EEG alpha and theta oscillatory responses to a Go/NoGo task performed during submaximal exercise at light, moderate and hard intensities
DOI:
https://doi.org/10.51224/SRXIV.331Keywords:
Cognition, Executive Function, Cognitive Control, Exercise, Physical Activity, Exercise Intensity, Rating of Perceived Effort (RPE), Electroencephalography (EEG), Brain FunctionAbstract
The aim of the experiment was to investigate changes to behavioral and electrophysiological correlates of selective attention and response inhibition due to simultaneous performance of exercise at light, moderate and hard intensities. Twenty-eight healthy active and right-hand dominant adults (16 Females, 24.1 ± 4.7 years), performed a Go/NoGo task and had EEG recordings taken during submaximal aerobic exercise on a stationary cycle ergometer at light, moderate and hard perceived intensity levels. In contrast to previous reports of cognitive decrements during high intensity exercise and increasing frontal alpha power with increased exercise intensity, the effect of exercise intensity was not significant in linear mixed effects modelling of Go/NoGo task accuracy, response times and frontal alpha and theta power. The experiment also explored resting state individual alpha frequency as a marker of cognitive control during exercise but found no significant associations with Go/NoGo performance or frontal activity. Methodological differences related to exercise intensity may explain the divergence between present and previously reported findings. Specifically, there was incongruence in ratings of perceived exertion between the graded exercise test and Go/NoGo performance conditions for light, moderate and hard intensity conditions. Future investigations should employ more complex cognitive tasks and more reliable approaches to determining individual workloads for exercise intensity conditions.
Metrics
References
Abbiss, C. R., Peiffer, J. J., Meeusen, R., & Skorski, S. (2015). Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring?. Sports Medicine, 45, 1235-1243. https://doi.org/10.1007/s40279-015-0344-5
Alday, P. M. (2019). Philistine. In https://philistine.readthedocs.io/en/latest/api/philistine.mne.savgol_iaf.html.
Angelakis, E., Lubar, J. F., & Stathopoulou, S. (2004). Electroencephalographic peak alpha frequency correlates of cognitive traits. Neuroscience Letters, 371(1), 60–63. https://doi.org/10.1016/j.neulet.2004.08.041
Bailey, S. P., Hall, E. E., Folger, S. E., & Miller, P. C. (2008). Changes in EEG during graded exercise on a recumbent cycle ergometer. Journal of Sports Science & Medicine, 7(4), 505–511.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.
Blakely, M. J., Kemp, S., & Helton, W. S. (2016). Volitional running and tone counting: The impact of cognitive load on running over natural terrain. IIE Transactions on Occupational Ergonomics and Human Factors, 4(2-3), 104-114. https://doi.org/10.1080/21577323.2015.1055864
Borg, G.A.V. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5):377-81.
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193-213. https://doi.org/10.1016/0165-1781(89)90047-4
Cantelon, J. A., and Giles, G. E. (2021). A review of cognitive changes during acute aerobic exercise. Frontiers in Psychology, 12:653158. https://doi.org/10.3389/fpsyg.2021.653158
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87-101. https://doi.org/10.1016/j.brainres.2012.02.068
Clements, G. M., Bowie, D. C., Gyurkovics, M., Low, K. A., Fabiani, M., & Gratton, G. (2021). Spontaneous alpha and theta oscillations are related to complementary aspects of cognitive control in younger and older adults. Frontiers in Human Neuroscience, 15, 621620. https://doi.org/10.3389/fnhum.2021.621620
Corcoran, A. W., Alday, P. M., Schlesewsky, M., & Bornkessel-Schlesewsky, I. (2018). Toward a reliable, automated method of individual alpha frequency (IAF) quantification. Psychophysiology, 55(7), e13064. https://doi.org/https://doi.org/10.1111/psyp.13064
Council of Europe (2022). Common European Framework of Reference for Languages (CEFR) Global Scale. https://www.coe.int/en/web/common-european-framework-reference-languages/table-1-cefr-3.3-common-reference-levels-global-scale
Craig, C. L., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sport and Exercise, 35(8), 1381-1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
Criaud, M., & Boulinguez, P. (2015). Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI: A meta-analysis and critical review. Neuroscience & Biobehavioral Reviews, 37(1), 11–23. https://doi.org/10.1016/j.neubiorev.2012.11.003
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Diamond A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
Erika-Florence, M., Leech, R. & Hampshire, A. (2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5, 4073. https://doi.org/10.1038/ncomms5073
Gratton, G. (2018). Brain reflections: a circuit-based framework for understanding information processing and cognitive control. Psychophysiology, 55, 1–26. https://doi.org/10.1111/psyp.13038
Griggs, M. A., Parr, B., Vandegrift, N. S., & Jelsone-Swain, L. (2023). The effect of acute exercise on attentional control and theta power in young adults. Experimental Brain Research, 241, 2509–2520. https://doi.org/10.1007/s00221-023-06660-3
Gutmann, B., Hülsdünker, T., Mierau, J., Strüder, H. K., & Mierau, A. (2018). Exercise-induced changes in EEG alpha power depend on frequency band definition mode. Neuroscience Letters, 662, 271–275. https://doi.org/10.1016/j.neulet.2017.10.033
Harmony, T., Alba, A., Marroquín, J. L., & González-Frankenberger, B. (2009). Time-frequency-topographic analysis of induced power and synchrony of EEG signals during a Go/No-Go task. International Journal of Psychophysiology, 71(1), 9-16. https://doi.org/10.1016/j.ijpsycho.2008.07.020
Hong, X., Wang, Y., Sun, J., Li, C., & Tong, S. (2017). Segregating Top-Down Selective Attention from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source Localization Study. Scientific Reports, 7(1), 9662. https://doi.org/10.1038/s41598-017-08807-z
Johnston, W. A., & Dark, V. J. (1986). Selective attention. Annual Review of Psychology, 37, 43–75. https://doi.org/10.1146/annurev.ps.37.020186.000355
Kirmizi-Alsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y. H., Emre, M., & Demiralp, T. (2006). Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Research, 1104(1), 114–128. https://doi.org/10.1016/j.brainres.2006.03.010
Klimesch, W., Doppelmayr, M., Schimke, H., & Pachinger, T. (1996). Alpha Frequency, Reaction Time, and the Speed of Processing Information. Journal of Clinical Neurophysiology, 13(6), 511-518.
