DOI of the published article https://doi.org/10.1152/jn.00462.2022
Intrinsic motor neurone excitability is increased after resistance training in older adults
DOI:
https://doi.org/10.51224/SRXIV.144Keywords:
Persistent Inward Currents, Motor Unit, Strength Training, AgingAbstract
This study investigated the effects of high-intensity resistance training on estimates of the motor neurone persistent inward current (PIC) in older adults. Seventeen participants (68.5±2.8 years) completed a 2-week non-exercise control period followed by 6 weeks of resistance training. Surface electromyographic signals were collected using two 32-channel electrodes placed over soleus to investigate motor unit discharge rates. Paired-motor unit analysis was used to calculate delta frequency (ΔF) as an estimate of PIC amplitudes during (a) triangular-shaped contractions to 20% of maximum torque capacity, and (b) trapezoidal- and triangular-shaped contractions to 20% and 40% of maximum torque capacity, respectively, to understand their ability to modulate PICs as contraction intensity increases. Maximal strength and functional capacity tests were also assessed. For the 20% triangular-shaped contractions, ΔF (0.58-0.87 pps; p≤0.015) and peak discharge rates (0.78-0.99 pps; p≤0.005) increased after training, indicating increased PIC amplitude. PIC modulation also improved after training. During the control period, mean ΔF differences between 20% trapezoidal- and 40% triangular-shaped contractions were 0.09-0.18 pps (p=0.448 and 0.109, respectively), which increased to 0.44 pps (p<0.001) after training. Also, moderate-to-very large correlations (r=0.39-0.82) were observed between changes in 20% triangular-shaped contraction ΔF and changes in peak discharge rates and broad measures of motor function. Our findings indicate, for the first time, that increased motor neurone excitability is a potential mechanism underpinning training-induced improvements in motor neurone discharge rate, strength, and motor function in older adults. This increased excitability is likely mediated by enhanced PIC amplitudes, which are larger at higher contraction intensities.
Metrics
References
Afsharipour, B., Manzur, N., Duchcherer, J., Fenrich, K. F., Thompson, C. K., Negro, F., Quinlan, K. A., Bennett, D. J., & Gorassini, M. A. (2020). Estimation of self-sustained activity produced by persistent inward currents using firing rate profiles of multiple motor units in humans. Journal of Neurophysiology, 124(1), 63–85. https://doi.org/10.1152/jn.00194.2020
Alcazar, J., Alegre, L. M., Van Roie, E., Magalhães, J. P., Nielsen, B. R., González-Gross, M., Júdice, P. B., Casajús, J. A., Delecluse, C., Sardinha, L. B., Suetta, C., & Ara, I. (2021). Relative sit-to-stand power: aging trajectories, functionally relevant cut-off points, and normative data in a large European cohort. Journal of Cachexia, Sarcopenia and Muscle, 12(4), 921–932. https://doi.org/10.1002/jcsm.12737
Antonio, J., Kenyon, M., Ellerbroek, A., Carson, C., Burgess, V., Tyler-Palmer, D., Mike, J., Roberts, J., Angeli, G., & Peacock, C. (2019). Comparison of dual-energy x-ray absorptiometry (DXA) versus a multi-frequency bioelectrical impedance (InBody 770) device for body composition assessment after a 4-week hypoenergetic diet. Journal of Functional Morphology and Kinesiology, 4(2). https://doi.org/10.3390/jfmk4020023
Arnold, P., & Bautmans, I. (2014). The influence of strength training on muscle activation in elderly persons: A systematic review and meta-analysis. Experimental Gerontology, 58C, 58–68. https://doi.org/10.1016/j.exger.2014.07.012
Bakdash, J. Z., & Marusich, L. R. (2017). Repeated measures correlation. Frontiers in Psychology, 8(MAR), 1–13. https://doi.org/10.3389/fpsyg.2017.00456
Barry, B. K., Pascoe, M. A., Jesunathadas, M., & Enoka, R. M. (2007). Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults. Journal of Neurophysiology, 97(5), 3206–3218. https://doi.org/10.1152/jn.01280.2006
Behan, M., Moeser, A. E., Thomas, C. F., Russell, J. A., Wang, H., Leverson, G. E., & Connor, N. P. (2012). The effect of tongue exercise on serotonergic input to the hypoglossal nucleus in young and old rats. Journal of Speech, Language, and Hearing Research, 55(3), 919–929. https://doi.org/10.1044/1092-4388(2011/11-0091)
Binder, M. D., Powers, R. K., & Heckman, C. J. (2020). Nonlinear Input-Output Functions of Motoneurons. Physiology (Bethesda, Md.), 35(1), 31–39. https://doi.org/10.1152/physiol.00026.2019
Blazevich, A. J., Cannavan, D., Coleman, D. R., & Horne, S. (2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. Journal of Applied Physiology (Bethesda, Md. : 1985), 103(5), 1565–1575. https://doi.org/10.1152/japplphysiol.00578.2007
Borde, R., Hortobágyi, T., & Granacher, U. (2015). Dose-Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis. Sports Medicine, 45(12), 1693–1720. https://doi.org/10.1007/s40279-015-0385-9
Brown, L. E., & Weir, J. P. (2001). ASEP procedure recommendation I: Accurate assessment of muscular strength and power. Journal of Exercise Physiology, 4(3), 1–21.
