Preprint / Version 1

Physiological and Performance Adaptations to Interval Training in Endurance-Trained Cyclists

An Exploratory Systematic Review and Meta-Analysis

##article.authors##

DOI:

https://doi.org/10.51224/SRXIV.311

Keywords:

cycling, exercise prescription, maximal oxygen consumption, high-intensity, intervention, programme optimisation

Abstract

Background:  In endurance cycling, both high-intensity interval training (HIIT) and sprint interval training (SIT) have become popular training modalities due to their ability to elicit improvements in performance. Studies have attempted to ascertain which form of interval training might be more beneficial for maximising cycling performance as well as a range of physiological parameters, but an amalgamation of results which explores the influence of different interval training programming variables in trained cyclists has not yet been conducted.

Objective: The aims of this study were to: (1) systematically investigate training interventions to determine which training modality, HIIT, SIT or low- to moderate-intensity continuous training (LIT/MICT), leads to greater physiological and performance adaptations in trained cyclists; and (2) determine the moderating effects of interval work-bout duration and intervention length on the overall HIIT/SIT programme.

Data Sources: Electronic database searches were conducted using SPORTDiscus and PubMed.

Study Selection: Inclusion criteria were: (1) at least recreationally-trained cyclists aged 18–49 years (maximum/peak oxygen uptake [V̇O2max/V̇O2peak] ≥45 mL·kg-1·min-1); (2) training interventions that included a HIIT or SIT group and a control group (or two interval training groups for direct comparisons); (3) minimum intervention length of 2 weeks; (4) interventions that consisted of 2–3 weekly interval training sessions­.

Results: Interval training leads to small improvements in all outcome measures combined (overall main effects model, SMD: 0.33 [95%CI = 0.06 to 0.60]) when compared to LIT/MICT in trained cyclists. At the individual level, point estimates favouring HIIT/SIT were negligible (Wingate model: 0.01 [95%CI = -3.56 to 3.57]), trivial (relative V̇O2max/V̇O2peak: 0.10 [95%CI = -0.34 to 0.54]), small (absolute V̇O2max/V̇O2peak: 0.28 [95%CI = 0.15 to 0.40], absolute maximum aerobic power/peak power output: 0.38 [95%CI = 0.15 to 0.61], relative absolute maximum aerobic power/peak power output: 0.43 [95%CI = -0.09 to 0.95], physiological thresholds: 0.46 [95%CI = -0.24 to 1.17]), and large (time-trial/time-to-exhaustion: 0.96 [95%CI = -0.81 to 2.73]) improvements in physiological/performance variables compared to controls, with very imprecise interval estimates for most outcomes. In addition, intervention length did not contribute significantly to the improvements in outcome measures in this population, as the effect estimate was only trivial (βDuration: 0.04 [ 95%CI = -0.07 to 0.15]). Finally, the network meta-analysis did not reveal a clear superior effect of any HIIT/SIT types when directly comparing interval training differing in interval work-bout duration.

Conclusion: The results of the meta-analysis indicate that both HIIT and SIT are effective training modalities to elicit physiological adaptations and performance improvements in trained cyclists. Our analyses highlight that the optimisation of interval training prescription in trained cyclists cannot be solely explained by interval type or interval work-bout duration and an individualised approach that takes into account the training/competitive needs of the athlete is warranted.

Metrics

Metrics Loading ...

References

Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–91. DOI: 10.1123/ijspp.5.3.276.

Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):49–56. DOI: 10.1111/j.1600-0838.2004.00418.x.

Esteve-Lanao J, Foster C, Seiler S, Lucia A. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21(3):943–9. DOI: 10.1519/R-19725.1.

Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38. DOI: 10.1007/s40279-013-0029-x.

Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927–54. DOI: 10.1007/s40279-013-0066-5.

Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic Interval Training. Sports Med. 2001;31(1):13–31. DOI: 10.2165/00007256-200131010-00002.

Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med. 2001;31(2):75–90. DOI: 10.2165/00007256-200131020-00001.

Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med. 2011;41(8):673–94. DOI: 10.2165/11590550-000000000-00000.

Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med. 2011;41(9):741–56. DOI: 10.2165/11590560-000000000-00000.

Bossi AH, Mesquida C, Passfield L, Rønnestad BR, Hopker JG. Optimizing interval training through power-output variation within the work intervals. Int J Sports Physiol Perform. 2020; 15(7):982–89. DOI: 10.1123/ijspp.2019-0260.

Seiler S, Sylta Ø. How does interval-training prescription affect physiological and perceptual responses? Int J Sports Physiol Perform. 2017;12(Suppl 2):S280–S286. DOI: 10.1123/ijspp.2016-0464.

Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36(2):117–32. DOI: 10.2165/00007256-200636020-00003.

Mujika I, Halson S, Burke LM, Balagué G, Farrow D. An integrated, multifactorial approach to periodization for optimal performance in individual and team sports. Int J Sports Physiol Perform. 2018;13(5):538–61. DOI: 10.1123/ijspp.2018-0093.

Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(Suppl 2):S139–47. DOI: 10.1007/s40279-014-0253-z.

Mujika I. Quantification of training and competition loads in endurance sports: methods and applications. Int J Sports Physiol Perform. 2017;12(Suppl 2):S2-9-S2-17. DOI: 10.1123/ijspp.2016-0403.

Kellmann M, Bertollo M, Bosquet L, Brink M, Coutts AJ, Duffield R, et al. Recovery and performance in sport: consensus statement. Int J Sports Physiol Perform.2018;13(2):240–5. DOI: 10.1123/ijspp.2017-0759.

MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915–30. DOI: 10.1113/JP273196.

Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):53–73. DOI: 10.2165/00007256-200232010-00003.

Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10. DOI: 10.1111/j.1600-0838.2010.01184.x.

Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34. DOI: 10.1136/bjsports-2013-092576.

Schoenmakers P, Hettinga FJ, Reed KE. The moderating role of recovery durations in high-intensity interval-training protocols. Int J Sports Physiol Perform. 2019;14(6):859–67. DOI: 10.1123/ijspp.2018-0876.

McEwan G, Arthur R, Phillips SM, Gibson NV, Easton C. Interval running with self-selected recovery: physiology, performance, and perception. European Journal of Sport Science. 2018;18(8):1058–67. DOI: 10.1080/17461391.2018.1472811.

Schoenmakers PPJM, Reed KE. The effects of recovery duration on physiological and perceptual responses of trained runners during four self-paced HIIT sessions. Journal of Science and Medicine in Sport. 2019;22(4):462–6. DOI: 10.1016/j.jsams.2018.09.230.

Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37(9):1601–7. DOI: 10.1249/01.mss.0000177560.18014.d8.

Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11. DOI: 10.1113/jphysiol.2006.112094.

Hebisz R, Hebisz P, Borkowski J, Zatoń M. Effects of concomitant high-intensity interval training and sprint interval training on exercise capacity and response to exercise-induced muscle damage in mountain bike cyclists with different training backgrounds. Isokin Exerc Sci. 2018;27:1–9. DOI: 10.3233/IES-183170.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. 2005;98(6):1985–90. DOI: 10.1152/japplphysiol.01095.2004.

Bayati M, Farzad B, Gharakhanlou R, Agha-Alinejad H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med. 2011;10(3):571–6.

Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):236–42. DOI: 10.1152/ajpregu.00069.2008.

McKay BR, Paterson DH, Kowalchuk JM. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol. 2009;107(1):128–38. DOI: 10.1152/japplphysiol.90828.2008.

Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA, et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol. 2013;591(3):641–56. DOI: 10.1113/jphysiol.2012.239566.

Astorino TA, Edmunds RM, Clark A, King L, Gallant RA, Namm S, et al. High-intensity interval training increases cardiac output and VO2max. Med Sci Sports Exerc. 2017;49(2):265–73. DOI: 10.1249/MSS.0000000000001099.

Burgomaster KA, Heigenhauser GJ, Gibala MJ. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol. 2006;100(6):2041–7. DOI: 10.1152/japplphysiol.01220.2005.

Perry CG, Heigenhauser GJ, Bonen A, Spriet LL. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab. 2008;33(6):1112–23. DOI: 10.1139/H08-097.

Jacobs RA, Flück D, Bonne TC, Bürgi S, Christensen PM, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol. 2013;115(6):785–93. DOI: 10.1152/japplphysiol.00445.2013.

Schaun GZ, Pinto SS, Brasil B, Nunes GN, Alberton CL. Neuromuscular adaptations to sixteen weeks of whole-body high-intensity interval training compared to ergometer-based interval and continuous training. J Sports Sci. 2019;37(14):1561–9. DOI: 10.1080/02640414.2019.1576255.

Kinnunen JV, Piitulainen H, Piirainen JM. Neuromuscular adaptations to short-term high-intensity interval training in female ice-hockey players. J Strength Cond Res. 2019;33(2):479–85. DOI: 10.1519/JSC.0000000000001881.

Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84. DOI: 10.1113/jphysiol.2011.224725.

