Preprint / Version 1

Adaptations to Low–Load Resistance Training with Blood-Flow Restriction

A Pilot Study


  • Lewis J Macgregor University of Stirling
  • Valerio Biancone



Blood flow restriction, Resistance training, strength, hypertrophy, Tensiomyography


Purpose: To assess early adaptations in strength, hypertrophy, and muscle contractile properties to resistance exercise using low loads with blood-flow restriction (BFR) compared to high loads, among novice resistance exercisers.
Methods: A convenience sample of seven healthy-active, but non-resistance trained individuals completed seven training sessions involving unilateral leg press and leg extension. One leg was trained using low-load (40% of 1-RM) with BFR, the other was trained using high-load (80% of 1-RM). Pre- and post-training: 1-RM leg press and leg extension, and MVC knee extension were measured to assess strength; and thigh circumference and volume were measured to estimate quadriceps mass. Tensiomyography was used to measure muscle stiffness and contraction velocity of vastus lateralis pre-, mid- (before the fourth training session), and post-training.
Results: Leg extension 1-RM (P = 0.001), knee extension MVC (P = 0.019), and thigh circumference (P = 0.001) and volume (P = 0.001) increased following both resistance training conditions. Leg press 1-RM (P = 0.103) and vastus lateralis stiffness (P = 0.483) and contraction velocity (P = 0.585) did not change with training. There were no differences between conditions nor interactions between condition and time for any variable.
Conclusion: Seven resistance training sessions increased strength and markers of muscle mass. Greater relative demand of leg extension exercise may explain the improved 1-RM and knee extension MVC observed, while leg press 1-RM remained unchanged. Similar early adaptations to resistance exercise may be achieved using relatively low loads accompanied by BFR. These findings may be useful in instances when exercising with higher loads is undesirable.


American College of Sports Medicine. (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and science in sports and exercise, 41(3), 687-708. doi: 10.1249/MSS.0b013e3181915670

Schoenfeld, B. J., Grgic, J., Ogborn, D., & Krieger, J. W. (2017). Strength and hypertrophy adaptations between low-vs. high-load resistance training: a systematic review and meta-analysis. The Journal of Strength & Conditioning Research, 31(12), 3508-3523. doi: 10.1519/JSC.0000000000002200

Sale DG. (1988). Neural adaptation to resistance training. Medicine and science in sports and exercise, 20(5), S135-145. doi: 10.1249/00005768-198810001-00009

Suchomel, T. J., Nimphius, S., Bellon, C. R., & Stone, M. H. (2018). The importance of muscular strength: training considerations. Sports medicine, 48(4), 765-785. doi: 10.1007/s40279-018-0862-z

Beynnon, B. D., Uh, B. S., Johnson, R. J., Abate, J. A., Nichols, C. E., Fleming, B. C., ... & Roos, H. (2005). Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals. The American journal of sports medicine, 33(3), 347-359. doi: 10.1177/0363546504268406

Richardson, D. L., Duncan, M. J., Jimenez, A., Jones, V. M., Juris, P. M., & Clarke, N. D. (2018). The perceptual responses to high-velocity, low-load and low-velocity, high-load resistance exercise in older adults. Journal of sports sciences, 36(14), 1594-1601. doi: 10.1080/02640414.2017.1405710

Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of applied physiology. doi: 10.1152/jappl.2000.88.6.2097

Hughes, L., Rosenblatt, B., Haddad, F., Gissane, C., McCarthy, D., Clarke, T., ... & Patterson, S. D. (2019). Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service Randomised Controlled Trial. Sports Medicine, 49(11), 1787-1805. doi: 10.1007/s40279-019-01137-2

Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. British journal of sports medicine, 51(13), 1003-1011. doi: 10.1136/bjsports-2016-097071

Slysz, J., Stultz, J., & Burr, J. F. (2016). The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. Journal of science and medicine in sport, 19(8), 669-675. doi: 10.1016/j.jsams.2015.09.005