Byrne, C., Faure, C., Keene, D. J., & Lamb, S. E. (2016). Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions. Sports Medicine, 1–22. https://doi.org/10.1007/s40279-016-0489-x
Catterall, W. A. (1992). Cellular and molecular biology of voltage-gated sodium channels. Physiological Reviews, 72(4 SUPPL.). https://doi.org/10.1152/physrev.1992.72.suppl_4.s15
Christie, A., & Kamen, G. (2010). Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle and Nerve, 41(5), 651–660. https://doi.org/10.1002/mus.21539
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (N. J. : L. E. A. Hillsdale (ed.); 2nd ed.).
Csapo, R., & Alegre, L. M. (2016). Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 26(9), 995–1006. https://doi.org/10.1111/sms.12536
da Rosa Orssatto, L. B., de la Rocha Freitas, C., Shield, A. J., Silveira Pinto, R., Trajano, G. S., Orssatto, L. B. da R., Freitas, C. de la R., Shield, A. J., Pinto, R. S., & Trajano, G. S. (2019). Effects of resistance training concentric velocity on older adults’ functional capacity: A systematic review and meta-analysis of randomised trials. Experimental Gerontology, 127(May), 110731. https://doi.org/10.1016/j.exger.2019.110731
da Silva, M. E., Orssatto, L. B. da R., Bezerra, E. de S., Silva, D. A. S., Moura, B. M. de, Diefenthaeler, F., & Freitas, C. de la R. (2018). Reducing measurement errors during functional capacity tests in elders. Aging Clinical and Experimental Research, 30(6), 595–603. https://doi.org/10.1007/s40520-017-0820-x
Del Vecchio, A., Casolo, A., Negro, F., Scorcelletti, M., Bazzucchi, I., Enoka, R., Felici, F., & Farina, D. (2019). The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. Journal of Physiology, 597(7), 1873–1887. https://doi.org/10.1113/JP277250
Dias, J. A., Dal Pupo, J., Reis, D. C., Borges, L., Santos, S. G., Moro, A. R. P., & Borges, N. B. (2011). Validity of two methods for estimation of vertical jump height. Journal of Strength and Conditioning Research, 25(7), 2034–2039.
