Preprint / Version 1

Perception of barbell velocity

Can individuals accurately perceive changes in velocity?

##article.authors##

  • Matthew P. Shaw Høgskulen på Vestlandet
  • Stephen W. Thompson Sheffield Hallam University
  • Johnny Siggaard Kamuk Weibust Nielsen Høgskulen på Vestlandet
  • Håvard Tonheim Høgskulen på Vestlandet
  • Per Aslak Myranuet Høgskulen på Vestlandet
  • James Steele Solent University

DOI:

https://doi.org/10.51224/SRXIV.201

Keywords:

velocity, resistance training, strength, deadlift

Abstract

The aim of the study was to investigate whether resistance-trained participants can accurately predict changes in barbell velocity, specifically in the deadlift exercise, without feedback from velocity based training (VBT) devices. Seventeen participants (16 male, 1 female; age = 24.7 ± 3.8) were randomized in a counterbalanced, crossover design two experimental sessions that consisted of three sets of Deadlift at 60-and-80% one-repetition maximum (1RM). The number of repetitions were determined by the participants as they were asked to terminate each set when they felt the barbell velocity had reduced by 20%, relative to repetition one. A binomial mixed effects regression model was used to assess the accuracy of participants ability to stop after reaching at least 20% velocity loss. Participants tended to underestimate their proximity to 20% velocity loss and thus had relatively low probability of correctly stopping after reaching this threshold. There was only a 10.49% probability that people could perceive at least 20% velocity loss greater than chance (i.e., 50% probability). Our data, suggests that most participants cannot accurately perceive changes in velocity without exposure to augmented feedback.

Metrics

Metrics Loading ...

References

Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up against statistical significance. Nature, 567(7748), 305–307. https://doi.org/10.1038/d41586-019-00857-9

Amrhein, V., Trafimow, D., & Greenland, S. (2019). Inferential Statistics as Descriptive Statistics: There Is No Replication Crisis if We Don’t Expect Replication. The American Statistician, 73(sup1), 262–270. https://doi.org/10.1080/00031305.2018.1543137

Balsalobre-Fernández, C., Kuzdub, M., Poveda-Ortiz, P., & Campo-Vecino, J. D. (2016). Validity and Reliability of the PUSH Wearable Device to Measure Movement Velocity During the Back Squat Exercise. Journal of Strength and Conditioning Research, 30(7), 1968–1974. https://doi.org/10.1519/JSC.0000000000001284

Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. Journal of Strength and Conditioning Research, 31(7), 1897–1904. https://doi.org/10.1519/JSC.0000000000001657

Bautista, I. J., Chirosa, I. J., Chirosa, L. J., Martín, I., González, A., & Robertson, R. J. (2014). Development and Validity of a Scale of Perception of Velocity in Resistance Exercise. Journal of Sports Science & Medicine, 13(3), 542–549.

Bautista, I. J., Chirosa, I. J., Robinson, J. E., Chirosa, L. J., & Martínez, I. (2016). Concurrent Validity of a Velocity Perception Scale to Monitor Back Squat Exercise Intensity in Young Skiers. The Journal of Strength & Conditioning Research, 30(2), 421–429. https://doi.org/10.1519/JSC.0000000000001112

Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. The R Journal, 10(1), 395. https://doi.org/10.32614/RJ-2018-017

Cumming, G. (2014). The New Statistics: Why and How. Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966

Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. The Journal of Strength & Conditioning Research, 34(1), 46–53. https://doi.org/10.1519/JSC.0000000000003089

Gantois, P., Nakamura, F. Y., Alcazar, J., Fortes, L. de S., Pareja-Blanco, F., & Fonseca, F. de S. (2021). The effects of different intra-set velocity loss thresholds on lower-limb adaptations to resistance training in young adults: A systematic review and meta-analysis. SportRxiv. https://doi.org/10.31236/osf.io/v3tr9

Gardner, M. J., & Altman, D. G. (1986). Confidence intervals rather than P values: Estimation rather than hypothesis testing. British Medical Journal (Clinical Research Ed.), 292(6522), 746–750.

Kay, M. (2021). tidybayes: Tidy Data and Geoms for Bayesian Models. Zenodo. https://doi.org/10.5281/zenodo.5138624

Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206. https://doi.org/10.3758/s13423-016-1221-4

Lagally, K. M., & Costigan, E. M. (2004). Anchoring Procedures in Reliability of Ratings of Perceived Exertion during Resistance Exercise. Perceptual and Motor Skills, 98(3_suppl), 1285–1295. https://doi.org/10.2466/pms.98.3c.1285-1295

Lakens, D. (2021). Sample Size Justification. PsyArXiv. https://doi.org/10.31234/osf.io/9d3yf

Lazarus, A., Halperin, I., Vaknin, G. J., & Dello Iacono, A. (2021). Perception of changes in bar velocity as a resistance training monitoring tool for athletes. Physiology & Behavior, 231, 113316. https://doi.org/10.1016/j.physbeh.2021.113316

Lenth, R. V., Buerkner, P., Herve, M., Love, J., Riebl, H., & Singmann, H. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means (1.6.2-1). https://CRAN.R-project.org/package=emmeans

Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., Morán-Navarro, R., González-Badillo, J. J., & Pallarés, J. G. (2020). Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLOS ONE, 15(6), e0232465. https://doi.org/10.1371/journal.pone.0232465

McGuigan, M. R. M., & Wilson, B. D. (1996). Biomechanical Analysis of the Deadlift. The Journal of Strength & Conditioning Research, 10(4), 250–255.

McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). Abandon Statistical Significance. The American Statistician, 73(sup1), 235–245. https://doi.org/10.1080/00031305.2018.1527253

Mengersen, K. L., Drovandi, C. C., Robert, C. P., Pyne, D. B., & Gore, C. J. (2016). Bayesian Estimation of Small Effects in Exercise and Sports Science. PLOS ONE, 11(4), e0147311. https://doi.org/10.1371/journal.pone.0147311

Noble, B. J., & Robertson, R. J. (1996). Perceived exertion. Human Kinetics.

Orange, S. T., Hritz, A., Pearson, L., Jeffries, O., Jones, T. W., & Steele, J. (2022). Comparison of the effects of velocity-based vs. traditional resistance training methods on adaptations in strength, power, and sprint speed: A systematic review, meta-analysis, and quality of evidence appraisal. Journal of Sports Sciences, 0(0), 1–15. https://doi.org/10.1080/02640414.2022.2059320

Pareja-Blanco, F., Alcazar, J., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., Rodriguez-Lopez, C., Hidalgo-de Mora, J., Sánchez-Moreno, M., Bachero-Mena, B., Alegre, L. M., & Ortega-Becerra, M. (2020). Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scandinavian Journal of Medicine & Science in Sports, 30(11), 2154–2166. https://doi.org/10.1111/sms.13775

Pareja‐Blanco, F., Rodríguez‐Rosell, D., Sánchez‐Medina, L., Sanchis‐Moysi, J., Dorado, C., Mora‐Custodio, R., Yáñez‐García, J. M., Morales‐Alamo, D., Pérez‐Suárez, I., Calbet, J. a. L., & González‐Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678

Pedersen, T. L. (2020). patchwork: The Composer of Plots (1.1.1). https://CRAN.R-project.org/package=patchwork

Pinheiro, J., & Bates, D. (2000). Mixed-Effects Models in S and S-PLUS. Springer-Verlag. https://doi.org/10.1007/b98882

Richens, B., & Cleather, D. J. (2014). The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biology of Sport, 31(2), 157–161. https://doi.org/10.5604/20831862.1099047

Romagnoli, R., & Piacentini, M. F. (2022). Perception of Velocity during Free-Weight Exercises: Difference between Back Squat and Bench Press. Journal of Functional Morphology and Kinesiology, 7(2), 34. https://doi.org/10.3390/jfmk7020034

Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine and Science in Sports and Exercise, 43(9), 1725–1734. https://doi.org/10.1249/MSS.0b013e318213f880

Sindiani, M., Lazarus, A., Iacono, A. D., & Halperin, I. (2020). Perception of changes in bar velocity in resistance training: Accuracy levels within and between exercises. Physiology & Behavior, 224, 113025. https://doi.org/10.1016/j.physbeh.2020.113025

Thompson, S. W., Rogerson, D., Dorrell, H. F., Ruddock, A., & Barnes, A. (2020). The Reliability and Validity of Current Technologies for Measuring Barbell Velocity in the Free-Weight Back Squat and Power Clean. Sports (Basel, Switzerland), 8(7). https://doi.org/10.3390/sports8070094

Thompson, S. W., Rogerson, D., Ruddock, A., Banyard, H. G., & Barnes, A. (2021). Pooled Versus Individualized Load–Velocity Profiling in the Free-Weight Back Squat and Power Clean. International Journal of Sports Physiology and Performance, 16(6), 825–833. https://doi.org/10.1123/ijspp.2020-0534

van den Tillaar, R., & Ball, N. (2020). Push-Ups are Able to Predict the Bench Press 1-RM and Constitute an Alternative for Measuring Maximum Upper Body Strength Based on Load-Velocity Relationships. Journal of Human Kinetics, 73, 7–18. https://doi.org/10.2478/hukin-2019-0133

Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-Based Training: From Theory to Application. Strength & Conditioning Journal, 43(2), 31–49. https://doi.org/10.1519/SSC.0000000000000560

Weakley, J., Ramirez-Lopez, C., McLaren, S., Dalton-Barron, N., Weaving, D., Jones, B., Till, K., & Banyard, H. (2020). The Effects of 10%, 20%, and 30% Velocity Loss Thresholds on Kinetic, Kinematic, and Repetition Characteristics During the Barbell Back Squat. International Journal of Sports Physiology and Performance, 15(2), 180–188. https://doi.org/10.1123/ijspp.2018-1008

Weakley, J., Wilson, K., Till, K., Banyard, H., Dyson, J., Phibbs, P., Read, D., & Jones, B. (2020). Show Me, Tell Me, Encourage Me: The Effect of Different Forms of Feedback on Resistance Training Performance. The Journal of Strength & Conditioning Research, 34(11), 3157–3163. https://doi.org/10.1519/JSC.0000000000002887

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4

Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for Analysis of Variance. Journal of the Royal Statistical Society. Series C (Applied Statistics), 22(3), 392–399. https://doi.org/10.2307/2346786

Yarkoni, T. (2020). The generalizability crisis. Behavioral and Brain Sciences, 1–37. https://doi.org/10.1017/S0140525X20001685

Posted

2022-09-30