Preprint / Version 1

Effect size thresholds to interpret comparisons with exercise interventions for tendinopathy

A systematic review with meta-analysis

##article.authors##

  • Paul Swinton
  • Joanna Shim
  • Anastasia Pavlova
  • Colin Maclean
  • David Brandie
  • Victoria Tzortziou Brown
  • Dylan Morrissey
  • Lyndsay Alexander
  • Kay Cooper

DOI:

https://doi.org/10.51224/SRXIV.308

Keywords:

Sample size, Power, Exercise therapy, Applied statistics, Bayesian

Abstract

Introduction: The purpose of this systematic review with meta-analysis was to develop tendinopathy-specific effect size thresholds to aid interpretation of comparative effectiveness of exercise therapies.  

Methods: A comprehensive systematic literature search for studies comparing exercise, non-active controls, and non-exercise interventions for tendinopathy management was conducted. Trials with participants diagnosed with rotator cuff, lateral elbow, gluteal, patellar or Achilles tendinopathy of any severity or duration were included. Standardised mean difference comparative effect sizes were combined with Bayesian hierarchical models. Non symmetric (exercise vs. non-active), and symmetric (exercise vs. exercise, and exercise vs non-exercise) distributions centred on zero were constructed with small, medium, and large thresholds calculated to capture 25, 50, and 75% of the comparative effect-size distributions, respectively. Analyses were combined across all tendinopathy locations and separated according to outcome domains including disability, pain, physical function capacity and range of motion where sufficient data were available.

Results: Data were extracted from 96 studies and yielded 130 pairwise comparisons. When pooling data across all outcomes, 98 comparative effect sizes showed small: 0.11 [95%CrI:0.09-0.13], medium: 0.25 [95%CrI:0.23-0.27], and large: 0.46 [95%CrI:0.44-0.49] effect sizes for exercise therapy compared with non-active control. Symmetric distributions calculated from 636 effect sizes showed lower magnitude thresholds when comparing exercise therapies (small: 0.11 [95%CrI:0.09-0.13], medium: 0.25 [95%CrI:0.23-0.27], and large: 0.46 [95%CrI:0.44-0.49]) than comparing exercise therapies with non-exercise interventions (254 effect sizes; small: 0.17 [95%CrI:0.13-0.21], medium: 0.37 [95%CrI:0.33-0.41], and large: 0.70 [95%CrI:0.64-0.75]). Analyses showed greater magnitude effect sizes for pain and disability outcomes than physical function capacity and range of motion.

Conclusion: Exercise therapy generally results in improvements beyond natural healing processes and expectancy effects present in non-active controls. Comparative effect sizes between exercise therapies are, however, generally low in magnitude indicating therapy variations yield relatively minor incremental effects. These findings should inform the clinical interpretation of existing and future trials, and guide study design of future research – such as the necessity for larger samples than have been previously used –. It is recommended that small, medium, and large threshold values presented in this review be used instead of Cohen’s general values.

 

Metrics

Metrics Loading ...

References

Fu FH, Wang JH-C, Rothrauff BB. BMJ Best Practice Tendinopathy. 2019. Available from: https://bestpractice.bmj.com/topics/en-gb/582 [Accessed 20th July 2019].

Ackermann PW, Renström P. Tendinopathy in sport. Sports health. 2012;4(3):193-201. Doi:10.1177/1941738112440957.

Hopkins C, Fu SC, Chua E, Hu X, Rolf C, Mattila VM, Qin L, Yung PS, Chan KM. Critical review on the socio-economic impact of tendinopathy. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology. 2016;4:9-20. Doi:10.1016/j.asmart.2016.01.002.

Scott A, Squier K, Alfredson H, Bahr R, Cook JL, Coombes B, de Vos RJ, Fu SN, Grimaldi A, Lewis JS, Maffulli N. Icon 2019: international scientific tendinopathy symposium consensus: clinical terminology. British journal of sports medicine. 202;54(5):260-2. Doi:10.1136/bjsports-2019-100885.

Abat F, Alfredson H, Cucciarini M, Madry H, Marmott A, Mouton C, et al. Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part I: biology, biomechanics, anatomy and an exercise-based approach. J Exp Orthop. 2017; 4:18. Doi:10.1186/s40634-017-0092-6.

Cooper K, Alexander L, Brandie D, Brown VT, Greig L, Harrison I, MacLean C, Mitchell L, Morrissey D, Moss RA, Parkinson E, Pavlova AV, Shim J, Swinton PA (2023). Exercise therapy for tendinopathy: a mixed methods evidence synthesis exploring feasibility, acceptability and effectiveness. Health Technology Assessment. 2023 (in press). Doi:10.3310/TAHK7102.