Erim, Z., Beg, M. F., Burke, D. T., & De Luca, C. J. (1999). Effects of aging on motor-unit control properties. Journal of Neurophysiology, 82(5), 2081–2091. https://doi.org/10.1152/jn.1999.82.5.2081
Figueiredo, V. C., de Salles, B. F., & Trajano, G. S. (2017). Volume for Muscle Hypertrophy and Health Outcomes: The Most Effective Variable in Resistance Training. Sports Medicine, 1–7. https://doi.org/10.1007/s40279-017-0793-0
Fling, B. W., Knight, C. A., & Kamen, G. (2009). Relationships between motor unit size and recruitment threshold in older adults: Implications for size principle. Experimental Brain Research, 197(2), 125–133. https://doi.org/10.1007/s00221-009-1898-y
Francic, A., & Holobar, A. (2021). On the Reuse of Motor Unit Filters in High Density Surface Electromyograms with Different Signal-to-Noise Ratios. Proc. of. T. Jarm et Al. (Eds.): EMBEC 2020, 1–9. https://doi.org/https://doi.org/10.1007/978-3-030-64610-3_103
Gardiner, P., Dai, Y., & Heckman, C. J. (2006). Effects of exercise training on α-motoneurons. Journal of Applied Physiology, 101(4), 1228–1236. https://doi.org/10.1152/japplphysiol.00482.2006
Gardiner, P. F. (2006). Changes in α-motoneuron properties with altered physical activity levels. Exercise and Sport Sciences Reviews, 34(2), 54–58. https://doi.org/10.1249/00003677-200604000-00003
Ge, R., & Dai, Y. (2020). Three-Week Treadmill Exercise Enhances Persistent Inward Currents, Facilitates Dendritic Plasticity, and Upregulates the Excitability of Dorsal Raphe Serotonin Neurons in ePet-EYFP Mice. Frontiers in Cellular Neuroscience, 14(October), 1–19. https://doi.org/10.3389/fncel.2020.575626
Gearhart, R. F., Lagally, K. M., Riechman, S. E., Andrews, R. D., & Robertson, R. J. (2009). Strength tracking using the OMNI resistance exercise scale in older men and women. Journal of Strength and Conditioning Research, 23(3), 1011–1015. https://doi.org/10.1519/JSC.0b013e3181a2ec41
Gorassini, M., Yang, J. F., Siu, M., & Bennett, D. J. (2002a). Intrinsic activation of human motoneurons: Possible contribution to motor unit excitation. Journal of Neurophysiology, 87(4), 1850–1858. https://doi.org/10.1152/jn.00024.2001
Gorassini, M., Yang, J. F., Siu, M., & Bennett, D. J. (2002b). Intrinsic activation of human motoneurons: Reduction of motor unit recruitment thresholds by repeated contractions. Journal of Neurophysiology, 87(4), 1859–1866. https://doi.org/10.1152/jn.00025.2001
Grgic, J., Lazinica, B., Schoenfeld, B. J., & Pedisic, Z. (2020). Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: a Systematic Review. Sports Medicine - Open, 6(1). https://doi.org/10.1186/s40798-020-00260-z
Hassan, A. S., Fajardo, M. E., Cummings, M., McPherson, L. M., Negro, F., Dewald, J. P. A., Heckman, C. J., & Pearcey, G. E. (2021). Estimates of persistent inward currents are reduced in upper limb motor units of older adults. The Journal of Physiology. https://doi.org/10.1113/jp282063
Hassan, A. S., Kim, E. H., Khurram, O. U., Cummings, M., Thompson, C. K., Miller McPherson, L., Heckman, C. J., Dewald, J. P. A., & Negro, F. (2019). Properties of Motor Units of Elbow and Ankle Muscles Decomposed Using High-Density Surface EMG. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 3874–3878. https://doi.org/10.1109/EMBC.2019.8857475
Hassan, A. S., Thompson, C. K., Negro, F., Cummings, M. Q., Powers, R. K., Heckman, C. J., Dewald, J., & McPherson, L. M. (2020). Impact of parameter selection on estimates of motoneuron excitability using paired motor unit analysis. Journal of Neural Engineering, 17. https://doi.org/10.1088/1741-2552/ab5eda
Heckman, C. J. (1994). Computer simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool. Journal of Neurophysiology, 71(5), 1727–1739. https://doi.org/10.1152/jn.1994.71.5.1727
Heckman, C. J., & Binder, M. D. (1991). Computer simulation of the steady-state input-output function of the cat medial gastrocnemius motoneuron pool. Journal of Neurophysiology, 65(4), 952–967. https://doi.org/10.1152/jn.1991.65.4.952
Heckman, C. J., & Enoka, R. M. (2012). Motor unit. Comprehensive Physiology, 2(4), 2629–2682. https://doi.org/10.1002/cphy.c100087
Heckman, C. J., Gorassini, M. A., & Bennett, D. J. (2005). Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle and Nerve, 31(2), 135–156. https://doi.org/10.1002/mus.20261
Hepple, R. T., & Rice, C. L. (2015). Innervation and neuromuscular control in ageing skeletal muscle. Journal of Physiology, 00, 1–14. https://doi.org/10.1113/jp270561
Hirsch, S. M., & Frost, D. M. (2021). Considerations for Velocity-Based Training: The Instruction to Move “As Fast As Possible” Is Less Effective Than a Target Velocity. Journal of Strength and Conditioning Research, 35(15), S89–S94. https://doi.org/10.1519/JSC.0000000000003233
Hodgkin, L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.