Bishop DJ, Botella J, Genders AJ, Lee MJ-C, Saner NJ, Kuang J, et al. High-intensity exercise and mitochondrial biogenesis: current controversies and future research directions. J Physiol. 2019;34(1):56–70. DOI: 10.1152/physiol.00038.2018.

Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD, Dennis SC. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc. 1996;28(11):1427–34. DOI: 10.1097/00005768-199611000-00013.

Westgarth-Taylor C, Hawley JA, Rickard S, Myburgh KH, Noakes TD, Dennis SC. Metabolic and performance adaptations to interval training in endurance-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997;75(4):298–304. DOI: 10.1007/s004210050164.

Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997;75(1):7–13. DOI: 10.1007/s004210050119.

Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60. DOI: 10.1113/jphysiol.2007.142109.

Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, et al. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):264–72. DOI: 10.1152/ajpregu.00875.2007.

Scribbans TD, Edgett BA, Vorobej K, Mitchell AS, Joanisse SD, Matusiak JB, et al. Fibre-specific responses to endurance and low volume high-intensity interval training: striking similarities in acute and chronic adaptation. PLoS One. 2014;9(6):e98119. DOI: 10.1371/journal.pone.0098119.

Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol. 2013;591(3):657–75. DOI: 10.1113/jphysiol.2012.240952.

Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One. 2016;11(4):e0154075. DOI: 10.1371/journal.pone.0154075.

Wood KM, Olive B, LaValle K, Thompson H, Greer K, Astorino TA. Dissimilar physiological and perceptual responses between sprint interval training and high-intensity interval training. J Strength Cond Res. 2016;30(1):244–50. DOI: 10.1519/JSC.0000000000001042.

Fennell CRJ, Hopker JG. The acute physiological and perceptual effects of individualizing the recovery interval duration based upon the resolution of muscle oxygen consumption during cycling exercise. Int J Sports Physiol Perform. 2021;16(11):1580–1588. DOI: 10.1123/ijspp.2020-0295.

Tønnessen E, Hisdal J, Ronnestad BR. Influence of interval training frequency on time-trial performance in elite endurance athletes. Int J Environ Res Public Health. 2020;17(9):3190. DOI: 10.3390/ijerph17093190.

Rønnestad BR, Hansen J, Ellefsen S. Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists. Scand J Med Sci Sports. 2014;24(1):34–42. DOI: 10.1111/j.1600-0838.2012.01485.x.

Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta. 2014;1840(4):1266–75. DOI: 10.1016/j.bbagen.2013.10.012.

Galán-Rioja M, Gonzalez-Ravé JM, González-Mohíno F, Seiler S. Training periodization, intensity distribution, and volume in trained cyclists: a systematic review. Int J Sports Physiol Perform. 2023;18(2):112–22. DOI: 10.1123/ijspp.2022-0302.

Beattie K, Kenny IC, Lyons M, Carson BP. The effect of strength training on performance in endurance athletes. Sports Med. 2014;44(6):845–65. DOI: 10.1007/s40279-014-0157-y.

Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S446–51. DOI: 10.1097/00005768-200106001-00013.

Vollaard NBJ, Constantin-Teodosiu D, Fredriksson K, Rooyackers O, Jansson E, Greenhaff PL, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106(5):1479–86. DOI: 10.1152/japplphysiol.91453.2008.

Viana RB, de Lira CAB, Naves JPA, Coswig VS, Del Vecchio FB, Ramirez-Campillo R, et al. Can we draw general conclusions from interval training studies? Sports Med. 2018;48(9):2001–9. DOI: 10.1007/s40279-018-0925-1.

Sylta Ø, Tønnessen E, Hammarström D, Danielsen J, Skovereng K, Ravn T, et al. The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48(11):2165–74. DOI: 10.1249/MSS.0000000000001007.

Hommel J, Öhmichen S, Rudolph UM, Hauser T, Schulz H. Effects of six-week sprint interval or endurance training on calculated power in maximal lactate steady state. Biol Sport. 2019;36(1):47–54. DOI: 10.5114/biolsport.2018.78906.

Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116(1):161–9. DOI: 10.1007/s00421-015-3263-0.

Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):74–83. DOI: 10.1111/j.1600-0838.2011.01351.x.

Laursen PB, Blanchard MA, Jenkins DG. Acute high-intensity interval training improves Tvent and peak power output in highly trained males. Can J Appl Physiol. 2002;27(4):336–48. DOI: 10.1139/h02-019.

Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005;19(3):527–33. DOI: 10.1519/15964.1.

