Bayesian inference of the impulse-response model of athlete training and performance
DOI:
https://doi.org/10.51224/SRXIV.246Keywords:
athletic performance, mathematical modeling, Bayes Theorem, Banister impulse-response model, computer simulation, Bayesian data analysisAbstract
The Banister impulse-response (IR) model quantitatively relates athletic performance to training. Despite its long history, the model usefulness remains limited due to difficulties in obtaining precise parameter estimates and performance predictions. To address these challenges, we developed a Bayesian implementation of the IR model, which formalizes the combined use of prior knowledge and data. We report the following methodological contributions: 1) we reformulated the model to facilitate the specification of informative priors, 2) we derived the IR model in Bayesian terms, and 3) we developed a method that enabled the JAGS software to be used while enforcing parameter constraints. We applied the model to the training and performance data of a national-class middle-distance runner. We specified the priors from published values of IR model parameters, followed by estimating the posterior distributions from the priors and the athlete’s data. The Bayesian approach led to more precise and plausible parameter estimates than nonlinear least squares. We then drew inferences from the Bayesian model regarding the athlete’s performance and showed how the method can be applied in perpetuity as new data are collected. We conclude that the Bayesian implementation of the IR model overcomes the foremost challenges to its usefulness for athlete monitoring.
Metrics
References
Banister, E. W., Calvert, T. W., Savage, M. V., & Bach, T. M. (1975). A systems model of training for athletic performance. Australian Journal of Sports Medicine, 7(3), 57–61. https://doi.org/10.1109/TSMC.1976.5409179
Busso, T., & Thomas, L. (2006). Using mathematical modeling in training planning. International Journal of Sports Physiology and Performance, 1(4), 400–405. https://doi.org/10.1123/ijspp.1.4.400
Clarke, D. C., & Skiba, P. F. (2013). Rationale and resources for teaching the mathematical modeling of athletic training and performance. Advances in Physiology Education, 37(2), 134–152. https://doi.org/10.1152/advan.00078.2011
Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 54–75. Retrieved from http://www.jstor.org/stable/2245500
Gelman, A, Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC Press.
Gelman, Andrew, & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457–472.
Hecksteden, A., Forster, S., Egger, F., Buder, F., Kellner, R., & Meyer, T. (2022). Dwarfs on the Shoulders of Giants: Bayesian Analysis With Informative Priors in Elite Sports Research and Decision Making. Frontiers in Sports and Active Living, 4. https://doi.org/10.3389/fspor.2022.793603
Hellard, P., Avalos, M., Lacoste, L., Barale, F., Chatard, J. C., & Millet, G. P. (2006). Assessing the limitations of the Banister model in monitoring training. J Sports Sci, 24(5), 509–520. https://doi.org/10.1080/02640410500244697
Hopker, J., Griffin, J., Brookhouse, J., Peters, J., Schumacher, Y. O., & Iljukov, S. (2020). Performance profiling as an intelligence-led approach to antidoping in sports. Drug Testing and Analysis, 12(3), 402–409. https://doi.org/10.1002/dta.2748
Johnson, M. L., & Frasier, S. G. (1985). [16] Nonlinear least-squares analysis. In Methods in enzymology (Vol. 117, pp. 301–342). Elsevier. https://doi.org/10.1016/S0076-6879(85)17018-7
Manzi, V., Iellamo, F., Impellizzeri, F., D’Ottavio, S., & Castagna, C. (2009). Relation between Individualized Training Impulses and Performance in Distance Runners. Medicine and Science in Sports and Exercise, 41(11), 2090–2096. https://doi.org/10.1249/MSS.0b013e3181a6a959
Santos-Fernandez, E., Wu, P., & Mengersen, K. L. (2019). Bayesian statistics meets sports: a comprehensive review. Journal of Quantitative Analysis in Sports, 15(4), 289–312. https://doi.org/10.1515/jqas-2018-0106
Silva, R. M., & Swartz, T. B. (2016). Analysis of substitution times in soccer. Journal of Quantitative Analysis in Sports, 12(3), 113–122. https://doi.org/10.1515/jqas-2015-0114
Sottas, P.-E., Robinson, N., Rabin, O., & Saugy, M. (2011). The athlete biological passport. Clinical Chemistry, 57(7), 969–976. https://doi.org/10.1373/clinchem.2011.162271
Sottas, P.-E., Robinson, N., & Saugy, M. (2010). The Athlete’s Biological Passport and Indirect Markers of Blood Doping. In Doping in sports: Biochemical principles, effects and analysis. Handbook of Experimental Pharmacology, vol 195. (pp. 305–326). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-79088-4_14
van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., … Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1), 1–26. https://doi.org/10.1038/s43586-020-00001-2
Van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., Van Aken, M. A. G., … Van Aken, M. A. G. (2014). A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development, 85(3), 842–860. https://doi.org/10.1111/cdev.12169
Zhang, Z. (2016). Missing data imputation: focusing on single imputation. Annals of Translational Medicine, 4(1), 9. https://doi.org/10.3978%2Fj.issn.2305-5839.2015.12.38
Downloads
Posted
Versions
- 2023-01-23 (2)
- 2023-01-23 (1)
Categories
License
Copyright (c) 2023 Kangyi Peng, Ryan T. Brodie, Tim B. Swartz, David C. Clarke
This work is licensed under a Creative Commons Attribution 4.0 International License.