Holobar, A., Minetto, M. A., & Farina, D. (2014). Accurate identification of motor unit discharge patterns from high-density surface EMG and validation with a novel signal-based performance metric. Journal of Neural Engineering, 11(1). https://doi.org/10.1088/1741-2560/11/1/016008
Holobar, A., & Zazula, D. (2007). Multichannel blind source separation using convolution Kernel compensation. IEEE Transactions on Signal Processing, 55(9), 4487–4496. https://doi.org/10.1109/TSP.2007.896108
Huh, S., Siripuram, R., Lee, R. H., Turkin, V. V., O’Neill, D., Hamm, T. M., Heckman, C. J., & Manuel, M. (2017). PICs in motoneurons do not scale with the size of the animal: A possible mechanism for faster speed of muscle contraction in smaller species. Journal of Neurophysiology, 118(1), 93–102. https://doi.org/10.1152/jn.00045.2017
Johnson, M. D., & Heckman, C. J. (2014). Gain control mechanisms in spinal motoneurons. Frontiers in Neural Circuits, 8(JULY), 1–7. https://doi.org/10.3389/fncir.2014.00081
Kamen, G., & Knight, C. A. (2004). Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci, 59(12), 1334–1338. https://doi.org/10.1093/gerona/59.12.1334
Kim, E. H., Wilson, J. M., Thompson, C. K., & Heckman, C. J. (2020). Differences in Estimated Persistent Inward Currents Between Ankle Flexors and Extensors in Humans. Journal of Neurophysiology, 21(1), 1–9.
Klass, M., Baudry, S., & Duchateau, J. (2008). Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. Journal of Applied Physiology, 104(3), 739–746. https://doi.org/10.1152/japplphysiol.00550.2007
Ko, M. L., King, M. A., Gordon, T. L., & Crisp, T. (1997). The effects of aging on spinal neurochemistry in the rat. Brain Research Bulletin, 42(2), 95–98. https://doi.org/10.1016/S0361-9230(96)00216-X
Krutki, P., Hałuszka, A., Mrówczyński, W., Gardiner, P. F., & Celichowski, J. (2015). Adaptations of motoneuron properties to chronic compensatory muscle overload. Journal of Neurophysiology, 113(7), 2769–2777. https://doi.org/10.1152/jn.00968.2014
Krutki, P., Mrówczyński, W., Baczyk, M., Łochyński, D., & Celichowski, J. (2017). Adaptations of motoneuron properties after weight-lifting training in rats. Journal of Applied Physiology, 123(3), 664–673. https://doi.org/10.1152/japplphysiol.00121.2017
Kuo, J. J., Lee, R. H., Zhang, L., & Heckman, C. J. (2006). Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones. Journal of Physiology, 574(3), 819–834. https://doi.org/10.1113/jphysiol.2006.107094
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models . Journal of Statistical Software, 82(13). https://doi.org/10.18637/jss.v082.i13
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(NOV), 1–12. https://doi.org/10.3389/fpsyg.2013.00863
Lanza, M. B., Rock, K., Marchese, V., Addison, O., & Gray, V. L. (2021). Hip Abductor and Adductor Rate of Torque Development and Muscle Activation, but Not Muscle Size, Are Associated With Functional Performance. Frontiers in Physiology, 12(October). https://doi.org/10.3389/fphys.2021.744153
Latella, C. (2021). Pick me, Pick me! Rationale for investigating persistent inward currents (PICs) and associated exercise effects in the ageing neuromuscular system. Journal of Physiology, 599(7), 1957–1959. https://doi.org/10.1113/JP281324
Lee, R. H., & Heckman, C. J. (1998). Bistability in spinal motoneurons in vivo: Systematic variations in rhythmic firing patterns. Journal of Neurophysiology, 80(2), 572–582. https://doi.org/10.1152/jn.1998.80.2.572
Lee, R. H., & Heckman, C. J. (1999a). Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic α1 agonist methoxamine. Journal of Neurophysiology, 81(5), 2164–2174. https://doi.org/10.1152/jn.1999.81.5.2164
Lee, R. H., & Heckman, C. J. (1999b). Paradoxical effect of QX-314 on persistent inward currents and bistable behavior in spinal motoneurons in vivo. Journal of Neurophysiology, 82(5), 2518–2527. https://doi.org/10.1152/jn.1999.82.5.2518
Lee, R. H., & Heckman, C. J. (2000). Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. Journal of Neuroscience, 20(17), 6734–6740.
