This is an outdated version published on 2022-11-08. Read the most recent version.
Preprint / Version 1

Motivation states to move, be physically active and sedentary vary like circadian rhythms and are associated with affect and arousal


  • Christopher J. Budnick Southern Connecticut State University
  • Matthew Stults-Kolehmainen Yale - New Haven Hospital
  • Cyrus Dadina Dobbs Ferry High School
  • John B. Bartholomew The University of Texas at Austin
  • Daniel Boullosa Universidad de León
  • Garrett I. Ash Yale School of Medicine
  • Rajita Sinha Yale School of Medicine
  • Miguel Blacutt University of Notre Dame
  • Adrian Haughton Nova Southeastern University
  • Tom Lu Texas Tech University



motivation, affect, physical activity, exercise, sedentary behavior


Motivation to be physically active and sedentary is a transient state that varies in response to previous behavior. It is not known: a) if motivational states vary from morning to evening, b) if they are related to feeling states (arousal/hedonic tone), and c) whether they predict current behavior and intentions. The primary purpose of this study was to determine if motivation states vary across the day and in what pattern. Thirty adults from the United States were recruited from Amazon mTurk. Participants completed 6 identical online surveys each day for 8 days beginning after waking and every 2-3 hours thereafter until bed. Participants completed : a) the CRAVE scale (Right now version) to measure motivation states for Move and Rest, b) Feeling Scale, c) Felt Arousal Scale; and d) surveys about current movement behavior (e.g., currently sitting, standing, laying down) and intentions for exercise or sleep. Of these, 21 participants (mean age 37.7; 52.4% female) had complete and valid data. Visual inspection of data determined that: a) motivation states varied widely across the day, b) most participants had a single wave each day. Hierarchical linear modelling revealed that there were significant linear and quadratic time trends for both Move and Rest. Move peaked near 1500 hours when Rest was at its nadir. Cosinor analysis determined that the functional waveform was circadian for Move for 81% of participants and 62% for Rest. Pleasure/displeasure and arousal independently predicted motivation states (all p’s < .001), but arousal had an association twice as large. Eating, exercise and sleep behaviors, especially those over 2 hours previous to assessment, predicted current motivation state. Move-motivation predicted current body position (e.g., laying down, sitting, walking) and intentions for exercise and sleep more consistently than rest, with the strongest prediction of behaviors planned for the next 30 minutes. While these data must be replicated with a larger sample, results suggest that motivation states to be active or sedentary have a circadian waveform for most people and influence future behavioral intentions. These novel results highlight the need to rethink the traditional approaches typically utilized to increase physical activity levels.


Metrics Loading ...


Hyde ET, Whitfield GP, Omura JD, Fulton JE, Carlson SA. Trends in Meeting the Physical Activity Guidelines: Muscle-Strengthening Alone and Combined With Aerobic Activity, United States, 1998–2018. Journal of Physical Activity and Health. 2021;18(S1):S37-S44. doi: 10.1123/jpah.2021-0077

Ussery EN, Whitfield GP, Fulton JE, Galuska DA, Matthews CE, Katzmarzyk PT, et al. Trends in Self-Reported Sitting Time by Physical Activity Levels Among US Adults, NHANES 2007/2008–2017/2018. Journal of Physical Activity and Health. 2021;18(S1):S74-S83. doi: 10.1123/jpah.2021-0221

Williams DM, Evans DR. Current Emotion Research in Health Behavior Science. Emotion Review. 2014;6(3):277-87. doi: 10.1177/1754073914523052

Williams DM, Rhodes RE, Conner MT. Conceptualizing and intervening on affective determinants of health behaviour. Psychology & Health. 2019;34(11):1267-81. doi: 10.1080/08870446.2019.1675659

Brand R, Ekkekakis P. Affective–Reflective Theory of physical inactivity and exercise. German Journal of Exercise and Sport Research. 2018;48(1):48-58. doi: 10.1007/s12662-017-0477-9

Conroy DE, Berry TR. Automatic Affective Evaluations of Physical Activity. Exerc Sport Sci Rev. 2017;45(4):230-7. doi: 10.1249/jes.0000000000000120

Michie S, van Stralen MM, West R. The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science. 2011;6(1):42. doi: 10.1186/1748-5908-6-42

National Institute of Mental Health. Sensorimotor Dynamics (RDoc Constructs): National Institutes of Health,; 2022 [Available from:

Stults-Kolehmainen MA, Blacutt M, Bartholomew JB, Gilson TA, Ash GI, McKee PC, et al. Motivation States for Physical Activity and Sedentary Behavior: Desire, Urge, Wanting, and Craving. Frontiers in Psychology. 2020;11(3076). doi: 10.3389/fpsyg.2020.568390

Stults-Kolehmainen MA, Blacutt M, Fogelman N, Gilson TA, Stanforth PR, Divin AL, et al. Measurement of Motivation States for Physical Activity and Sedentary Behavior: Development and Validation of the CRAVE Scale. Frontiers in Psychology. 2021;12. doi: 10.3389/fpsyg.2021.568286

Antle MC, Silver R. Circadian insights into motivated behavior. Behavioral neuroscience of motivation. 2015:137-69. doi: 10.1007/7854_2015_384

Stults-Kolehmainen MA, Blacutt M, Bartholomew JB, Boullosa D, Janata P, Koo BB, et al. Urges to Move and Other Motivation States for Physical Activity in Clinical and Healthy Populations: A Scoping Review Protocol. Frontiers in Psychology. 2022;13. doi: 10.3389/fpsyg.2022.901272

Khan FH, Ahlberg CD, Chow CA, Shah DR, Koo BB. Iron, dopamine, genetics, and hormones in the pathophysiology of restless legs syndrome. Journal of neurology. 2017;264(8):1634-41. doi: 10.1007/s00415-017-8431-1

Rosenberger ME, Fulton JE, Buman MP, Troiano RP, Grandner MA, Buchner DM, et al. The 24-Hour Activity Cycle: A New Paradigm for Physical Activity. Med Sci Sports Exerc. 2019;51(3):454-64. doi: 10.1249/mss.0000000000001811

Di J, Spira A, Bai J, Urbanek J, Leroux A, Wu M, et al. Joint and Individual Representation of Domains of Physical Activity, Sleep, and Circadian Rhythmicity. Stat Biosci. 2019;11(2):371-402. doi: 10.1007/s12561-019-09236-4

Xiao L, Huang L, Schrack JA, Ferrucci L, Zipunnikov V, Crainiceanu CM. Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach. Biostatistics. 2014;16(2):352-67. doi: 10.1093/biostatistics/kxu045

McDonnell EI, Zipunnikov V, Schrack JA, Goldsmith J, Wrobel J. Registration of 24-hour accelerometric rest-activity profiles and its application to human chronotypes. Biological Rhythm Research. 2022;53(8):1299-319. doi: 10.1080/09291016.2021.1929673

Stults-Kolehmainen M, Gilson T, SantaBarbara N, McKee P, Sinha R, Bartholomew J, et al. Qualitative and quantitative evidence of motivation states for physical activity, exercise and being sedentary from university student focus groups. SportRxiv. 2022. doi:

Resnicow K, Page SE. Embracing chaos and complexity: a quantum change for public health. American journal of public health. 2008;98(8):1382-9. doi: 10.2105/AJPH.2007.129460

Resnicow K, Vaughan R. A chaotic view of behavior change: a quantum leap for health promotion. International Journal of Behavioral Nutrition and Physical Activity. 2006;3(1):1-7. doi:

Inzlicht M, Schmeichel BJ, Macrae CN. Why self-control seems (but may not be) limited. Trends in Cognitive Sciences. 2014;18(3):127-33. doi:

Casper RC, Voderholzer U, Naab S, Schlegl S. Increased urge for movement, physical and mental restlessness, fundamental symptoms of restricting anorexia nervosa? Brain Behav. 2020;10(3):e01556. doi: 10.1002/brb3.1556

Iqbal N, Lambert T, Masand P. Akathisia: Problem of history or concern of today. Cns Spectrums. 2007;12(9):1-13. doi: 10.1017/s1092852900026201

Williams DM, Bohlen LC. Motivation for exercise: Reflective desire versus hedonic dread. APA handbook of sport and exercise psychology, volume 2: Exercise psychology, Vol 2. APA handbooks in psychology series. Washington, DC, US: American Psychological Association; 2019. p. 363-85.

