Preprint / Version 1

Stabilization of gait, mechanisms, and opportunities for training

##article.authors##

  • Moira Van Leeuwen Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands https://orcid.org/0000-0001-9620-2990
  • Sjoerd Bruijn 1Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
  • Jaap Van Dieën Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands https://orcid.org/0000-0002-7719-5585

DOI:

https://doi.org/10.51224/SRXIV.216

Keywords:

gait stability, foot placement, stance leg control, angular momentum, falls

Abstract

In this paper we review what mechanisms are used to stabilize human bipedal gait. Based on mechanical reasoning, potential mechanisms to control the body center of mass trajectory are modulation of foot placement, stance leg control consisting of modulation of ankle moments and push-off forces, and modulations of the body’s angular momentum. The first two mechanisms and especially the first are dominant in controlling center of mass accelerations during gait, while angular momentum control plays a lesser role, but may be important to control body alignment and orientation. The same control mechanisms stabilize both steady-state and perturbed gait in both the mediolateral and antero-posterior directions. Control is at least in part active and is affected by proprioceptive, visual and vestibular information. Results support that this reflects a feedback process in which sensory information is used to obtain an estimate of the center of mass state based on which foot placement and ankle moments are modulated. These active feedback mechanisms suggest training approaches for populations at risk of falling, such as augmenting their effective use by means of augmented feedback, or using their complementary nature to train one mechanism by constraining the other mechanisms.

Metrics

Metrics Loading ...

References

Macintyre NJ, Dewan N. Epidemiology of distal radius fractures and factors predicting risk and prognosis. J Hand Ther. 2016;29:136-145. doi: 10.1016/j.jht.2016.03.003.

Talbot LA, Musiol RJ, Witham EK, Metter EJ. Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury. BMC Public Health. 2005;5:86. doi: 10.1186/1471-2458-5-86.

Wenning GK, Ebersbach G, Verny M, Chaudhuri KR, Jellinger K, Mckee A, et al. Progression of falls in postmortem-confirmed parkinsonian disorders. Mov Disord. 1999;14:947-950. doi: 10.1002/1531-8257(199911)14:6<947::aid-mds1006>3.0.co;2-o.

Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011;22:78-83. doi: 10.1071/NB10056.

Allen NE, Canning CG, Almeida LRS, Bloem BR, Keus SH, Lofgren N, et al. Interventions for preventing falls in Parkinson's disease. Cochrane Database Syst Rev. 2022;6:CD011574. doi: 10.1002/14651858.CD011574.pub2.

Bruijn SM, Van Dieën JH. Control of human gait stability through foot placement. J Royal Soc Interface. 2018;15:20170816. doi: http://dx.doi.org/10.1098/rsif.2017.0816.

Mcgeer T. Passive Dynamic Walking. International Journal of Robotics Research. 1990;9:62-82.

Kuo AD. Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Research. 1999;18:917-930.

Hof AL. The equations of motion for a standing human reveal three mechanisms for balance. J Biomech. 2007;40:451-457.

Horak FB, Nashner LM. Central programming of postural movements: Adaptation to altered support surface configurations. Journal of neurophysiology. 1986;55:1369-1381.

Mildren RL, Zaback M, Adkin AL, Bent LR, Frank JS. Learning to balance on a slackline: Development of coordinated multi-joint synergies. Scand J Med Sci Sports. 2018;28:1996-2008. doi: 10.1111/sms.13208.

Hof AL. The 'extrapolated center of mass' concept suggests a simple control of balance in walking. Human Movement Science. 2008;27:112-125. doi: 10.1016/j.humov.2007.08.003.

Wang Y, Srinivasan M. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking. Biol Lett. 2014;10. doi: 10.1098/rsbl.2014.0405.

Yang F, Pai YC. Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults? Journal of biomechanics. 2014;47:3807-3812. doi: 10.1016/j.jbiomech.2014.10.027.

Perry JA, Srinivasan M. Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability. R Soc Open Sci. 2017;4:160627. doi: 10.1098/rsos.160627.