Lenth, R. V., Buerkner, P., Herve, M., Love, J., Riebl, H., & Singmann, H. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means - R package (1.5.4). https://github.com/rvlenth/emmeans
Li, Y., Gorassini, M. A., & Bennett, D. J. (2004). Role of Persistent Sodium and Calcium Currents in Motoneuron Firing and Spasticity in Chronic Spinal Rats. Journal of Neurophysiology, 91(2), 767–783. https://doi.org/10.1152/jn.00788.2003
Liu, K. Y., Acosta-Cabronero, J., Cardenas-Blanco, A., Loane, C., Berry, A. J., Betts, M. J., Kievit, R. A., Henson, R. N., Düzel, E., Howard, R., & Hämmerer, D. (2019). In vivo visualization of age-related differences in the locus coeruleus. Neurobiology of Aging, 74, 101–111. https://doi.org/10.1016/j.neurobiolaging.2018.10.014
Liu, K. Y., Kievit, R. A., Tsvetanov, K. A., Betts, M. J., Düzel, E., Rowe, J. B., Tyler, L. K., Brayne, C., Bullmore, E. T., Calder, A. C., Cusack, R., Dalgleish, T., Duncan, J., Henson, R. N., Matthews, F. E., Marslen-Wilson, W. D., Shafto, M. A., Campbell, K., Cheung, T., … Hämmerer, D. (2020). Noradrenergic-dependent functions are associated with age-related locus coeruleus signal intensity differences. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-15410-w
Manini, T. M., Hong, S. L., & Clark, B. C. (2013). Aging and muscle: a neuron’s perspective. Current Opinion in Clinical Nutrition & Metabolic Care, 16(1), 1–10. https://doi.org/10.1097/MCO.0b013e32835b5880.Aging
Michaud, M., Balardy, L., Moulis, G., Gaudin, C., Peyrot, C., Vellas, B., Cesari, M., & Nourhashemi, F. (2013). Proinflammatory cytokines, aging, and age-related diseases. Journal of the American Medical Directors Association, 14(12), 877–882. https://doi.org/10.1016/j.jamda.2013.05.009
Míguez, J. M., Aldegunde, M., Paz-Valiñas, L., Recio, J., & Sánchez-Barceló, E. (1999). Selective changes in the contents of noradrenaline, dopamine and serotonin in rat brain areas during aging. Journal of Neural Transmission, 106(11–12), 1089–1098. https://doi.org/10.1007/s007020050225
Naclerio, F., Rodríguez-Romo, G., Barriopedro-moro, M. I., Jiménez, A., Alvar, B. A., & Triplett, N. T. (2011). Control of resistance training intesity by the Omni perceived exertion scale. Journal of Strength and Conditioning Research, 25(7), 1879–1888.