Shim J, Pavlova AV, Moss RA, MacLean C, Brandie D, Mitchell L, Greig L, Parkinson E, Brown VT, Morrissey D, Alexander L. Patient Ratings in Exercise Therapy for the Management of Tendinopathy: A Systematic Review With Meta-analysis. Physiotherapy. 2023 (in press). Doi:10.1016/j.physio.2023.05.002.

Swinton PA, Shim JS, Pavlova AV, Moss R, Maclean C, Brandie D, Mitchell L, Greig L, Parkinson E, Brown VT, Morrissey D. What are small, medium and large effect sizes for exercise treatments of tendinopathy? A systematic review and meta-analysis. BMJ Open Sport & Exercise Medicine. 2023;9(1):e001389. Doi:10.1136/bmjsem-2022-001389.

Johannsen F, Olesen JL, Øhlenschläger TF, Lundgaard-Nielsen M, Cullum CK, Jakobsen AS, Rathleff MS, Magnusson PS, Kjær M. Effect of ultrasonography-guided corticosteroid injection vs placebo added to exercise therapy for Achilles tendinopathy: a randomized clinical trial. JAMA network open. 2022;5(7):e2219661. Doi:10.1001/jamanetworkopen.2022.19661.

Bussin E, Cairns B, Gerschman T, Fredericson M, Bovard J, Scott A. Topical diclofenac vs placebo for the treatment of chronic Achilles tendinopathy: A randomized controlled clinical trial. Plos one. 2021;16(3):e0247663. Doi:10.1371/journal.pone.0247663.

Murphy M, Travers M, Chivers P, Debenham J, Docking S, Rio E, Gibson W. Is heavy eccentric calf training our best option for mid-portion Achilles tendinopathy? A systematic review and meta-analysis. Journal of Science and Medicine in Sport. 2018;21:S83. DOI:10.1016/j.jsams.2018.09.190.

Lim HY, Wong SH. Effects of isometric, eccentric, or heavy slow resistance exercises on pain and function in individuals with patellar tendinopathy: A systematic review. Physiotherapy Research International. 2018;23(4):e1721. Doi: 10.1002/pri.1721.

Chen Z, Baker NA. Effectiveness of eccentric strengthening in the treatment of lateral elbow tendinopathy: A systematic review with meta-analysis. Journal of Hand Therapy. 2021;34(1):18-28. Doi:10.1016/j.jht.2020.02.002.

Meyer A, Tumilty S, Baxter GD. Eccentric exercise protocols for chronic non‐insertional Achilles tendinopathy: how much is enough? Scandinavian journal of medicine & science in sports. 2009;19(5):609-15. Doi:10.1111/j.1600-0838.2009.00981.x.

Young JL, Rhon DI, de Zoete RM, Cleland JA, Snodgrass SJ. The influence of dosing on effect size of exercise therapy for musculoskeletal foot and ankle disorders: a systematic review. Brazilian Journal of Physical Therapy. 2018;22(1):20-32. Doi: 10.1016/j.bjpt.2017.10.001.

Doiron-Cadrin P, Lafrance S, Saulnier M, Cournoyer É, Roy JS, Dyer JO, Frémont P, Dionne C, MacDermid JC, Tousignant M, Rochette A. Shoulder rotator cuff disorders: a systematic review of clinical practice guidelines and semantic analyses of recommendations. Archives of physical medicine and rehabilitation. 2020;101(7):1233-42. Doi:10.1016/j.apmr.2019.12.017.

Gutierrez-Espinoza H, Araya-Quintanilla F, Cereceda-Muriel C, Alvarez-Bueno C, Martinez-Vizcaino V, Cavero-Redondo I. Effect of supervised physiotherapy versus home exercise program in patients with subacromial impingement syndrome: a systematic review and meta-analysis. Physical Therapy in Sport. 2020;41:34-42. Doi:10.1016/j.ptsp.2019.11.003.

Thompson BT, Schoenfeld D. Usual care as the control group in clinical trials of nonpharmacologic interventions. Proceedings of the American Thoracic Society. 2007;4(7):577-82. Doi:10.1513/pats.200706-072JK.

Vicenzino B, de Vos RJ, Alfredson H, Bahr R, Cook JL, Coombes BK, Fu SN, Silbernagel KG, Grimaldi A, Lewis JS, Maffulli N. ICON 2019—International Scientific Tendinopathy Symposium Consensus: There are nine core health-related domains for tendinopathy (CORE DOMAINS): Delphi study of healthcare professionals and patients. British journal of sports medicine. 2020;54(8):444-51. Doi:10.1136/bjsports-2019-100894.

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355. Doi:10.1136/bmj.i4919.

Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj. 2011;343. Doi:10.1136/bmj.d5928.

: Program U, Nations Development. Human Development Reports. New York: United Nations. 2019. Available from: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI [Accessed 15th July 2019].

