This is an outdated version published on 2022-09-09. Read the most recent version.
Preprint / Version 2

Simulation of Steady-State Energy Metabolism in Cycling and Running

##article.authors##

  • Simon Nolte Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany https://orcid.org/0000-0003-1643-1860
  • Oliver Jan Quittmann Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
  • Volker Meden Institut für Theorie der Statistischen Physik, RWTH Aachen University, Aachen, Germany

DOI:

https://doi.org/10.51224/SRXIV.110

Keywords:

performance testing, vo2max, endurance diagnostics, maximum lactate steady-state, lactate metabolism

Abstract

Purpose: A mathematical model to describe the interplay of distinct metabolic rates during
exercise was developed decades ago. Despite its use in endurance performance diagnostics,
attempts to validate the model’s assumptions and predictions on experimental data are rare.
We here provide a comprehensive study for the steady state.
Methods: We rewrote the mathematical equations in the steady state and tested them on a
data set of N = 101 individuals derived from four studies in cycling and running.
Results: The rewritten equations reveal a unique relationship between the ratio of the
maximum oxygen uptake and the lactate accumulation rate, and the fractional utilization of
oxygen uptake at the maximum lactate steady-state. Experimental data for running do not
provide evidence that this relation holds. For cycling, the experimental evidence is less
devastating but can also not be considered as convincing.
Conclusion: The simulation in its current form is not suitable for a practical use in performance
diagnostics. Additional model layers and/or more precise methods of measurement may
improve the model’s performance, but require experimental validation.

Metrics

Metrics Loading ...

References

Adam, J., Öhmichen, M., Öhmichen, E., Rother, J., Müller, U. M., Hauser, T., & Schulz, H. (2015).

Reliability of the calculated maximal lactate steady state in amateur cyclists. Biology of

Sport, 32(2), 97–102. https://doi.org/10.5604/20831862.1134311

Barstow, T. J., Buchthal, S. D., Zanconato, S., & Cooper, D. M. (1994). Changes in potential

controllers of human skeletal muscle respiration during incremental calf exercise.

Journal of Applied Physiology (Bethesda, Md. : 1985), 77(5), 2169–2176.

https://doi.org/10.1152/jappl.1994.77.5.2169

Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and

determinants of endurance performance. Medicine and Science in Sports and Exercise,

(1), 70–84. https://doi.org/10.1097/00005768-200001000-00012

Bateman, H. (1910). Solution of a system of differential equations occurring in the theory of

radioactive transformations. Proc. Cambridge Phil. Soc., 15, 423–427.

Beneke, R. (2003). Methodological aspects of maximal lactate steady state-implications for

performance testing. European Journal of Applied Physiology, 89(1), 95–99.

https://doi.org/10.1007/s00421-002-0783-1

Beneke, R., Hütler, M., Jung, M., & Leithäuser, R. M. (2005). Modeling the blood lactate kinetics

at maximal short-term exercise conditions in children, adolescents, and adults. Journal

of Applied Physiology (Bethesda, Md. : 1985), 99(2), 499–504.

https://doi.org/10.1152/japplphysiol.00062.2005

Chance, B., & Williams, G. R. (1955). Respiratory enzymes in oxidative phosphorylation. I.

Kinetics of oxygen utilization. The Journal of Biological Chemistry, 217(1), 383–393.

Donovan, C. M., & Brooks, G. A. (1983). Endurance training affects lactate clearance, not lactate

production. The American Journal of Physiology, 244(1), E83-92.

https://doi.org/10.1152/ajpendo.1983.244.1.E83

Donovan, C. M., & Pagliassotti, M. J. (1990). Enhanced efficiency of lactate removal after

endurance training. Journal of Applied Physiology (Bethesda, Md. : 1985), 68(3), 1053–

https://doi.org/10.1152/jappl.1990.68.3.1053

Dyson, F. (2004). A meeting with Enrico Fermi. Nature, 427(6972), 297.

https://doi.org/10.1038/427297a

Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they?

Sports Medicine (Auckland, N.Z.), 39(6), 469–490. https://doi.org/10.2165/00007256-

-00003

Gladden, L. B. (2000). Muscle as a consumer of lactate. Medicine and Science in Sports and

Exercise, 32(4), 764–771. https://doi.org/10.1097/00005768-200004000-00008

Hauser, T. (2013). Untersuchungen zur Validität und Praktikabilität des mathematisch bestimmten

maximalen Laktat-steady-states bei radergometrischen Belastungen. TU-Chemnitz,

Chemnitz.

Hauser, T., Adam, J., & Schulz, H. (2014). Comparison of calculated and experimental power in

maximal lactate-steady state during cycling. Theoretical Biology & Medical Modelling,

:25. https://doi.org/10.1186/1742-4682-11-25

Holloszy, J. O., & Coyle, E. F. (1984). Adaptations of skeletal muscle to endurance exercise and

their metabolic consequences. Journal of Applied Physiology: Respiratory, Environmental

and Exercise Physiology, 56(4), 831–838. https://doi.org/10.1152/jappl.1984.56.4.831

Hommel, J., Öhmichen, S., Rudolph, U. M., Hauser, T., & Schulz, H. (2019). Effects of six-week

sprint interval or endurance training on calculated power in maximal lactate steady

state. Biology of Sport, 36(1), 47–54. https://doi.org/10.5114/biolsport.2018.78906

Howley, E. T., Bassett, D. R., & Welch, H. G. (1995). Criteria for maximal oxygen uptake: Review

and commentary. Medicine and Science in Sports and Exercise, 27(9), 1292–1301.