Pignanelli, C., Christiansen, D., & Burr, J. F. (2021). Blood flow restriction training and the high-performance athlete: science to application. Journal of Applied Physiology. doi: 10.1152/japplphysiol.00982.2020

Del Vecchio, A., Casolo, A., Negro, F., Scorcelletti, M., Bazzucchi, I., Enoka, R., ... & Farina, D. (2019). The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. The Journal of physiology, 597(7), 1873-1887. doi: 10.1113/JP277250

Damas, F., Phillips, S. M., Lixandrão, M. E., Vechin, F. C., Libardi, C. A., Roschel, H., ... & Ugrinowitsch, C. (2016). Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. European journal of applied physiology, 116(1), 49-56. doi: 10.1007/s00421-015-3243-4

Cook, S. B., Scott, B. R., Hayes, K. L., & Murphy, B. G. (2018). Neuromuscular adaptations to low-load blood flow restricted resistance training. Journal of sports science & medicine, 17(1), 66. PMID: 29535579

Aagaard, P., Andersen, J. L., Dyhre‐Poulsen, P., Leffers, A. M., Wagner, A., Magnusson, S. P., ... & Simonsen, E. B. (2001). A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. The journal of physiology, 534(2), 613-623. doi: 10.1111/j.1469-7793.2001.t01-1-00613.x

Blazevich, A. J., Gill, N. D., Bronks, R., & Newton, R. U. (2003). Training-specific muscle architecture adaptation after 5-wk training in athletes. Medicine and science in sports and exercise, 35(12), 2013-2022. doi: 10.1249/01.MSS.0000099092.83611.20

Seynnes, O. R., de Boer, M., & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of applied physiology, 102(1), 368-373. doi: 10.1152/japplphysiol.00789.2006

Campbell, E. L., Seynnes, O. R., Bottinelli, R., McPhee, J. S., Atherton, P. J., Jones, D. A., ... & Narici, M. V. (2013). Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology, 14(3), 247-259. doi: 10.1007/s10522-013-9427-6

Vieira, A., Blazevich, A., Souza, N., Celes, R., Alex, S., Tufano, J. J., & Bottaro, M. (2018). Acute changes in muscle thickness and pennation angle in response to work-matched concentric and eccentric isokinetic exercise. Applied Physiology, Nutrition, and Metabolism, 43(10), 1069-1074. doi: 10.1139/apnm-2018-0055

Macgregor, L. J., Hunter, A. M., Orizio, C., Fairweather, M. M., & Ditroilo, M. (2018). Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Medicine, 48(7), 1607-1620. doi: 10.1007/s40279-018-0912-6

Wilson, M. T., Ryan, A. M., Vallance, S. R., Dias-Dougan, A., Dugdale, J. H., Hunter, A. M., ... & Macgregor, L. J. (2019). Tensiomyography derived parameters reflect skeletal muscle architectural adaptations following 6-weeks of lower body resistance training. Frontiers in physiology, 10, 1493. doi: 10.3389/fphys.2019.01493

Valenčič, V., & Knez, N. (1997). Measuring of skeletal muscles' dynamic properties. Artificial organs, 21(3), 240-242. doi: 10.1111/j.1525-1594.1997.tb04658.x

Labata-Lezaun, N., López-de-Celis, C., Llurda-Almuzara, L., González-Rueda, V., Cadellans-Arróniz, A., & Pérez-Bellmunt, A. (2020). Correlation between maximal radial muscle displacement and stiffness in gastrocnemius muscle. Physiological Measurement, 41(12), 125013. doi: 10.1088/1361-6579/abcdf4

Rusu, L. D., Cosma, G. G., Cernaianu, S. M., Marin, M. N., Rusu, P. A., Ciocănescu, D. P., & Neferu, F. N. (2013). Tensiomyography method used for neuromuscular assessment of muscle training. Journal of neuroengineering and rehabilitation, 10(1), 1-8. doi: 10.1186/1743-0003-10-67

