Estimation of endurance performance markers using a metabolic model in cycling
a pilot study
DOI:
https://doi.org/10.51224/SRXIV.269Keywords:
cycling, endurance, blood lactate, VO2max, exercise physiologyAbstract
Introduction: Metabolic models can be used to simulate dose-time responses in physiological parameters like blood lactate concentration. Likewise, these models can be applied to observed data from graded exercise tests to estimate endurance performance markers like maximal oxygen consumption (V̇O2max) and maximal lactate accumulation rate (ċLamax). Currently, this method is not explained in the literature. The aim of this pilot study is 1) to transparently report an algorithm for estimation, 2) to compare the theoretical and practical maximal lactate steady-state (MLSS), and 3) to inform a rigorous study design to optimize and validate this approach.
Methods: Ten Participants from two labs participated in this non-experimental study. Body composition, a submaximal ergometer test, and a 30-minute one-trial MLSS test at the intensity of the theoretical MLSS were conducted on two separate days. Maximal post-lactate values were fitted to the metabolic model from Mader & Heck (1986) to estimate V̇O2max and ċLamax, which consequently determined the theoretical MLSS. The increase in blood lactate concentration from minute 10 to 30 was analyzed and a sensitivity analysis was conducted, using the advanced model from Mader (2003).
Results: The average blood lactate concentration increase in the one-trial MLSS test from minute 10 to 30 was 1.38 ± 1.27 mmol/L. The sensitivity analysis shows that for 50 % of the measurements the actual difference between the power at the theoretical and practical MLSS is less than 1.8%.
Conclusion: This study provides a proof-of-concept for using metabolic simulations to derive estimates for endurance performance markers that determine the metabolic profile of an athlete. This study can inform the design of future validation studies on this approach.
Metrics
References
Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Med. 2020;50(10):1729-1756. doi:10.1007/s40279-020-01322-8
Faude O, Kindermann W, Meyer T. Lactate Threshold Concepts: How Valid are They? Sports Med. 2009;39(6):469-490. doi:10.2165/00007256-200939060-00003
Binder RK, Wonisch M, Corra U, et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prev Card Rehabil Exerc Physiol. 2008;15(6):726-734. doi:10.1097/HJR.0b013e328304fed4
Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and V˙O2peak. PLOS ONE. 2018;13(7):e0199794. doi:10.1371/journal.pone.0199794
Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold.” Int J Sports Med. 1986;7 Suppl 1:45-65.
Wackerhage H, Gehlert S, Schulz H, Weber S, Ring-Dimitriou S, Heine O. Lactate Thresholds and the Simulation of Human Energy Metabolism: Contributions by the Cologne Sports Medicine Group in the 1970s and 1980s. Front Physiol. 2022;13:899670. doi:10.3389/fphys.2022.899670
Mader A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol. 2003;88(4):317-338. doi:10.1007/s00421-002-0676-3
Mader A, Heck H. Möglichkeiten und Aufgaben in der Forschung und Praxis der Humanleis-tungsphysiologie. In: Österreichische Sportwissenschaftliche Gesellschaft, ed. Spectrum Der Sportwissenschaften. Vol 3. Österreichischer Bundesverlag Gesellschaft m.b.H.; 1991:5-54.
Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lac-tate-steady state during cycling. Theor Biol Med Model. 2014;11(1):1. doi:10.1186/1742-4682-11-25
Weber S. Berechnung leistungsbestimmender Parameter der metabolischen Aktivität auf zellulärer Ebene mittels fahrradergometrischer Untersuchungen. Published online 2003.
Nolte S, Quittmann OJ, Meden V. Simulation of Steady-State Energy Metabolism in Cycling and Running.; 2022. doi:10.51224/SRXIV.110
Quittmann OJ, Appelhans D, Abel T, Strüder HK. Evaluation of a sport-specific field test to determine maximal lactate accumulation rate and sprint performance parameters in running. J Sci Med Sport. 2020;23(1):27-34. doi:10.1016/j.jsams.2019.08.013
Heck H, Schulz H, Bartmus U. Diagnostics of anaerobic power and capacity. Eur J Sport Sci. 2003;3(3):1-23. doi:10.1080/17461390300073302
Podlogar T, Cirnski S, Bokal Š, Kogoj T. Utility of INSCYD athletic performance software to determine Maximal Lactate Steady State and Maximal Oxygen Uptake in cyclists. J Sci Cycl. 2022;11(1):30-38. doi:10.28985/1322.jsc.06
Beneke R, Heck H, Schwarz V, Leith??User R. Maximal lactate steady state during the sec-ond decade of age: Med Amp Sci Sports Amp Exerc. 1996;28(12):1474-1478. doi:10.1097/00005768-199612000-00006
Schäfer R, Guillaume A, Theodoropoulos M. Deriving a model-based metabolic profile in cycling: a pilot study. Published online November 7, 2022. doi:10.17605/OSF.IO/YEQ3T
Heck H. Laktat in der Leistungsdiagnostik. Wiss Schriftenreihe Dtsch Sportbundes. Published online 1990:23-180.
Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of con-troversy. J Physiol. 2021;599(3):737-767. doi:10.1113/JP279963
Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow Component of V˙O2 Kinetics: Mechanistic Bases and Practical Applications. Med Sci Sports Exerc. 2011;43(11):2046-2062. doi:10.1249/MSS.0b013e31821fcfc1
Wahl P, Bloch W, Mester J. Moderne Betrachtungsweisen des Laktats: Laktat ein uber-schatztes und zugleich unterschatztes Molekul. Schweiz Z Sportmed Sporttraumatologie. 2009;57(3):100.
Downloads
Posted
License
Copyright (c) 2023 Jasper Suttmeyer, Matthaios Theodoropoulos, Alexandre Guillaume, Robin Schäfer
This work is licensed under a Creative Commons Attribution 4.0 International License.