Katch, V. L., Sady, S. S., & Freedson, P. (1982). Biological variability in maximum aerobic power.

Medicine and Science in Sports and Exercise, 14(1), 21–25.

https://doi.org/10.1249/00005768-198201000-00004

Mader, A. (1984). Eine Theorie zur Berechnung der Dynamik und des steady state von

Phosphorylierungszustand und Stoffwechselaktivität der Muskelzelle als Folge des

Energiebedarfs [Habilitation]. Deutsche Sporthochschule Köln, Köln.

Mader, A. (1994). Modellbildung und Simulation biologischer Prozesse am Menschen - Ein

neues Instrument für Therorieentwicklung und Interpretation experimenteller Befunde.

In A. Mader & H. Allmer (Eds.), Brennpunkte der Sportwissenschaft: 8 (2).

Brennpunktthema: Computersimulation: Möglichkeiten zur Theoriebildung und

Ergebnisinterpretation (pp. 95–101). Academia-Verlag.

Mader, A. (2003). Glycolysis and oxidative phosphorylation as a function of cytosolic

phosphorylation state and power output of the muscle cell. European Journal of Applied

Physiology, 88(4-5), 317–338. https://doi.org/10.1007/s00421-002-0676-3

Mader, A., & Heck, H. (1986). A theory of the metabolic origin of "anaerobic threshold".

International Journal of Sports Medicine, 7 Suppl 1, 45–65.

Mader, A., & Heck, H. (1991). Möglichkeiten und Aufgaben in der Forschung und Praxis der

Humanleistungsphysiologie. Spectrum der Sportwissenschaften, 3(2), 5–54.

Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and

running: Lessons from triathletes. Sports Medicine (Auckland, N.Z.), 39(3), 179–206.

https://doi.org/10.2165/00007256-200939030-00002

Phillips, S. M., Green, H. J., Tarnopolsky, M. A., & Grant, S. M. (1995). Increased clearance of

lactate after short-term training in men. Journal of Applied Physiology (Bethesda, Md. :

, 79(6), 1862–1869. https://doi.org/10.1152/jappl.1995.79.6.1862

Quittmann, O. J., Abel, T., Zeller, S., Foitschik, T., & Strüder, H. K. (2018). Lactate kinetics in

handcycling under various exercise modalities and their relationship to performance

measures in able-bodied participants. European Journal of Applied Physiology, 118(7),

–1505. https://doi.org/10.1007/s00421-018-3879-y

Quittmann, O. J., Appelhans, D., Abel, T., & Strüder, H. K. (2020). Evaluation of a sport-specific

field test to determine maximal lactate accumulation rate and sprint performance

parameters in running. Journal of Science and Medicine in Sport, 23(1), 27–34.

https://doi.org/10.1016/j.jsams.2019.08.013

Quittmann, O. J., Foitschik, T., Vafa, R., Freitag, F., Spearmann, N., Nolte, S., & Abel, T. (unpubl. b).

Augmenting the metabolic profile in endurance running by maximal lactate

accumulation rate.

Quittmann, O. J., Schwarz, Y. M., Mester, J., Foitschik, T., Abel, T., & Strüder, H. K. (2020). Maximal

Lactate Accumulation Rate in All-out Exercise Differs between Cycling and Running.

International Journal of Sports Medicine. Advance online publication.

https://doi.org/10.1055/a-1273-7589

Quittmann, O. J., Schwarz, Y. M., Nolte, S., Fuchs, M., Gehlert, G., Slowig, Y., Schiffer, A.,

Foitschik, T., & Abel, T. (unpubl. a). Relationship between physiological parameters and

time trial performance over 1, 2 and 3 km in trained runners.

Sahlin, K. (2014). Muscle energetics during explosive activities and potential effects of nutrition

and training. Sports Medicine (Auckland, N.Z.), 44 Suppl 2, S167-73.

https://doi.org/10.1007/s40279-014-0256-9

Sjödin, B., Jacobs, I., & Svedenhag, J. (1982). Changes in onset of blood lactate accumulation

(OBLA) and muscle enzymes after training at OBLA. European Journal of Applied

Physiology and Occupational Physiology, 49(1), 45–57.

https://doi.org/10.1007/BF00428962

van Hall, G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta

Physiologica (Oxford, England), 199(4), 499–508. https://doi.org/10.1111/j.1748-

2010.02122.x

Veech, R. L., Lawson, J. W., Cornell, N. W., & Krebs, H. A. (1979). Cytosolic phosphorylation

potential. The Journal of Biological Chemistry, 254(14), 6538–6547.

Vickers, R. (2003). Measurement Error in Maximal Oxygen Uptake Tests. Naval Health Research

Center.

Weber, S. (2003). Berechnung leistungsbestimmender Parameter der metabolischen Aktivität auf

zellulärer Ebene mittels fahrradergometrischer Untersuchungen [Diplomarbeit]. Deutsche

Sporthochschule Köln, Köln.

Posted

2022-01-20 — Updated on 2022-09-09

Versions