Naufel, S., Glaser, J. I., Kording, K. P., Perreault, E. J., & Miller, L. E. (2019). A muscle-activity-dependent gain between motor cortex and emg. Journal of Neurophysiology, 121(1), 61–73. https://doi.org/10.1152/jn.00329.2018
Orssatto, L. B. da R., Bezerra, E. de S., Schoenfeld, B. J., & Diefenthaeler, F. (2020). Lean, fast and strong: Determinants of functional performance in the elderly. Clinical Biomechanics, Ahead of p, 103182. https://doi.org/10.1016/j.clinbiomech.2020.105073
Orssatto, L. B. da R., Wiest, M. J., & Diefenthaeler, F. (2018). Neural and musculotendinous mechanisms underpinning age-related force reductions. Mechanisms of Ageing and Development, 175(June), 17–23. https://doi.org/10.1016/j.mad.2018.06.005
Orssatto, L. B. R., Bezerra, E. de S., Shield, A. J., & Trajano, G. S. (2020). Is power training effective to produce muscle hypertrophy in older adults? A systematic review and meta-analysis. Applied Physiology, Nutrition, and Metabolism, 1–40. https://doi.org/10.1139/apnm-2020-0021
Orssatto, L. B. R., Borg, D. N., Blazevich, A. J., Sakugawa, R. L., Shield, A. J., & Trajano, G. S. (2021). Intrinsic motoneuron excitability is reduced in soleus and tibialis anterior of older adults. GeroScience, 43(6), 2719–2735. https://doi.org/10.1007/s11357-021-00478-z
Orssatto, L. B. R., Borg, D. N., Pendrith, L., Blazevich, A. J., Shield, A. J., & Trajano, G. S. (2022). Do motoneuron discharge rates slow with aging? A systematic review and meta-analysis. Mechanisms of Ageing and Development, In Print. https://doi.org/10.1016/j.mad.2022.111647
Orssatto, L. B. R., Mackay, K., Shield, A. J., Sakugawa, R. L., Blazevich, A. J., & Trajano, G. S. (2021). Estimates of persistent inward currents increase with the level of voluntary drive in low-threshold motor units of plantar flexor muscles. Journal of Neurophysiology, 125(5), 1746–1754. https://doi.org/10.1152/jn.00697.2020
Orssatto, L. B. R., Mesquita, R. N. O., & Phillips, K. M. (2021). Looking at the bigger PICture: Understanding and counteracting the decline of persistent inward currents in older adults. Journal of Physiology, 1–6. https://doi.org/10.1113/JP282370
Pascoe, M. A., Holmes, M. R., & Enoka, R. M. (2011). Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction. Journal of Neurophysiology, 105(2), 571–581. https://doi.org/10.1152/jn.00841.2010
Pearcey, G. E. P., Alizedah, S., Power, K. E., & Button, D. C. (2021). Chronic resistance training: is it time to rethink the time course of neural contributions to strength gain? European Journal of Applied Physiology, 121(9), 2413–2422. https://doi.org/10.1007/s00421-021-04730-4
Perkisas, S., Baudry, S., Bauer, J., Beckwée, D., De Cock, A. M., Hobbelen, H., Jager-Wittenaar, H., Kasiukiewicz, A., Landi, F., Marco, E., Merello, A., Piotrowicz, K., Sanchez, E., Sanchez-Rodriguez, D., Scafoglieri, A., Cruz-Jentoft, A., & Vandewoude, M. (2018). Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements. European Geriatric Medicine, 9(6), 739–757. https://doi.org/10.1007/s41999-018-0104-9
Peterson, M. D., Rhea, M. R., Sen, A., & Gordon, P. M. (2010). Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Research Reviews, 9(3), 226–237. https://doi.org/10.1016/j.arr.2010.03.004
Peterson, M. D., Sen, A., & Gordon, P. M. (2011). Influence of Resistance Exercise on Lean Body Mass in Aging Adults: A Meta-Analysis. Medicine & Science in Sports & Exercise, 43(2), 249–258. https://doi.org/10.1249/MSS.0b013e3181eb6265.Influence
Powers, R. K., & Heckman, C. J. (2015). Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: A simulation study. Journal of Neurophysiology, 114(1), 184–198. https://doi.org/10.1152/jn.00019.2015