Frijda NH. Emotion, cognitive structure, and action tendency. Cognition and Emotion. 1987;1(2):115-43. doi: 10.1080/02699938708408043

Frijda NH, Kuipers P, ter Schure E. Relations among emotion, appraisal, and emotional action readiness. Journal of Personality and Social Psychology. 1989;57(2):212-28. doi: 10.1037//0022-3514.57.2.212

Elliot AJ, Devine PG. On the motivational nature of cognitive dissonance: Dissonance as psychological discomfort. Journal of personality and social psychology. 1994;67(3):382. doi:

Kavanagh DJ, Andrade J, May J. Imaginary relish and exquisite torture: The elaborated intrusion theory of desire. Psychological Review. 2005;112(2):446-67. doi: 10.1037/0033-295x.112.2.446

Janata P, Peterson J, Ngan C, Keum B, Whiteside H, Ran S. Psychological and Musical Factors Underlying Engagement with Unfamiliar Music. Music Perception. 2018;36(2):175-200. doi: 10.1525/mp.2018.36.2.175

Taylor IM, Whiteley S, Ferguson RA. Disturbance of desire-goal motivational dynamics during different exercise intensity domains. Scandinavian Journal of Medicine & Science in Sports. 2022;32(4):798-806. doi:

Carver CS, Scheier MF. Chapter One - Self-Regulatory Functions Supporting Motivated Action. In: Elliot AJ, editor. Advances in Motivation Science. 4: Elsevier; 2017. p. 1-37.

Craig AD. An interoceptive neuroanatomical perspective on feelings, energy, and effort. Behav Brain Sci. 2013;36(6):685-6; discussion 707-26. doi: 10.1017/s0140525x13001489

Loewenstein G. Out of control: Visceral influences on behavior. Organizational Behavior and Human Decision Processes. 1996;65(3):272-92. doi: 10.1006/obhd.1996.0028

Brehm JW, Self EA. The Intensity of Motivation. Annual Review of Psychology. 1989;40(1):109-31. doi: 10.1146/

Frijda NH, Ridderinkhof KR, Rietveld E. Impulsive action: Emotional impulses and their control. Frontiers in Psychology. 2014;5. doi: 10.3389/fpsyg.2014.00518

Russell JA, Weiss A, Mendelsohn GA. Affect Grid: a single-item scale of pleasure and arousal. Journal of Personality and Social Psychology. 1989;57:493-502. doi:

Dickinson A, Balleine B. Hedonics: the cognitive-motivational interface. In: Kringelbach ML, K. C. Berridge KC, editors. Pleasures of the Brain: Oxford University Press.; 2010. p. 74-84.

Dunton GF. Ecological momentary assessment in physical activity research. Exercise and sport sciences reviews. 2017;45(1):48. doi: 10.1249/JES.0000000000000092

Hardy CJ, Rejeski WJ. Not what, but how one feels: The measurement of affect during exercise. Journal of Sport and Exercise Psychology. 1989;11:304-17. doi:

Lang PJ. Behavioral treatment and bio-behavioral assessment: computer applications. In: Sidowski JB, Johnson JH, Williams TA, editors. Technology in mental health care delivery systems. Norwood, NJ: Ablex; 1980. p. 119-37.

Ekkekakis P, Petruzzello SJ. Acute aerobic exercise and affect - Current status, problems and prospects regarding dose-response. Sports Medicine. 1999;28(5):337-74. doi: 10.2165/00007256-199928050-00005

Hall EE, Ekkekakis P, Petruzello SJ. The affective beneficence of vigorous exercise revisited. British Journal of Health Psychology. 2002;7:47-66. doi: 10.1348/135910702169358

Svebak S, Murgatroyd S. Metamotivational dominance: A multimethod validation of reversal theory constructs. Journal of Personality and Social Psychology. 1985;48:107-16. doi:

Stults-Kolehmainen MA, Bartholomew JB. Psychological Stress Impairs Short-Term Muscular Recovery from Resistance Exercise. Medicine and Science in Sports and Exercise. 2012;44(11):2220-7. doi: 10.1249/MSS.0b013e31825f67a0

Stults-Kolehmainen MA, Lu T, Ciccolo JT, Bartholomew JB, Brotnow L, Sinha R. Higher chronic psychological stress is associated with blunted affective responses to strenuous resistance exercise: RPE, pleasure, pain. Psychology of Sport and Exercise. 2016;22:27-36. doi:

Raudenbush SW, Bryk AS. Hierarchical Linear Models: Applications and Data Analysis Methods. 2nd ed. Thousand Oaks, CA: Sage; 2002. p. 3-15.

