Preprint / Version 2

Bayesian inference of the impulse-response model of athlete training and performance

##article.authors##

  • Kangyi Peng Department of Statistics and Actuarial Science, Simon Fraser University
  • Ryan T. Brodie
  • Tim B. Swartz
  • David C. Clarke Department of Biomedical Physiology and Kinesiology, Simon Fraser University

DOI:

https://doi.org/10.51224/SRXIV.246

Keywords:

athletic performance, mathematical modeling, Bayes Theorem, Banister impulse-response model, computer simulation, Bayesian data analysis

Abstract

The Banister impulse-response (IR) model quantitatively relates athletic performance to training. Despite its long history, the model usefulness remains limited due to difficulties in obtaining precise parameter estimates and performance predictions. To address these challenges, we developed a Bayesian implementation of the IR model, which formalizes the combined use of prior knowledge and data. We report the following methodological contributions: 1) we reformulated the model to facilitate the specification of informative priors, 2) we derived the IR model in Bayesian terms, and 3) we developed a method that enabled the JAGS software to be used while enforcing parameter constraints. We applied the model to the training and performance data of a national-class middle-distance runner. We specified the priors from published values of IR model parameters, followed by estimating the posterior distributions from the priors and the athlete’s data. The Bayesian approach led to more precise and plausible parameter estimates than nonlinear least squares. We then drew inferences from the Bayesian model regarding the athlete’s performance and showed how the method can be applied in perpetuity as new data are collected. We conclude that the Bayesian implementation of the IR model overcomes the foremost challenges to its usefulness for athlete monitoring.

References

Banister, E. W., Calvert, T. W., Savage, M. V., & Bach, T. M. (1975). A systems model of training for athletic performance. Australian Journal of Sports Medicine, 7(3), 57–61. https://doi.org/10.1109/TSMC.1976.5409179

Busso, T., & Thomas, L. (2006). Using mathematical modeling in training planning. International Journal of Sports Physiology and Performance, 1(4), 400–405. https://doi.org/10.1123/ijspp.1.4.400

Clarke, D. C., & Skiba, P. F. (2013). Rationale and resources for teaching the mathematical modeling of athletic training and performance. Advances in Physiology Education, 37(2), 134–152. https://doi.org/10.1152/advan.00078.2011

Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 54–75. Retrieved from http://www.jstor.org/stable/2245500

Gelman, A, Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC Press.

Gelman, Andrew, & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457–472.

Hecksteden, A., Forster, S., Egger, F., Buder, F., Kellner, R., & Meyer, T. (2022). Dwarfs on the Shoulders of Giants: Bayesian Analysis With Informative Priors in Elite Sports Research and Decision Making. Frontiers in Sports and Active Living, 4. https://doi.org/10.3389/fspor.2022.793603

Hellard, P., Avalos, M., Lacoste, L., Barale, F., Chatard, J. C., & Millet, G. P. (2006). Assessing the limitations of the Banister model in monitoring training. J Sports Sci, 24(5), 509–520. https://doi.org/10.1080/02640410500244697

Hopker, J., Griffin, J., Brookhouse, J., Peters, J., Schumacher, Y. O., & Iljukov, S. (2020). Performance profiling as an intelligence-led approach to antidoping in sports. Drug Testing and Analysis, 12(3), 402–409. https://doi.org/10.1002/dta.2748

Johnson, M. L., & Frasier, S. G. (1985). [16] Nonlinear least-squares analysis. In Methods in enzymology (Vol. 117, pp. 301–342). Elsevier. https://doi.org/10.1016/S0076-6879(85)17018-7

Manzi, V., Iellamo, F., Impellizzeri, F., D’Ottavio, S., & Castagna, C. (2009). Relation between Individualized Training Impulses and Performance in Distance Runners. Medicine and Science in Sports and Exercise, 41(11), 2090–2096. https://doi.org/10.1249/MSS.0b013e3181a6a959

Santos-Fernandez, E., Wu, P., & Mengersen, K. L. (2019). Bayesian statistics meets sports: a comprehensive review. Journal of Quantitative Analysis in Sports, 15(4), 289–312. https://doi.org/10.1515/jqas-2018-0106

Silva, R. M., & Swartz, T. B. (2016). Analysis of substitution times in soccer. Journal of Quantitative Analysis in Sports, 12(3), 113–122. https://doi.org/10.1515/jqas-2015-0114

Sottas, P.-E., Robinson, N., Rabin, O., & Saugy, M. (2011). The athlete biological passport. Clinical Chemistry, 57(7), 969–976. https://doi.org/10.1373/clinchem.2011.162271

Sottas, P.-E., Robinson, N., & Saugy, M. (2010). The Athlete’s Biological Passport and Indirect Markers of Blood Doping. In Doping in sports: Biochemical principles, effects and analysis. Handbook of Experimental Pharmacology, vol 195. (pp. 305–326). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-79088-4_14

van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., … Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1), 1–26. https://doi.org/10.1038/s43586-020-00001-2

Van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., Van Aken, M. A. G., … Van Aken, M. A. G. (2014). A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development, 85(3), 842–860. https://doi.org/10.1111/cdev.12169

Zhang, Z. (2016). Missing data imputation: focusing on single imputation. Annals of Translational Medicine, 4(1), 9. https://doi.org/10.3978%2Fj.issn.2305-5839.2015.12.38

Downloads

Posted

2023-01-23 — Updated on 2023-01-23

Versions