Arvin M, Hoozemans M, Pijnappels M, Duysens J, Verschueren SM, Van Dieën JH. Where to step? Contributions of stance leg muscle spindle afference to planning of mediolateral foot placement for balance control in young and older adults. Front Physiol. 2018;9. doi: 10.3389/fphys.2018.01134.

Stimpson KH, Heitkamp LN, Horne JS, Dean JC. Effects of walking speed on the step-by-step control of step width. J Biomech. 2018;68:78-83. doi: 10.1016/j.jbiomech.2017.12.026.

Stimpson KH, Heitkamp LN, Embry AE, Dean JC. Post-stroke deficits in the step-by-step control of paretic step width. Gait Posture. 2019;70:136-140. doi: 10.1016/j.gaitpost.2019.03.003.

Mahaki M, Bruijn SM, Van Dieen JH. The effect of external lateral stabilization on the use of foot placement to control mediolateral stability in walking and running. PeerJ. 2019;7:e7939. doi: 10.7717/peerj.7939.

Van Leeuwen AM, Van Dieën JH, Daffertshofer A, Bruijn SM. Active foot placement control ensures stable gait: Effect of constraints on foot placement and ankle moments. PloS one. 2020;15:e0242215. doi: https://doi.org/10.1371/journal.pone.0242215.

Knapp HA, Sobolewski BA, Dean JC. Augmented Hip Proprioception Influences Mediolateral Foot Placement During Walking. IEEE Trans Neural Syst Rehabil Eng. 2021;29:2017-2026. doi: 10.1109/TNSRE.2021.3114991.

Hoogstad LA, Van Leeuwen AM, Van Dieen JH, Bruijn SM. Can foot placement during gait be trained? Adaptations in stability control when ankle moments are constrained. J Biomech. 2022;134:110990.

Magnani R, Van Dieën JH, Bruijn SM. Effects of vestibular stimulation on gait stability when walking at different step widths. Exp Brain Res. in press.

Jin J, Van Dieën JH, Kistemaker D, Daffertshofer A, Bruijn SM. Does ankle push-off correct for errors in anterior-posterior foot placement relative to center-of-mass states? bioRxiv. 2022:2022.2003.2014.484283. doi: 10.1101/2022.03.14.484283.

Dean JC, Kautz SA. Foot placement control and gait instability among people with stroke. J Rehabil Res Dev. 2015;52:577-590. doi: 10.1682/JRRD.2014.09.0207.

Van Leeuwen AM, Van Dieën JH, Daffertshofer A, Bruijn SM. Ankle muscles drive mediolateral center of pressure control to ensure stable steady state gait. Sci Rep. 2021;11:21481.

Matthis JS, Barton SL, Fajen BR. The critical phase for visual control of human walking over complex terrain. Proc Natl Acad Sci U S A. 2017;114:E6720-E6729. doi: 10.1073/pnas.1611699114.

Patil NS, Dingwell JB, Cusumano JP. Task-level regulation enhances global stability of the simplest dynamic walker. J R Soc Interface. 2020;17:20200278. doi: 10.1098/rsif.2020.0278.

Hof AL, Van Bockel RM, Schoppen T, Postema K. Control of lateral balance in walking - Experimental findings in normal subjects and above-knee amputees. Gait & Posture. 2007;25:250-258. doi: 10.1016/j.gaitpost.2006.04.013.

Van Leeuwen AM, Van Dieën JH, Bruijn SM. The effect of external lateral stabilization on ankle moment control during steady-state walking. J Biomech. 2022;142:111259. doi: https://doi.org/10.1016/j.jbiomech.2022.111259.

Fettrow T, Reimann H, Grenet D, Crenshaw J, Higginson J, Jeka J. Walking Cadence Affects the Recruitment of the Medial-Lateral Balance Mechanisms. Frontiers in Sports and Active Living. 2019;1. doi: 10.3389/fspor.2019.00040.

Hof AL, Duysens J. Responses of human ankle muscles to mediolateral balance perturbations during walking. Hum Mov Sci. 2018;57:69-82. doi: 10.1016/j.humov.2017.11.009.

Reimann H, Fettrow TD, Thompson ED, Agada P, Mcfadyen BJ, Jeka JJ. Complementary mechanisms for upright balance during walking. PloS one. 2017;12:e0172215. doi: 10.1371/journal.pone.0172215.