R Core Team. R: A Language and environment for statistical computing. Version 4.0 ed2021. p. Computer software. doi:

Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015;67(1):1 - 48. doi: 10.18637/jss.v067.i01

Kuznetsove A, Brohoff PB, Christensen RHB, Jensen SP. Package 'lmertest' [White paper]: CRAN; 2020 [Available from:

Doyle MM, Murphy TE, Pisani MA, Yaggi HK, Jeon S, Redeker NS, et al. A SAS macro for modelling periodic data using cosinor analysis. Computer Methods and Programs in Biomedicine. 2021;209:106292. doi: 10.1016/j.cmpb.2021.106292

Bittle CC, Jr., Molina DJ, Bartter FC. Salt sensitivity in essential hypertension as determined by the cosinor method. Hypertension. 1985;7(6 Pt 1):989-94. doi: 10.1161/01.hyp.7.6.989

Casale R, Pasqualetti P. Cosinor analysis of circadian peak expiratory flow variability in normal subjects, passive smokers, heavy smokers, patients with chronic obstructive pulmonary disease and patients with interstitial lung disease. Respiration. 1997;64(4):251-6. doi: 10.1159/000196682

Fournier S, Iten L, Marques-Vidal P, Boulat O, Bardy D, Beggah A, et al. Circadian rhythm of blood cardiac troponin T concentration. Clinical Research in Cardiology. 2017;106(12):1026-32. doi: 10.1007/s00392-017-1152-8

Fekedulegn D, Innes K, Andrew ME, Tinney-Zara C, Charles LE, Allison P, et al. Sleep quality and the cortisol awakening response (CAR) among law enforcement officers: The moderating role of leisure time physical activity. Psychoneuroendocrinology. 2018;95:158-69. doi:

Mills JN. Human circadian rhythms. Physiol Rev. 1966;46(1):128-71. doi: 10.1152/physrev.1966.46.1.128

Dunlap JC, Loros JJ, DeCoursey PJ. Chronobiology: biological timekeeping: Sinauer Associates; 2004.

Kline CE, Durstine JL, Davis JM, Moore TA, Devlin TM, Zielinski MR, et al. Circadian variation in swim performance. Journal of Applied physiology. 2007;102(2):641-9. doi: 10.1152/japplphysiol.00910.2006

Serin Y, Tek NA. Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Annals of Nutrition and Metabolism. 2019;74(4):322-30. doi:

Barker JL, Kolar D, Lazzer AS-D, Keel PK. Exercise Satiation: A novel theoretical conceptualization for problematic exercise observed in eating disorders. International Journal of Eating Disorders. 2022;55(2):176-9. doi:

Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, et al. The Runner's High: Opioidergic Mechanisms in the Human Brain. Cerebral Cortex. 2008;18(11):2523-31. doi: 10.1093/cercor/bhn013

Ekkekakis P, Hall EE, Petruzzello SJ. The relationship between exercise intensity and affective responses demystified: To crack the 40-year-old nut, replace the 40-year-old nutcracker! Annals of Behavioral Medicine. 2008;35(2):136-49. doi: 10.1007/s12160-008-9025-z

Tassi P, Muzet A. Sleep inertia. Sleep Medicine Reviews. 2000;4(4):341-53. doi:

Jeong S-H, Fishbein M. Predictors of multitasking with media: Media factors and audience factors. Media Psychology. 2007;10(3):364-84. doi:

Ogden J, Coop N, Cousins C, Crump R, Field L, Hughes S, et al. Distraction, the desire to eat and food intake. Towards an expanded model of mindless eating. Appetite. 2013;62:119-26. doi: 10.1016/j.appet.2012.11.023

Teff KL. Visceral Nerves: Vagal and Sympathetic Innervation. Journal of Parenteral and Enteral Nutrition. 2008;32(5):569-71. doi:

Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33. doi: 10.1186/s12970-017-0189-4

Stults-Kolehmainen MA, Ciccolo JT, Bartholomew JB, Seifert J, Portman RS. Age and Gender-related Changes in Exercise Motivation among Highly Active Individuals. Athletic Insight. 2013;5(1):45-63. doi:

Stults-Kolehmainen MA, Gilson TA, Abolt CJ. Feelings of acceptance and intimacy among teammates predict motivation in intercollegiate sport. Journal of Sport Behavior. 2013;36(3). doi:

Feige K. Wesen und Problematik der Sportmotivation. Sportunterricht. 1976;5:4-7. doi:

Davis WA. The two senses of desire. Philosophical Studies. 1984;45(2):181-95. doi: 10.1007/BF00372477

