer, D. M. (2010). Rats place greater value on rewards produced by high effort: An animal analogue of the “effort justification” effect. Journal of Experimental Social Psychology, 46(6), 1134-1137. https://doi.org/10.1016/j.jesp.2010.05.011

Maltagliati, S., Rebar, A., Fessler, L., Forestier, C., Sarrazin, P., Chalabaev, A., Sander, D., Sivaramakrishnan, H., Orsholits, D., & Boisgontier, M. P. (2021). Evolution of physical activity habits after a context change: The case of COVID‐19 lockdown. British Journal of Health Psychology, 26(4), 1135-1154. https://doi.org/10.1111/bjhp.12524

Maltagliati, S., Sarrazin, P., Fessler, L., LeBreton, M., & Cheval, B. (2022). Why people should run after positive affective experiences, not health benefits. Journal of Sport and Health Science. https://doi.org/10.1016/j.jshs.2022.10.005

Marcora, S. (2009). Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. Journal of applied physiology, 106(6), 2060- 2062. https://doi.org/10.1152/japplphysiol.90378.2008

Norton, M. I., Mochon, D., & Ariely, D. (2012). The IKEA effect: When labor leads to love. Journal of Consumer Psychology, 22(3), 453-460. https://doi.org/10.1016/j.jcps.2011.08.002

Parma, J., Bacelar, M., Cabral, D., Recker, R., Renaud, O., Sander, D., Krigolson, O., Miller, M., Cheval, B., & Boisgontier, M. (2023). Relationship between reward-related brain activity and opportunities to sit. Cortex, 167, 197-217. https://doi.org/10.1016/j.cortex.2023.06.011

Pessiglione, M., Vinckier, F., Bouret, S., Daunizeau, J., & Le Bouc, R. (2018). Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain, 141(3), 629-650. https://doi.org/10.1093/brain/awx278

Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M.-L., & Dreher, J.-C. (2010). Separate valuation subsystems for delay and effort decision costs. Journal of Neuroscience, 30(42), 14080-14090. https://doi.org/10.1523/JNEUROSCI.2752- 10.2010

Rancourt, D., Ahlich, E., Levine, J. A., Lee, M. S., & Schlauch, R. C. (2019). Applying a multidimensional model of craving to disordered eating behaviors: Development of the Food Approach and Avoidance Questionnaire. Psychological Assessment, 31(6), 751- 764. https://doi.org/10.1037/pas0000697

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of statistical software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

Sheldon, K. M., & Elliot, A. J. (1998). Not all personal goals are personal: Comparing autonomous and controlled reasons for goals as predictors of effort and attainment. Personality and Social Psychology Bulletin, 24(5), 546-557. https://doi.org/10.1177/0146167298245010

Skvortsova, V., Palminteri, S., & Pessiglione, M. (2014). Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. Journal of Neuroscience, 34(47), 15621-15630. https://doi.org/10.1523/JNEUROSCI.1350- 14.2014

Steele, J. (2020). What is (perceived) effort? Objective and subjective effort during task performance. PsyArχiv. https://doi.org/10.31234/osf.io/kbyhm

Strasser, A., Luksys, G., Xin, L., Pessiglione, M., Gruetter, R., & Sandi, C. (2020). Glutamine- to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology, 45, 2048-2057. https://doi.org/10.1038/s41386-020-0760-6

Team, R. C. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org. In.

Terwee, C. B., Bot, S. D., de Boer, M. R., van der Windt, D. A., Knol, D. L., Dekker, J., Bouter, L. M., & de Vet, H. C. (2007). Quality criteria were proposed for measurement properties of health status questionnaires. Journal of Clinical Epidemiology, 60(1), 34- 42. https://doi.org/10.1016/j.jclinepi.2006.03.012

Treadway, M. T., Buckholtz, J. W., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., Baldwin, R. M., Schwartzman, A. N., Kessler, R. M., & Zald, D. H. (2012). Dopaminergic mechanisms of individual differences in human effort-based decision- making. Journal of Neuroscience, 32(18), 6170-6176. https://doi.org/10.1523/JNEUROSCI.6459-11.2012

Zénon, A., Sidibé, M., & Olivier, E. (2015). Disrupting the supplementary motor area makes physical effort appear less effortful. Journal of Neuroscience, 35(23), 8737-8744. https://doi.org/10.1523/JNEUROSCI.3789-14.2015

Downloads

Posted

2023-10-17