Zhang Y, Smeets JBJ, Brenner E, Verschueren S, Duysens J. Fast responses to stepping-target displacements when walking. J Physiol. 2020;598:1987-2000. doi: 10.1113/JP278986.

Magnani RM, Bruijn SM, Van Dieën JH, Forbes PA. Stabilization demands of walking modulate the vestibular contributions to gait. Sci Rep. 2021;11:13736. doi: https://doi.org/10.1038/s41598-021-93037-7.

Kim M, Collins SH. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking. J Neuroeng Rehabil. 2015;12:43. doi: 10.1186/s12984-015-0027-3.

Reimann H, Fettrow T, Jeka JJ. Strategies for the Control of Balance During Locomotion. Kinesiology Review. 2018;7:18-25. doi: 10.1123/kr.2017-0053.

Herr H, Popovic M. Angular momentum in human walking. Journal of Experimental Biology. 2008;211:467-481. doi: Doi 10.1242/Jeb.008573.

Elftman H. The function of the arms in walking. Human Biology. 1939;11:529-535.

Silverman AK, Neptune RR. Differences in whole-body angular momentum between below-knee amputees and non-amputees across walking speeds. Journal of biomechanics. 2011;44:379-385. doi: 10.1016/j.jbiomech.2010.10.027.

Nott CR, Neptune RR, Kautz SA. Relationships between frontal-plane angular momentum and clinical balance measures during post-stroke hemiparetic walking. Gait & posture. 2014;39:129-134. doi: 10.1016/j.gaitpost.2013.06.008.

Otten E. Balancing on a narrow ridge: biomechanics and control. Philos Trans R Soc Lond B Biol Sci. 1999;354:869-875.

Van Den Bogaart M, Bruijn SM, Spildooren J, Van Dieen JH, Meyns P. Effects of age and surface instability on the control of the center of mass. Human movement science. 2022;82:102930. doi: 10.1016/j.humov.2022.102930.

Van Den Bogaart M, Bruijn SM, Spildooren J, Van Dieën JH, Meyns P. Limited effects of age on the use of the ankle and counter-rotation mechanism in the sagittal plane. bioRxiv. 2022:2022.2003.2015.484389. doi: 10.1101/2022.03.15.484389.

Van Den Bogaart M, Bruijn SM, Spildooren J, Van Dieen JH, Meyns P. The effect of constraining mediolateral ankle moments and foot placement on the use of the counter-rotation mechanism during walking. Journal of biomechanics. 2022;136:111073. doi: 10.1016/j.jbiomech.2022.111073.

Hof AL, Vermerris SM, Gjaltema WA. Balance responses to lateral perturbations in human treadmill walking. J Exp Biol. 2010;213:2655-2664. doi: 10.1242/jeb.042572.

Vlutters M, Van Asseldonk EH, Van Der Kooij H. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. J Exp Biol. 2016;219:1514-1523. doi: 10.1242/jeb.129338.

Vlutters M, Van Asseldonk EHF, Van Der Kooij H. Foot Placement Modulation Diminishes for Perturbations Near Foot Contact. Front Bioeng Biotechnol. 2018;6:48. doi: 10.3389/fbioe.2018.00048.

Van Mierlo M, Vlutters M, Van Asseldonk EHF, Van Der Kooij H. Centre of pressure modulations in double support effectively counteract anteroposterior perturbations during gait. J Biomech. 2021;126:110637. doi: 10.1016/j.jbiomech.2021.110637.

Vlutters M, Van Asseldonk EHF, Van Der Kooij H. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking. J Biomech. 2018;68:93-98. doi: 10.1016/j.jbiomech.2017.12.021.

Joshi V, Srinivasan M. A controller for walking derived from how humans recover from perturbations. Journal of The Royal Society Interface. 2019;16:20190027.

Brough LG, Klute GK, Neptune RR. Biomechanical response to mediolateral foot-placement perturbations during walking. J Biomech. 2020;116:110213. doi: 10.1016/j.jbiomech.2020.110213.

Vlutters M, Van Asseldonk EHF, Van Der Kooij H. Lower extremity joint-level responses to pelvis perturbation during human walking. Sci Rep. 2018;8:14621. doi: 10.1038/s41598-018-32839-8.

Alizadehsaravi L, Bruijn SM, Van Dieën JH. Balance training improves feedback control of perturbed balance in older adults. bioRxiv. 2021.

Van Den Bogaart M, Bruijn SM, Van Dieën JH, Meyns P. The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking. Journal of Biomechanics. 2020;103:109660.

Van Mierlo M, Ambrosius J, Vlutters M, Van Asseldonk E, Van Der Kooij H. Recovery from sagittal-plane whole body angular momentum perturbations during walking. Journal of Biomechanics. 2022:111169.

Pijnappels M, Kingma I, Wezenberg D, Reurink G, Van Dieen JH. Armed against falls: the contribution of arm movements to balance recovery after tripping. Experimental Brain Research. 2010;201:689-699. doi: 10.1007/s00221-009-2088-7.

Bruijn SM, Sloot LH, Kingma I, Pijnappels M. Contribution of arm movements to balance recovery after tripping in older adults. J Biomech. 2022;133:110981. doi: 10.1016/j.jbiomech.2022.110981.

Lee-Confer JS, Kulig K, Powers CM. Constraining the arms during a slip perturbation results in a higher fall frequency in young adults. Hum Mov Sci. 2022;86:103016. doi: 10.1016/j.humov.2022.103016.

Patil NS, Dingwell JB, Cusumano JP. Correlations of pelvis state to foot placement do not imply within-step active control. J Biomech. 2019;97:109375. doi: 10.1016/j.jbiomech.2019.109375.

Roelker SA, Kautz SA, Neptune RR. Muscle contributions to mediolateral and anteroposterior foot placement during walking. J Biomech. 2019;95:109310. doi: 10.1016/j.jbiomech.2019.08.004.

Kubinski SN, Mcqueen CA, Sittloh KA, Dean JC. Walking with wider steps increases stance phase gluteus medius activity. Gait Posture. 2015;41:130-135. doi: 10.1016/j.gaitpost.2014.09.013.

Rankin BL, Buffo SK, Dean JC. A neuromechanical strategy for mediolateral foot placement in walking humans. J Neurophysiol. 2014;112:374-383. doi: 10.1152/jn.00138.2014.

Reimann H, Fettrow T, Grenet D, Thompson ED, Jeka JJ. Phase-Dependency of Medial-Lateral Balance Responses to Sensory Perturbations During Walking. Frontiers in Sports and Active Living. 2019;1. doi: 10.3389/fspor.2019.00025.

Reimann H, Fettrow T, Thompson ED, Jeka JJ. Neural Control of Balance During Walking. Front Physiol. 2018;9:1271. doi: 10.3389/fphys.2018.01271.

Stokes HE, Thompson JD, Franz JR. The Neuromuscular Origins of Kinematic Variability during Perturbed Walking. Sci Rep. 2017;7:808. doi: 10.1038/s41598-017-00942-x.

Hof AL, Duysens J. Responses of human hip abductor muscles to lateral balance perturbations during walking. Exp Brain Res. 2013;230:301-310. doi: 10.1007/s00221-013-3655-5.

Cofre Lizama LE, Pijnappels M, Verschueren S, Reeves NP, Van Dieën JH. Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance? J Neurophysiol. 2016;115:907-914.

Peterka RJ, Loughlin PJ. Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol. 2004;91:410-423. doi: 10.1152/jn.00516.2003.

Courtine G, De Nunzio AM, Schmid M, Beretta MV, Schieppati M. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. J Neurophysiol. 2007;97:772-779. doi: 10.1152/jn.00764.2006.

Afschrift M, Van Deursen R, De Groote F, Jonkers I. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity. Gait & posture. 2019;68:575-582.

Vlutters M, Van Asseldonk EHF, Van Der Kooij H. Ankle muscle responses during perturbed walking with blocked ankle joints. J Neurophysiol. 2019;121:1711-1717. doi: 10.1152/jn.00752.2018.

Afschrift M, De Groote F, Jonkers I. Similar sensorimotor transformations control balance during standing and walking. PLoS Comput Biol. 2021;17:e1008369. doi: 10.1371/journal.pcbi.1008369.

Neptune RR, Mcgowan CP. Muscle contributions to whole-body sagittal plane angular momentum during walking. J Biomech. 2011;44:6-12. doi: 10.1016/j.jbiomech.2010.08.015.

Neptune RR, Mcgowan CP. Muscle contributions to frontal plane angular momentum during walking. J Biomech. 2016;49:2975-2981. doi: 10.1016/j.jbiomech.2016.07.016.

Heitkamp LN, Stimpson KH, Dean JC. Application of a novel force-field to manipulate the relationship between pelvis motion and step width in human walking. BioRxiv. 2019. doi: 10.1101/636787.

Reimold NK, Knapp HA, Henderson RE, Wilson L, Chesnutt AN, Dean JC. Altered active control of step width in response to mediolateral leg perturbations while walking. Sci Rep. 2020;10:12197. doi: 10.1038/s41598-020-69052-5.

Epro G, Mierau A, Mccrum C, Leyendecker M, Bruggemann GP, Karamanidis K. Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise. J Neurophysiol. 2018;119:2229-2240. doi: 10.1152/jn.00513.2017.

Hos M, Van Iersel L, Van Leeuwen AM, Bruijn SM. Differential effects of ankle constraints on foot placement control between normal and split belt treadmills. bioRxiv. 2022.

Mahaki M, Van Leeuwen AM, Bruijn S, Van Der Velde N, Van Dieen JH. Foot placement control can be trained: Older adults learn to walk more stable, when ankle moments are constrained. in prep.

Arvin M, Mazaheri M, Pijinappels M, Hoozemans MJM, Burger BJ, Verschueren SM, et al. Effects of narrow base gait on mediolateral balance control in young and older adults. J Biomech. 2016;43:1264-1267.

Timmermans C, Roerdink M, Meskers CGM, Beek PJ, Janssen TWJ. Walking-adaptability therapy after stroke: results of a randomized controlled trial. Trials. 2021;22:923. doi: 10.1186/s13063-021-05742-3.

Van Ooijen MW, Roerdink M, Trekop M, Janssen TW, Beek PJ. The efficacy of treadmill training with and without projected visual context for improving walking ability and reducing fall incidence and fear of falling in older adults with fall-related hip fracture: a randomized controlled trial. BMC Geriatr. 2016;16:215. doi: 10.1186/s12877-016-0388-x.

Sinkjaer T, Andersen JB, Nielsen JF, Hansen HJ. Soleus long-latency stretch reflexes during walking in healthy and spastic humans. Clin Neurophysiol. 1999;110:951-959.

Forbes PA, Vlutters M, Dakin CJ, Van Der Kooij H, Blouin JS, Schouten AC. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion. J Physiol. 2017;595:2175-2195. doi: 10.1113/JP272614.

Hannan KB, Todd MK, Pearson NJ, Forbes PA, Dakin CJ. Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking. Sci Rep. 2021;11:8127. doi: 10.1038/s41598-021-87485-4.

Koolen T, Posa M, Tedrake R. Balance control using center of mass height variation: Limitations imposed by unilateral contact. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) 15-17 Nov. 2016 2016, pp.8-15.

Buurke TJW, Lamoth CJC, Van Der Woude LHV, Hof AL, Den Otter R. Bilateral temporal control determines mediolateral margins of stability in symmetric and asymmetric human walking. Sci Rep. 2019;9:12494. doi: 10.1038/s41598-019-49033-z.

Hak L, Houdijk H, Steenbrink F, Mert A, Van Der Wurff P, Beek PJ, et al. Stepping strategies for regulating gait adaptability and stability. Journal of biomechanics. 2013;46:905-911. doi: 10.1016/j.jbiomech.2012.12.017.

Kim M, Collins SH. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control. IEEE Int Conf Rehabil Robot. 2013;2013:6650437. doi: 10.1109/ICORR.2013.6650437.

Downloads

Posted

2022-11-04

Categories