Cheval B, Radel R, Neva JL, Boyd LA, Swinnen SP, Sander D, et al. Behavioral and Neural Evidence of the Rewarding Value of Exercise Behaviors: A Systematic Review. Sports Medicine. 2018;48(6):1389-404. doi: 10.1007/s40279-018-0898-0

Kaplan GB, Greenblatt DJ, Ehrenberg BL, Goddard JE, Cotreau MM, Harmatz JS, et al. Dose-Dependent Pharmacokinetics and Psychomotor Effects of Caffeine in Humans. The Journal of Clinical Pharmacology. 1997;37(8):693-703. doi:

Tripathi R, Reich SG, Scorr L, Guardiani E, Factor SA. Lurasidone-Induced Tardive Syndrome. Movement Disorders Clinical Practice. 2019;6(7):601-4. doi:

Nezlek JB. An introduction to multilevel modeling for social and personality psychology. Social and Personality Psychology Compass. 2008;2(2):842-60. doi:

Luo W, Li H, Baek E, Chen S, Lam KH, Semma B. Reporting practice in multilevel modeling: A revisit after 10 years. Review of Educational Research. 2021;91(3):311-55. doi:

Bolin JH, Finch WH, Stenger R. Estimation of random coefficient multilevel models in the context of small numbers of level 2 clusters. Educational and Psychological Measurement. 2019;79(2):217-48. doi: 10.1177/0013164418773494

Hair Jr JF, Fávero LP. Multilevel modeling for longitudinal data: concepts and applications. RAUSP Management Journal. 2019;54:459-89. doi:

McNeish DM, Stapleton LM. The effect of small sample size on two-level model estimates: A review and illustration. Educational Psychology Review. 2016;28(2):295-314. doi:

Budnick CJ, Santuzzi AM. Seeking reemployment in nonmetropolitan America. journal of employment counseling. 2013;50(4):146-53. doi: 10.1002/j.2161-1920.2013.00033.x

Harms R. Self-regulated learning, team learning and project performance in entrepreneurship education: Learning in a lean startup environment. Technological forecasting and social change. 2015;100:21-8. doi: 10.1016/j.techfore.2015.02.007

Williams DM, Dunsiger S, Ciccolo JT, Lewis BA, Albrecht AE, Marcus BH. Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychology of Sport and Exercise. 2008;9(3):231-45. doi: 10.1016/j.psychsport.2007.04.002

Parker M, Challet E, Deputte B, Ract-Madoux B, Faustin M, Serra J. Seasonal effects on locomotor and feeding rhythms in indoor cats. Journal of Veterinary Behavior. 2022;48:56-67. doi:

Witting W, Kwa I, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease. Biological psychiatry. 1990;27(6):563-72. doi:

Hardeman W, Houghton J, Lane K, Jones A, Naughton F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. International Journal of Behavioral Nutrition and Physical Activity. 2019;16(1):31. doi: 10.1186/s12966-019-0792-7

Stults-Kolehmainen MA, Sinha R. The effects of stress on physical activity and exercise. Sports Medicine. 2014;44(1):81-121. doi: 10.1007/s40279-013-0090-5

Ruissen GR, Beauchamp MR, Puterman E, Zumbo BD, Rhodes RE, Hives BA, et al. Continuous-Time Modeling of the Bidirectional Relationship Between Incidental Affect and Physical Activity. Annals of Behavioral Medicine. 2022. doi: 10.1093/abm/kaac024

Stults-Kolehmainen MA, Tuit K, Sinha R. Lower cumulative stress is associated with better health for physically active adults in the community. Stress-the International Journal on the Biology of Stress. 2014;17(2):157-68. doi: 10.3109/10253890.2013.878329

Stults-Kolehmainen M, Filgueiras A, Blacutt M. Factors linked to changes in mental health outcomes among Brazilians in quarantine due to COVID-19. medRxiv. 2021:2020.05.12.20099374. doi: 10.1101/2020.05.12.20099374

Chirazi M. Study regarding the activity of the fitness centres from the city of Iasi. Bulletin of the Transilvania University of Brasov Series IX, Sciences of Human Kinetics. 2017;10(1). doi:

Engelen L, Chau J, Young S, Mackey M, Jeyapalan D, Bauman A. Is activity-based working impacting health, work performance and perceptions? A systematic review. Building research & information. 2019;47(4):468-79. doi: