Validity of a simulation-based performance testing model in cycling
a study protocol
DOI:
https://doi.org/10.51224/SRXIV.271Keywords:
maximal oxygen uptake, maximal lactate prodcution rate, anaerobic threshold, Endurance Performance, endurance diagnosticsAbstract
Background: Metabolic simulations as described by Mader (2003) can be used to model the physiological response (e.g. blood lactate, phosphocreatine, pH, aerobic and anaerobic energy contribution) to exercise. While some parameters of the model were derived from the literature and are assumed to be constant, the individual performance markers V̇O2max (maximal oxygen consumption) and ċLamax (maximal lactate production rate) can be used as input to create individual performance predictions. Further, the MLSS (maximal lactate steady-state) can be estimated via the model. In practice, this model is already used to infer those performance markers from observed testing data. However, a thorough evaluation of this approach is still missing.
Objective: To assess the concurrent validity of simulation-based performance testing (sim) in cycling compared to experimental estimates from performance testing (exp).
Study Design: Agreement Study
Participants: Recreational cyclists and triathletes
Methods: Five exercise tests will be conducted on at least 5 days. On day 1, body composition, a 15-second sprint (ċLamaxexp) and a ramp test until exhaustion (V̇O2maxexp) will be conducted. On day 2 and 3, an individualized test protocol and a standard graded exercise test are conducted to observe model-based performance markers (V̇O2maxsim, ċLamaxsim, MLSSsim) with each procedure. From day 4 on, multiple 30-minute constant workload tests are performed to measure MLSSexp. Agreement analyses will be conducted via Bland-Altman analyses using a priori defined Limits of Agreement.
Registration: This study protocol will be pregistered via the Open Science Framework (OSF) upon an ethical vote.
Ethics: A vote by the ethics committee of the Ruhr University Bochum is still pending.
Metrics
References
Wackerhage H, Gehlert S, Schulz H, Weber S, Ring-Dimitriou S, Heine O. Lactate Thresholds and the Simulation of Human Energy Metabolism: Contributions by the Cologne Sports Medicine Group in the 1970s and 1980s. Front Physiol. 2022;13:899670. doi:10.3389/fphys.2022.899670
Casado A, Foster C, Bakken M, Tjelta LI. Does Lactate-Guided Threshold Interval Training within a High-Volume Low-Intensity Approach Represent the “Next Step” in the Evolution of Distance Running Training? IJERPH. 2023;20(5):3782. doi:10.3390/ijerph20053782
Faude O, Kindermann W, Meyer T. Lactate Threshold Concepts: How Valid are They? Sports Medicine. 2009;39(6):469-490. doi:10.2165/00007256-200939060-00003
Heck H, Bartmus U, Grabow V. Laktat: Stoffwechselgrundlagen, Leistungsdiagnostik, Trainingssteuerung. Springer; 2022.
Nolte S, Quittmann O, Meden V. Simulation of Steady-State Energy Metabolism in Cycling and Running. Published online 2022.
Mader A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol. 2003;88(4):317-338. doi:10.1007/s00421-002-0676-3
Mader A, Heck H. A Theory of the Metabolic Origin of “Anaerobic Threshold.” Int J Sports Med. 1986;07(S 1):S45-S65. doi:10.1055/s-2008-1025802
Ji S, Sommer A, Bloch W, Wahl P. Comparison and Performance Validation of Calculated and Established Anaerobic Lactate Thresholds in Running. Medicina. 2021;57(10):1117. doi:10.3390/medicina57101117
Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model. 2014;11(1):1. doi:10.1186/1742-4682-11-25
Weber S. Berechnung leistungsbestimmender Parameter der metabolischen Aktivität auf zellulärer Ebene mittels fahrradergometrischer Untersuchungen. Published online 2003.
Kottner J, Audigé L, Brorson S, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. Journal of Clinical Epidemiology. 2011;64(1):96-106. doi:10.1016/j.jclinepi.2010.03.002
Suttmeyer J, Theodoropoulos M, Guillaume A, Schäfer R. Estimation of endurance performance markers using a metabolic model in cycling: a pilot study. SportRxiv. Published online March 7, 2023. doi:10.51224/SRXIV.269
Granier C, Hausswirth C, Dorel S, Le Meur Y. Validity and Reliability of the Stages Cycling Power Meter. Journal of Strength and Conditioning Research. 2020;34(12):3554-3559. doi:10.1519/JSC.0000000000002189
Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261-272. doi:10.1038/s41592-019-0686-2
Quittmann OJ, Schwarz YM, Mester J, Foitschik T, Abel T, Strüder HK. Maximal Lactate Accumulation Rate in All-out Exercise Differs between Cycling and Running. Int J Sports Med. 2021;42(04):314-322. doi:10.1055/a-1273-7589
Adam J, Oehmichen M, Oehmichen E, et al. Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport. 2014;32(2):97-102. doi:10.5604/20831862.1134311
McConnell TR. Practical Considerations in the Testing of VO2 max in Runners: Sports Medicine. 1988;5(1):57-68. doi:10.2165/00007256-198805010-00005
di Prampero P, Osgnach C. Metabolic Power in Team Sports - Part 1: An Update. Int J Sports Med. 2018;39(08):581-587. doi:10.1055/a-0592-7660
Heck H. Laktat in der Leistungsdiagnostik. Hofmann; 1990.
Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics. 1963;11(2):431-441. doi:10.1137/0111030
Newville M, Stensitzki T, Allen DB, Ingargiola A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python. Published online September 21, 2014. doi:10.5281/ZENODO.11813
Wahl P, Manunzio C, Vogt F, et al. Accuracy of a Modified Lactate Minimum Test and Reverse Lactate Threshold Test to Determine Maximal Lactate Steady State. Journal of Strength and Conditioning Research. 2017;31(12):3489-3496. doi:10.1519/JSC.0000000000001770
Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25(2):141-151. doi:10.11613/BM.2015.015
Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine. 2016;15(2):155-163. doi:10.1016/j.jcm.2016.02.012
Podlogar T, Cirnski S, Bokal Š, Kogoj T. Utility of INSCYD athletic performance software to determine Maximal Lactate Steady State and Maximal Oxygen Uptake in cyclists. J Sci Cycling. 2022;11(1):30-38. doi:10.28985/1322.jsc.06
Vickers R. MEASUREMENT ERROR IN MAXIMAL OXYGEN UPTAKE TESTS. Published online 2003.
Lu MJ, Zhong WH, Liu YX, Miao HZ, Li YC, Ji MH. Sample Size for Assessing Agreement between Two Methods of Measurement by Bland−Altman Method. The International Journal of Biostatistics. 2016;12(2). doi:10.1515/ijb-2015-0039
Caldwell AR. SimplyAgree: An R package and jamovi Module for Simplifying Agreement and Reliability Analyses. JOSS. 2022;7(71):4148. doi:10.21105/joss.04148
Arifin W. Sample Size Calculator (web). Accessed January 17, 2023. https://wnarifin.github.io/ssc_web.html
Downloads
Posted
Versions
- 2023-03-09 (2)
- 2023-03-09 (1)
Categories
License
Copyright (c) 2023 Jasper Suttmeyer, Anna Dmitrieva, Yves Reuter, Jan Venzke, Petra Platen, Robin Schäfer
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.