Macgregor, L. J., Ditroilo, M., Smith, I. J., Fairweather, M. M., & Hunter, A. M. (2016). Reduced radial displacement of the gastrocnemius medialis muscle after electrically elicited fatigue. Journal of sport rehabilitation, 25(3), 241-247. doi: 10.1123/jsr.2014-0325

Loturco, I., Gil, S., de Souza Laurino, C. F., Roschel, H., Kobal, R., Abad, C. C. C., & Nakamura, F. Y. (2015). Differences in muscle mechanical properties between elite power and endurance athletes: a comparative study. The Journal of Strength & Conditioning Research, 29(6), 1723-1728. doi: 10.1519/JSC.0000000000000803

de Paula Simola, R. Á., Raeder, C., Wiewelhove, T., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2016). Muscle mechanical properties of strength and endurance athletes and changes after one week of intensive training. Journal of Electromyography and Kinesiology, 30, 73-80. doi: 10.1016/j.jelekin.2016.05.005

Šimunič, B., Pišot, R., Rittweger, J., & Degens, H. (2018). Age-related slowing of contractile properties differs between power, endurance, and nonathletes: a tensiomyographic assessment. The Journals of Gerontology: Series A, 73(12), 1602-1608. doi: 10.1093/gerona/gly069

Valenčič, V., Knez, N., & Šimunič, B. (2001). Tensiomyography: detection of skeletal muscle response by means of radial muscle belly displacement. Biomedical Engineering, 1, 1-10.

Dahmane, R., Djordjevič, S., & Smerdu, V. (2006). Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods. Medical and Biological Engineering and Computing, 44(11), 999-1006. doi: 10.1007/s11517-006-0114-5

Šimunič, B., Degens, H., Rittweger, J., Narici, M., Mekjavic, I., & Pisot, R. (2011). Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Medicine and science in sports and exercise, 43(9), 1619-1625. doi: 10.1249/MSS.0b013e31821522d0

Šimunič, B., Koren, K., Rittweger, J., Lazzer, S., Reggiani, C., Rejc, E., ... & Degens, H. (2019). Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. Journal of applied physiology, 126(4), 815-822. doi: 10.1152/japplphysiol.00880.2018

Wilson, H., Johnson, M. I., & Francis, P. (2017). Contractile rate of muscle displacement estimated from the slope of the displacement-time curve using tensiomyography. Advances in Skeletal Muscle Function Assessment, 1(8), 3-8.

Sung, E., Han, A., Hinrichs, T., Vorgerd, M., Manchado, C., & Platen, P. (2014). Effects of follicular versus luteal phase-based strength training in young women. SpringerPlus 3, 668. doi: 10.1186/2193-1801-3-668

Staron, R. S., Malicky, E. S., Leonardi, M. J., Falkel, J. E., Hagerman, F. C., & Dudley, G. A. (1990). Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. European journal of applied physiology and occupational physiology, 60(1), 71-79. doi: 10.1007/BF00572189

Barenie, M. J., Domenick, J. T., Bennett, J. E., Schweitzer, G. G., Shetty, P., & Weiss, E. P. (2020). Short Term High-Repetition Back Squat Protocol Does Not Improve 5-km Run Performance. International Journal of Exercise Science, 13(7), 1770. PMID: 33414887

Macgregor, L. J., Fairweather, M. M., Bennett, R. M., & Hunter, A. M. (2018). The effect of foam rolling for three consecutive days on muscular efficiency and range of motion. Sports Medicine-Open, 4(1), 1-9. doi: 10.1186/s40798-018-0141-4

Halperin, I., Pyne, D. B., Martin, D. T. (2015) Threats to internal validity in exercise science: a review of overlooked confounding variables. Int J Sports Physiol Perform, 10(7), 823–9. doi: 10.1123/ijspp.2014-0566

Balshaw, T. G., Hunter, A. M. (2012) Evaluation of electromyography normalisation methods for the back squat. J Electromyogr Kinesiol, 22(2), 308–19. doi: 10.1016/j.jelekin.2011.11.009

