DOI of the published article https://doi.org/10.1111/sms.14466
Fatigue in elite fencing
effects of a simulated competition
DOI:
https://doi.org/10.51224/SRXIV.266Keywords:
mental fatigue,, rate of force development, interpolated twitch technique, combat sport, escrime, fencing, fatigability, NASAtlxAbstract
The fatigue induced by fencing remains scarcely investigated. The literature suggests limited fatigability despite the high perceived effort experienced during a fencing competition. In this study, we aimed to investigate both objective (neuromuscular performance fatigability) and subjective (perceived fatigue, effort and workload) manifestations of fatigue in elite fencers following a 5-bouts simulated competition. Changes in countermovement jump height, knee extensors maximal isometric torque, rate of torque development, voluntary activation, and contractile response to muscular electrical stimulation were measured in 29 elite fencers [12 epee (6 women), 11 saber (5 women), and 6 foil]. Perceived fatigue and effort were evaluated with visual analog scales, and the perceived workload was evaluated with the NASATLX scale. The knee extensors neuromuscular function remained unaltered after a single bout. During the competition, maximal torque and rate of torque development decreased by 1.6% (P=0.017) and 2.4% (P<0.001) per bout, respectively. Perceived fatigue increased during the competition (12% per bout) with higher values at the beginning of the bouts, and similar values at the end of the bouts (time × bout interaction: P<0.001). Perceived effort increased during the bouts (10% per bout, P<0.001) and during the competition (3% per bout, P=0.011). Perceived mental demand was the sole NASATLX dimension increasing during the competition (2%, P=0.024). These results suggest limited impairments in the knee extensor neuromuscular function after a fencing competition, and that elite fencers needed to increase the allocation of mental rather than physical resources to the task to counterbalance the deleterious effect of fatigue on performance.
Metrics
References
Roi GS, Bianchedi D. The Science of Fencing: Implications for Performance and Injury Prevention. Sports Med. 2008;38(6):465-481. doi:10.2165/00007256-200838060-00003
Bottoms L, Sinclair J, Rome P, Gregory K, Price M. Development of a lab based epee fencing protocol. Int J Perform Anal Sport. 2013;13(1):11-22. doi:10.1080/24748668.2013.11868628
Aquili A, Tancredi V, Triossi T, et al. Performance Analysis in Saber. J Strength Cond Res. 2013;27(3):624-630. doi:10.1519/JSC.0b013e318257803f
Turner AN, Kilduff LP, Marshall GJG, et al. Competition Intensity and Fatigue in Elite Fencing. J Strength Cond Res. 2017;31(11):3128-3136. doi:10.1519/JSC.0000000000001758
Pageaux B, Lepers R. Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Front Physiol. 2016;7(NOV). doi:10.3389/fphys.2016.00587
Dong L, Pageaux B, Romeas T, Berryman N. The effects of fatigue on perceptual-cognitive performance among open-skill sport athletes: A scoping review. Int Rev Sport Exerc Psychol. Published online November 6, 2022:1-52. doi:10.1080/1750984X.2022.2135126
Schmit C, Brisswalter J. Executive functioning during prolonged exercise: a fatigue-based neurocognitive perspective. Int Rev Sport Exerc Psychol. 2020;13(1):21-39. doi:10.1080/1750984X.2018.1483527
Skau S, Sundberg K, Kuhn HG. A Proposal for a Unifying Set of Definitions of Fatigue. Front Psychol. 2021;12(October). doi:10.3389/fpsyg.2021.739764
Turner A, James N, Dimitriou L, et al. Determinants of olympic fencing performance and implications for strength and conditioning training. J Strength Cond Res. 2014;28(10):3001-3011. doi:10.1519/JSC.0000000000000478
Oates LW, Campbell IG, Iglesias X, Price MJ, Muniz-Pumares D, Bottoms LM. The physiological demands of elite epée fencers during competition. Int J Perform Anal Sport. 2019;19(1):76-89. doi:10.1080/24748668.2018.1563858
Turner AN, Marshall G, Noto A, Chavda S, Atlay N, Kirby D. Staying out of range: Increasing attacking distance in fencing. Int J Sports Physiol Perform. 2017;12(10):1319-1323. doi:10.1123/ijspp.2016-0680
D’Emanuele S, Maffiuletti NA, Tarperi C, Rainoldi A, Schena F, Boccia G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front Hum Neurosci. 2021;15(July):1-11. doi:10.3389/fnhum.2021.701916
Preston J, Wegner D. Elbow grease: The experience of effort in action. In: Morsella E, Bargh JA, Gollwitzer PM Oxford Handbook of Human Action. Oxford University Press; 2009:469-486.