Klimesch, W., Doppelmayr, M., Schimke, H., & Ripper, B. (1997). Theta synchronization and alpha desynchronization in a memory task. Psychophysiology, 34(2), 169–176. https://doi.org/10.1111/j.1469-8986.1997.tb02128.x
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
Klimesch, W., Schimke, H. A. N. N. E. S., & Pfurtscheller, G. (1993). Alpha frequency, cognitive load and memory performance. Brain Topography, 5, 241-251.
Komiyama, T., Tanoue, Y., Sudo, M., Costello, J. T., Uehara, Y., Higaki, Y., & Ando, S. (2020). Cognitive impairment during high-intensity exercise: influence of cerebral blood flow. Medicine and Science in Sports and Exercise, 52(3), 561-8. https://doi.org/10.1249/mss.0000000000002183
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12–24. https://doi.org/10.1016/j.brainres.2010.03.091
Lee, P. H., Macfarlane, D. J., Lam, T. H., & Stewart, S. M. (2011). Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 115. https://doi.org/10.1186/1479-5868-8-115
Mandrick K., Derosiere G., Dray G., Coulon D., Micallef J. P., Perrey S. (2013). Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: A near-infrared spectroscopy study. Neuroscience Research, 76, 156–162. https://doi.org/10.1016/j.neures.2013.04.006
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314-324. https://doi.org/10.3758/s13428-011-0168-7
McMorris, T., & Graydon, J. (2000). The effect of incremental exercise on cognitive performance. International Journal of Sport Psychology, 31(1), 66–81.
Mekari, S., Fraser, S., Bosquet, L., Bonnéry, C., Labelle, V., Pouliot, P., ... & Bherer, L. (2015). The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults. European Journal of Applied Physiology, 115, 2189-2197. https://doi.org/10.1007/s00421-015-3199-4
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
Nigg J. T. (2000). On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220–246. https://doi.org/10.1037/0033-2909.126.2.220.
Norton, K., Coombes, J., Hobson-Powell, A., Johnson, R., Knox, C., Marino, N., & Piper, K. (2012). Adult pre-exercise screening system (APSS). Exercise and Sports Science Australia.
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 156869. https://doi.org/10.1155/2011/156869
Pageaux, B., Marcora, S. M., Rozand, V., & Lepers, R. (2015). Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Frontiers in Human Neuroscience, 9, 67. https://doi.org/10.3389/fnhum.2015.00067
Pfurtscheller, G., Stancak Jr, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1–2), 39–46. https://doi.org/10.1016/S0167-8760(96)00066-9
Robertson, C. V., & Marino, F. E. (2015). Prefrontal and motor cortex EEG responses and their relationship to ventilatory thresholds during exhaustive incremental exercise. European Journal of Applied Physiology, 115(9), 1939–1948. https://doi.org/10.1007/s00421-015-3177-x
Rodriguez-Larios, J., & Alaerts, K. (2019). Tracking transient changes in the neural frequency architecture: harmonic relationships between theta and alpha peaks facilitate cognitive performance. Journal of Neuroscience, 39(32), 6291-6298. https://psycnet.apa.org/doi/10.1523/JNEUROSCI.2919-18.2019
Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022. https://doi.org/10.1016/j.neubiorev.2009.12.006
Simmonds, D. J., Pekar, J. J. & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46, 224–232. https://doi.org/10.1016/j.neuropsychologia.2007.07.015
Smith, M., Tallis, J., Miller, A., Clarke, N. D., Guimarães-Ferreira, L., & Duncan, M. J. (2016). The effect of exercise intensity on cognitive performance during short duration treadmill running. Journal of Human Kinetics, 51, 27–35. https://doi.org/10.1515/hukin-2015-0167
Sudo, M., Costello, J. T., McMorris, T., & Ando, S. (2022). The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review. Frontiers in Behavioral Neuroscience, 16, 957677. https://doi.org/10.3389/fnbeh.2022.957677
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297-324. https://doi.org/10.1016/S0001-6918(02)00134-8
Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. (2017). The effects of mental fatigue on physical performance: a systematic review. Sports Medicine, 47(8), 1569-1588. https://doi.org/10.1007/s40279-016-0672-0
Yamanaka, K., & Yamamoto, Y. (2010). Single-trial EEG power and phase dynamics associated with voluntary response inhibition. Journal of Cognitive Neuroscience, 22(4), 714-727. https://doi.org/10.1162/jocn.2009.21258
Downloads
Posted
Categories
License
Copyright (c) 2023 Sabrina Sghirripa, Noah d’Unienville, Alex Chatburn, Philip Temby, David Crone, Marissa Bond, Matthias Schlesewsky, Ina Bornkessel-Schlesewsky, Maarten Immink (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.