Powers, R. K., Nardelli, P., & Cope, T. C. (2008). Estimation of the contribution of intrinsic currents to motoneuron firing based on paired motoneuron discharge records in the decerebrate cat. Journal of Neurophysiology, 100(1), 292–303. https://doi.org/10.1152/jn.90296.2008
Rozand, V., Sundberg, C. W., Hunter, S. K., & Smith, A. E. (2020). Age-related Deficits in Voluntary Activation: A Systematic Review and Meta-analysis. Medicine and Science in Sports and Exercise, 52(3), 549–560. https://doi.org/10.1249/MSS.0000000000002179
Schoenfeld, B. J., Nickerson, B. S., Wilborn, C. D., Urbina, S. L., Hayward, S. B., Krieger, J., Aragon, A. A., & Tinsley, G. M. (2020). Comparison of Multifrequency Bioelectrical Impedance vs. Dual-Energy X-ray Absorptiometry for Assessing Body Composition Changes After Participation in a 10-Week Resistance Training Program. Journal of Strength and Conditioning Research, 34(3), 678–688. https://doi.org/10.1519/JSC.0000000000002708
Shibata, E., Sasaki, M., Tohyama, K., Kanbara, Y., Otsuka, K., Ehara, S., & Sakai, A. (2006). Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magnetic Resonance in Medical Sciences, 5(4), 197–200. https://doi.org/10.2463/mrms.5.197
Steib, S., Schoene, D., & Pfeifer, K. (2010). Dose-response relationship of resistance training in older adults: A meta-analysis. Medicine and Science in Sports and Exercise, 42(5), 902–914. https://doi.org/10.1249/MSS.0b013e3181c34465
Stephenson, J. L., & Maluf, K. S. (2011). Dependence of the paired motor unit analysis on motor unit discharge characteristics in the human tibialis anterior muscle. Journal of Neuroscience Methods, 198(1), 84–92. https://doi.org/10.1016/j.jneumeth.2011.03.018
Suetta, C., Haddock, B., Alcazar, J., Noerst, T., Hansen, O. M., Ludvig, H., Kamper, R. S., Schnohr, P., Prescott, E., Andersen, L. L., Frandsen, U., Aagaard, P., Bülow, J., Hovind, P., & Simonsen, L. (2019). The Copenhagen Sarcopenia Study: lean mass, strength, power, and physical function in a Danish cohort aged 20–93 years. Journal of Cachexia, Sarcopenia and Muscle, 1–13. https://doi.org/10.1002/jcsm.12477
Trajano, G. S., Taylor, J. L., Orssatto, L. B. R., McNulty, C. R., & Blazevich, A. J. (2020). Passive muscle stretching reduces estimates of persistent inward current strength in soleus motor units. The Journal of Experimental Biology, 223(September), jeb.229922. https://doi.org/10.1242/jeb.229922
Udina, E., D’Amico, J., Bergquist, A. J., & Gorassini, M. A. (2010). Amphetamine increases persistent inward currents in human motoneurons estimated from paired motor-unit activity. Journal of Neurophysiology, 103(3), 1295–1303. https://doi.org/10.1152/jn.00734.2009
Van Cutsem, M., Duchateau, J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. Journal of Physiology, 513(1), 295–305. https://doi.org/10.1111/j.1469-7793.1998.295by.x
Vandenberk, M. S., & Kalmar, J. M. (2014). An evaluation of paired motor unit estimates of persistent inward current in human motoneurons. Journal of Neurophysiology, 111(9), 1877–1884. https://doi.org/10.1152/jn.00469.2013
Walker, S. (2021). Evidence of resistance training-induced neural adaptation in older adults. Experimental Gerontology, 151(May), 111408. https://doi.org/10.1016/j.exger.2021.111408
Yu, Z., Guindani, M., Grieco, S. F., Chen, L., Holmes, T. C., & Xu, X. (2021). Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron, 2021. https://doi.org/10.1016/j.neuron.2021.10.030
Downloads
Posted
License
Copyright (c) 2022 Lucas B R Orssatto, Patrick Rodrigues, Karen Mackay Phillips, Anthony J. Blazevich, David N. Borg, Tiago R Souza, Raphael L. Sakugawa, Anthony J. Shield, Gabriel S. Trajano
This work is licensed under a Creative Commons Attribution 4.0 International License.