Pageaux B. Perception of effort in Exercise Science: Definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885-894. doi:10.1080/17461391.2016.1188992
Bergevin M, Steele J, Payen de la Garanderie M, et al. Pharmacological Blockade of Muscle Afferents and Perception of Effort: A Systematic Review with Meta-analysis. Sports Med. Published online November 1, 2022. doi:10.1007/s40279-022-01762-4
Sorel A, Plantard P, Bideau N, Pontonnier C. Studying fencing lunge accuracy and response time in uncertain conditions with an innovative simulator. PLoS ONE. 2019;14(7):1-17. doi:10.1371/journal.pone.0218959
Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):1091-1116. doi:10.1007/s00421-016-3346-6
Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In: Advances in Psychology. Vol 52. Elsevier; 1988:139-183. doi:10.1016/S0166-4115(08)62386-9
Rubio S, Diaz E, Martin J, Puente JM. Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods. Appl Psychol. 2004;53(1):61-86. doi:10.1111/j.1464-0597.2004.00161.x
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Httpwww R-Proj Org. Published online 2013.
Bates D. lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-37. Httpwww R-Proj Org. Published online 2010.
Magnusson A, Skaug H, Nielsen A, et al. glmmTMB: generalized linear mixed models using template model builder. R Package Version 01. 2017;3.
Kuznetsova A, Brockhoff PB, Christensen RHB. Package ‘lmertest.’ R Package Version. 2015;2(0):734.
Lüdecke D, Aust F, Crawley S, Ben-Shachar M. Package ‘ggeffects.’ Create Tidy Data Fram Marg Eff “ggplot” Model Outputs. 2020;23.
Blazevich AJ, Babault N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front Physiol Wwwfrontiersinorg. 2019;10(1359). doi:10.3389/fphys.2019.01359
Varesco G, Coratella G, Rozand V, et al. Downhill running affects the late but not the early phase of the rate of force development. Eur J Appl Physiol. Published online 2022:11. doi:doi.org/10.1007/s00421-022-04990-8
Strojnik V, Komi PV. Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol. 1998;84(1):344-350. doi:10.1152/jappl.1998.84.1.344
Place N, Maffiuletti NA, Martin A, Lepers R. Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve. 2007;35(4):486-495. doi:10.1002/mus.20714
Varesco G, Espeit L, Feasson L, Lapole T, Rozand V. Rate of force development and rapid muscle activation characteristics of knee extensors in very old men. Exp Gerontol. 2019;124(June):110640. doi:10.1016/j.exger.2019.110640
Varesco G, Coratella G, Rozand V, et al. Downhill running affects the late but not the early phase of the rate of force development. Eur J Appl Physiol. Published online 2022:11. doi:doi.org/10.1007/s00421-022-04990-8
Zarkou A, Stackhouse S, Binder-Macleod SA, Lee SCK. Comparison of techniques to determine human skeletal muscle voluntary activation. J Electromyogr Kinesiol. 2017;36:8-15. doi:10.1016/j.jelekin.2017.05.011
Hart SG. Nasa-Task Load Index (NASA_TLX); 20 years later. Proc Hum Factors Ergon Soc Annu Meet. 2006;50(6):5. doi:10.1177/154193120605000909
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v. 0.2. 0. httpwww CRAN R-Proj Org. Published online 2018.
Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155-163. doi:10.1016/j.jcm.2016.02.012
Gamer M, Lemon J, Fellows I, Singh P. irr: Various coefficients of interrater reliability and agreement [Computer software]. Httpwww CRAN R-Proj Org - package Irr. Published online 2012.
Downloads
Posted
Categories
License
Copyright (c) 2023 Giorgio Varesco, Benjamin Pageaux, Thomas Cattagni, Aurélie Sarcher, Guillaume Martinent, Julie Doron, Marc Jubeau
This work is licensed under a Creative Commons Attribution 4.0 International License.