Katch, V. L., & Katch, F. I. (1974). A simple anthropometric method for calculating segmental leg limb volume. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 45(2), 211-214. PMID: 4523841

Patterson, S. D., & Ferguson, R. (2010). Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. European journal of applied physiology, 108(5), 1025-1033. doi: 10.1007/s00421-009-1309-x

Kubo, K., Komuro, T., Ishiguro, N., Tsunoda, N., Sato, Y., Ishii, N., ... & Fukunaga, T. (2006). Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. Journal of applied biomechanics, 22(2), 112-119. doi: 10.1123/jab.22.2.112

Maffiuletti, N. A., Aagaard, P., Blazevich, A. J., Folland, J., Tillin, N., & Duchateau, J. (2016). Rate of force development: physiological and methodological considerations. European journal of applied physiology, 116(6), 1091-1116. doi: 10.1007/s00421-016-3346-6

Gabriel, D. A., Kamen, G., & Frost, G. (2006). Neural adaptations to resistive exercise. Sports medicine, 36(2), 133-149. doi: 10.2165/00007256-200636020-00004

Häkkinen, K., Kallinen, M., Linnamo, V., Pastinen, U. M., Newton, R. U., & Kraemer, W. J. (1996). Neuromuscular adaptations during bilateral versus unilateral strength training in middle‐aged and elderly men and women. Acta Physiologica Scandinavica, 158(1), 77-88. doi: 10.1046/j.1365-201X.1996.523293000.x

Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., CF, K., Inoue, K., ... & Ishii, N. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research, 1(1), 6-12. doi: 10.3806/ijktr.1.6

Takarada, Y., Nakamura, Y., Aruga, S., Onda, T., Miyazaki, S., & Ishii, N. (2000). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of applied physiology, 88(1), 61-65. doi: 10.1152/jappl.2000.88.1.61

Reeves, G. V., Kraemer, R. R., Hollander, D. B., Clavier, J., Thomas, C., Francois, M., & Castracane, V. D. (2006). Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of applied physiology, 101(6), 1616-1622. doi: 10.1152/japplphysiol.00440.2006

West, D. W., Kujbida, G. W., Moore, D. R., Atherton, P., Burd, N. A., Padzik, J. P., ... & Phillips, S. M. (2009). Resistance exercise‐induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. The Journal of physiology, 587(21), 5239-5247. doi: 10.1113/jphysiol.2009.177220

Fujita, S., Abe, T., Drummond, M. J., Cadenas, J. G., Dreyer, H. C., Sato, Y., ... & Rasmussen, B. B. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of applied physiology. doi: 10.1152/japplphysiol.00195.2007

García-García, O., Cancela-Carral, J. M., Martínez-Trigo, R., & Serrano-Gómez, V. (2013). Differences in the contractile properties of the knee extensor and flexor muscles in professional road cyclists during the season. The Journal of Strength & Conditioning Research, 27(10), 2760-2767. doi: 10.1519/JSC.0b013e31828155cd

Hughes, D. C., Wallace, M. A., & Baar, K. (2015). Effects of aging, exercise, and disease on force transfer in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 309(1), E1-E10. doi: 10.1152/ajpendo.00095.2015

Zubac, D., & Šimunič, B. (2017). Skeletal muscle contraction time and tone decrease after 8 weeks of plyometric training. The Journal of Strength & Conditioning Research, 31(6), 1610-1619. doi: 10.1519/JSC.0000000000001626

Behm, D. G., & Sale, D. G. (1993). Velocity specificity of resistance training. Sports medicine, 15(6), 374-388. doi: 10.2165/00007256-199315060-00003

Blazevich, A. J., Horne, S., Cannavan, D., Coleman, D. R., & Aagaard, P. (2008). Effect of contraction mode of slow‐speed resistance training on the maximum rate of force development in the human quadriceps. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 38(3), 1133-1046. doi: 10.1002/mus.21021