Rønnestad BR, Hansen J, Vegge G, Tønnessen E, Slettaløkken G. Short intervals induce superior training adaptations compared with long intervals in cyclists - an effort-matched approach. Scand J Med Sci Sports. 2015;25(2):143–51. DOI: 10.1111/sms.12165.

Rønnestad BR, Hansen J, Nygaard H, Lundby C. Superior performance improvements in elite cyclists following short-interval vs effort-matched long-interval training. Scand J Med Sci Sports. 2020;30(5):849–57. DOI: 10.1111/sms.13627.

Swart J, Lamberts RP, Derman W, Lambert MI. Effects of high-intensity training by heart rate or power in well-trained cyclists. J Strength Cond Res. 2009;23(2):619–25. DOI: 10.1519/JSC.0b013e31818cc5f5.

Milanović Z, Sporiš G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–81. DOI: 10.1007/s40279-015-0365-0.

Wen D, Utesch T, Wu J, Robertson S, Liu J, Hu G, et al. Effects of different protocols of high-intensity interval training for VO2max improvements in adults: a meta-analysis of randomised controlled trials. J Sci Med Sport. 2019;22(8):941–7. DOI: 10.1016/j.jsams.2019.01.013.

Atakan MM, Guzel Y, Shrestha N, Kosar SN, Grgic J, Astorino TA, et al. Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: a systematic review and meta-analysis. Br J Sports Med. 2022:105181. DOI: 10.1136/bjsports-2021-105181.

Steele J, Plotkin D, Van Every D, Rosa A, Zambrano H, Mendelovits B, et al. Slow and Steady, or Hard and Fast? A Systematic Review and Meta-Analysis of Studies Comparing Body Composition Changes between Interval Training and Moderate Intensity Continuous Training. Sports. 2021;9(11):155. DOI: 10.3390/sports9110155.

Keating SE, Johnson NA, Mielke GI, Coombes JS. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev. 2017;18(8):943–64. DOI: 10.1111/obr.12536.

Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Med. 2014;44(7):1005–17. DOI: 10.1007/s40279-014-0180-z.

Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med. 2014;44(2):269–79. DOI: 10.1007/s40279-013-0115-0.

Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017;18(6):635–46. DOI: 10.1111/obr.12532.

Girard J, Feng B, Chapman C. The effects of high-intensity interval training on athletic performance measures: a systematic review. Physic Therap Rev. 2018;23(2):151–60. DOI: 10.1080/10833196.2018.1462588.

Engel FA, Ackermann A, Chtourou H, Sperlich B. High-intensity interval training performed by young athletes: a systematic review and meta-analysis. Front Physiol. 2018;9:1012. DOI: 10.3389/fphys.2018.01012.

Hansen EA, Rønnestad BR. Effects of cycling training at imposed low cadences: a systematic review. Int J Sports Physiol Perform. 2017;12(9):1127–36. DOI: 10.1123/ijspp.2016-0574.

Rosenblat MA, Perrotta AS, Thomas SG. Effect of high-intensity interval training versus sprint interval training on time-trial performance: a systematic review and meta-analysis. Sports Med. 2020;50(6):1145–61. DOI: 10.1007/s40279-020-01264-1.

de Oliveira-Nunes SG, Castro A, Sardeli AV, Cavaglieri CR, Chacon-Mikahil MPT. HIIT vs. SIT: what is the better to improve VO2max? A systematic review and meta-analysis. Int J Environ Res Public Health. 2021;18(24):13120. DOI: 10.3390/ijerph182413120.

Rosenblat MA, Granata C, Thomas SG. Effect of interval training on the factors influencing maximal oxygen consumption: a systematic review and meta-analysis. Sports Med. 2022;52(6):1329–52. DOI: 10.1007/s40279-021-01624-5.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. DOI: 10.1186/2046-4053-4-1.

Skinner JS, Jaskólski A, Jaskólska A, Krasnoff J, Gagnon J, Leon AS, et al. Age, sex, race, initial fitness, and response to training: the HERITAGE Family Study. J Appl Physiol. 2001;90(5):1770–6. DOI: 10.1152/jappl.2001.90.5.1770.

Quesada JI, Kerr ZY, Bertucci WM, Carpes FP. The categorization of amateur cyclists as research participants: findings from an observational study. J Sports Sci. 2018;36(17):2018–24. DOI: 10.1080/02640414.2018.1432239.

De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–22. DOI: 10.1123/ijspp.8.2.111.

Podlogar T, Leo P, Spragg J. Using VO2max as a marker of training status in athletes – can we do better? J Appl Physiol. 2022;133(1):144–7. DOI: 10.1152/japplphysiol.00723.2021.

Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of world class cycling. J Sci Med Sport. 2000;3(4):414–33. DOI: 10.1016/s1440-2440(00)80008-0.

Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):e14098. DOI: 10.14814/phy2.14098.

Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of controversy. J Physiol. 2021;599(3):737–67. DOI: 10.1113/JP279963.

Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469–90. DOI: 10.2165/00007256-200939060-00003.

Forbes SC, Candow DG, Smith-Ryan AE, Hirsch KR, Roberts MD, VanDusseldorp TA, et al. Supplements and nutritional interventions to augment high-intensity interval training physiological and performance adaptations - a narrative review. Nutrients. 2020;12(2):390. DOI: 10.3390/nu12020390.

Stepto NK, Hawley JA, Dennis SC, Hopkins WG. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc. 1999;31(5):736–41. DOI: 10.1097/00005768-199905000-00018.

Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Available from www.training.cochrane.org/handbook.

Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6. DOI: https://doi.org/10.1136/bmj.39489.470347.AD.

Schünemann HJ, Higgins JPT, Vist GE, Glasziou P, Akl EA, Skoetz N, Guyatt GH. Chapter 14: Completing ‘Summary of findings’ tables and grading the certainty of the evidence. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Available from www.training.cochrane.org/handbook.

Creer AR, Ricard MD, Conlee RK, Hoyt GL, Parcell AC. Neural, metabolic, and performance adaptations to four weeks of high-intensity sprint-interval training in trained cyclists. Int J Sports Med. 2004;25(2):92–8. DOI: 10.1055/s-2004-819945.

Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;34(11):1801–7. DOI: 10.1097/00005768-200211000-00017.

Turnes T, de Aguiar RA, de Oliveira Cruz RS, Pereira K, Salvador AF, Caputo F. High-intensity interval training in the boundaries of the severe domain: effects on sprint and endurance performance. Int J Sports Med. 2016;37(12):944–51. DOI: 10.1055/s-0042-109068.

Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Software. 2010;36(3):1–48. DOI: https://doi.org/10.18637/jss.v036.i03.

Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Org Res Methods. 2008;11:364–86. DOI: https://doi.org/10.1177/1094428106291059.

Caputo F, Denadai BS. The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. Eur J Appl Physiol. 2008;103(1):47-57. DOI: 10.1007/s00421-008-0670-5.

Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–7. DOI: 10.1038/d41586-019-00857-9.

McShane BB, Gal D, Gelman A, Robert C, Tackett JL. Abandon statistical significance. Am Stat. 2019 2019;73(Suppl 1):235–45. DOI: https://doi.org/10.1080/00031305.2018.1527253.

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. DOI: 10.1136/bmj.327.7414.557.

Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. DOI: 10.1136/bmj.d5928.

Vollaard NBJ, Metcalfe RS, Williams S. Effect of number of sprints in an SIT session on change in VO2max: a meta-analysis. Med Sci Sports Exerc. 2017;49(6):1147–56. DOI: 10.1249/MSS.0000000000001204.

Bacon AP, Carter RE, Ogle EA, Joyner MJ. VO2max trainability and high-intensity interval training in humans: a meta-analysis. PLoS One. 2013;8(9):e73182. DOI: 10.1371/journal.pone.0073182.

Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991;23(1):93–107. DOI: 10.1249/00005768-199101000-00015.

Edge J, Bishop D, Goodman C, Dawson B. Effects of high- and moderate-intensity training on metabolism and repeated sprints. Med Sci Sports Exerc. 2005;37(11):1975–82. DOI: 10.1249/01.mss.0000175855.35403.4c.

Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, et al. Effect of intensity of aerobic training on VO2max. Med Sci Sports Exerc. 2008;40(7):1336–43. DOI: 10.1249/MSS.0b013e31816c4839.

Zapico AG, Calderón FJ, Benito PJ, González CB, Parisi A, Pigozzi F, et al. Evolution of physiological and haematological parameters with training load in elite male road cyclists: a longitudinal study. J Sports Med Phys Fitness. 2007;47(2):191–6.

Rønnestad BR, Hansen J. Optimizing interval training at power output associated with peak oxygen uptake in well-trained cyclists. J Strength Cond Res. 2016;30(4):999–1006. DOI: 10.1519/JSC.0b013e3182a73e8a.

Rozenek R, Funato K, Kubo J, Hoshikawa M, Matsuo A. Physiological responses to interval training sessions at velocities associated with VO2max. J Strength Cond Res. 2007;21(1):188–92. DOI: 10.1519/R-19325.1.

Downloads

Additional Files

Posted

2023-07-18