Alfredson H, Pietilä T, Jonsson P, Lorentzon R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. The American journal of sports medicine. 1998;26(3):360-6. Doi:10.1177/03635465980260030301.

Challoumas D, Millar NL. Risk of bias in systematic reviews of tendinopathy management: Are we comparing apples with oranges?. Translational Sports Medicine. 2021;4(1):21-37. Doi:10.1002/tsm2.196.

Marshall IJ, Kuiper J, Wallace BC. RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials. Journal of the American Medical Informatics Association. 2016;23(1):193-201. Doi:10.1093/jamia/ocv044.

Zampieri FG, Casey JD, Shankar-Hari M, Harrell Jr FE, Harhay MO. Using Bayesian methods to augment the interpretation of critical care trials. An overview of theory and example reanalysis of the alveolar recruitment for acute respiratory distress syndrome trial. American journal of respiratory and critical care medicine. 2021;203(5):543-52. Doi: 10.1164/rccm.202006-2381CP.

Brydges CR. Effect size guidelines, sample size calculations, and statistical power in gerontology. Innovation in aging. 2019 Aug;3(4):igz036. Doi:10.1093/geroni/igz036.

Gignac GE, Szodorai ET. Effect size guidelines for individual differences researchers. Personality and individual differences. 2016 Nov 1;102:74-8. Doi:10.1016/j.paid.2016.06.069.

Swinton PA, Burgess K, Hall A, Greig L, Psyllas J, Aspe R, Maughan P, Murphy A. Interpreting magnitude of change in strength and conditioning: Effect size selection, threshold values and Bayesian updating. Journal of sports sciences. 2022;40(18):2047-54. Doi:10.1080/02640414.2022.2128548.

Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Organizational research methods. 2008 Apr;11(2):364-86. Doi:10.1177/1094428106291059.

Gelman A. Prior distributions for variance parameters in hierarchical models. International Society for Bayesian Analysis. 2006;3(1):515-533.

Verardi V, Vermandele C. Univariate and multivariate outlier identification for skewed or heavy-tailed distributions. The Stata Journal. 2018;18(3):517-32. Doi: 10.1177/1536867X18018003.

Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. Journal of statistical software. 2017;80:1-28. Doi:10.18637/jss.v080.i01.

Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis: Taylor & Francis; 2014.

Steuri R, Sattelmayer M, Elsig S, Kolly C, Tal A, Taeymans J, Hilfiker R. Effectiveness of conservative interventions including exercise, manual therapy and medical management in adults with shoulder impingement: a systematic review and meta-analysis of RCTs. British journal of sports medicine. 2017;51(18):1340-7. Doi:10.1136/bjsports-2016-096515.

Murphy MC, Travers MJ, Chivers P, Debenham JR, Docking SI, Rio EK, Gibson W. Efficacy of heavy eccentric calf training for treating mid-portion Achilles tendinopathy: a systematic review and meta-analysis. Br J Sports Med. 2019;53(17):1070-1077. Doi:10.1136/bjsports-2018-099934. 37) Van Der Vlist AC, Winters M, Weir A, Ardern CL, Welton NJ, Caldwell DM, Verhaar JA, De Vos RJ. Which treatment is most effective for patients with Achilles tendinopathy? A living systematic review with network meta-analysis of 29 randomised controlled trials. British journal of sports medicine. 2021;55(5):249-56. Doi:10.1136/bjsports-2019-101872.

Rompe JD, Segal NA, Cacchio A, Furia JP, Morral A, Maffulli N. Home training, local corticosteroid injection, or radial shock wave therapy for greater trochanter pain syndrome. The American journal of sports medicine. 2009;37(10):1981-90. Doi:10.1177/0363546509334374.

Engebretsen K, Grotle M, Bautz-Holter E, Sandvik L, Juel NG, Ekeberg OM, Brox JI. Radial extracorporeal shockwave treatment compared with supervised exercises in patients with subacromial pain syndrome: single blind randomised study. Bmj. 2009;339. Doi:10.1136/bmj.b3360.

Rompe JD, Nafe B, Furia JP, Maffulli N. Eccentric loading, shock-wave treatment, or a wait-and-see policy for tendinopathy of the main body of tendo Achillis: a randomized controlled trial. The American journal of sports medicine. 2007;35(3):374-83. Doi:10.1177/0363546506295940.

Cohen J. New York, NY: Routledge Academic; 1988. Statistical Power Analysis for the Behavioral Sciences.

Faul F, Erdfelder E, Lang AG, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods. 2007;39(2):175-91. Doi:10.3758/bf03193146.

Anvari F, Lakens D. Using anchor-based methods to determine the smallest effect size of interest. Journal of Experimental Social Psychology. 2021 Sep 1;96:104159. Doi:10.1016/j.jesp.2021.104159.

Downloads

Additional Files

Posted

2023-07-01