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ABSTRACT 
Autistic children and adults have known differences in motor performance, including postural 
instability and atypical gross motor control. Few studies have specifically tested dynamic 
postural control. This is the first study to quantify movement smoothness and its relationship 
to task performance during lateral dynamic postural control tasks in autism. We sought to test 
the hypothesis that autistic children would have less smooth movements to lateral static 
targets compared to neurotypical children, and that this difference would relate to specific 
movement strategies. We used camera-based motion-capture to measure spatiotemporal 
characteristics of lateral movement of a marker placed on the C7 vertebrae, and of markers 
comprising trunk and pelvis segments during a dynamic postural control task administered in 
an immersive virtual environment. We tested a sample of 15 autistic children and 11 age-
matched neurotypical children. We quantified movement smoothness using dimensionless jerk 
cost. Autistic children exhibited more medial-lateral pelvic position range of motion compared 
to neurotypical children, and used a stepping strategy more often compared to neurotypical 
children. Autistic children also had higher jerk cost than neurotypical children for motion of the 
C7 marker. All participants had higher jerk cost for far targets than for near targets. Autistic 
children had longer trial durations than neurotypical children, and younger children had longer 
trial durations than older children across diagnostic groups. The stepping strategy observed 
more often in the autistic group likely contributed to jerk cost and reduced movement 
smoothness. This strategy is indicative of either an attempt to prevent an impending loss of 
balance, or an attempt to compensate for and recover from a loss of balance once it is 
detected. Implications of results are discussed, specifically with respect to anticipatory, feed-
forward control of movement. 
 

INTRODUCTION 

Though not a current diagnostic feature of autism, motor differences have been noted 
both clinically and in research (for reviews, see Caçola et al., 2017; Heathcock et al., 2015; Lim 
et al., 2017; Ming et al., 2007). In some cases, autistic people meet criteria for a co-occurring 
diagnosis of Developmental Coordination Disorder (Green et al., 2009; Miller et al., 2021). 
Differences in perception of and responses to sensory input likely contribute to the core 
symptoms of ASD (Fulceri et al., 2019), including social communication (Cook, 2016; 
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Glazebrook, Elliott, & Szatmari, 2008; Leary & Hill, 1996), and may even rise to the level of a 
core feature or diagnostic specifier (Fournier et al., 2010; Leary & Hill, 1996; Whyatt & Craig, 
2013). 

Prior studies have identified motor differences in autistic compared to neurotypical 
participants during performance of gross motor tasks (Jansiewicz et al., 2006; Provost, Heimerl, 
& Lopez, 2007; Miller et al., 2021), postural stability tasks (Fournier et al., 2010; Miller et al., 
2019; Minshew et al., 2004), and locomotion (Bugnariu et al., 2013; Hallett et al., 1993; 
Vernazza-Martin et al., 2005). However, the mechanisms underlying motor differences remain 
unclear. Imaging studies have also identified atypical neural activations in areas of the brain 
related to eye movement and visual processing (Brenner, Turner, & Müller, 2007; Luna et al., 
2002; Takarae et al., 2007), and motor control (Mostofsky, Burgess, & Gidley Larson, 2007; 
Travers et al., 2017; Mosconi et al., 2015). It is possible that visuomotor integration 
mechanisms contribute to the broad range of motor differences observed in autism (Dowd et 
al., 2012; Miller et al., 2014; Williams, Whiten, & Singh, 2004; Mosconi et al., 2015; Wang et al., 
2015).  

A previous study established a relationship between smoothness of kinematic profiles 
and visual perception differences in autistic participants’ goal directed reaching (Cook et al., 
2013). Movement smoothness has previously been used as an index for motor performance in 
neurotypicality and neurodivergence (Ketcham et al., 2002; Platz et al., 1994; Rohrer et al., 
2002; Teulings et al., 1997). Smoothness is frequently quantified asjerk–the derivative of 
acceleration with respect to time (Hogan & Sternad, 2009). Other measures  (e.g., number of 
velocity peaks; Cirstea & Levin, 2000; Fetters & Todd, 1987) lack optimal sensitivity and 
robustness (Balasubramanian, Melendez-Calderon, & Burdet, 2012). The rationale for 
quantifying smoothness using jerk is rooted in the observation that many human movements 
are characterized by bell-shaped velocity curves (Cook, Blakemore, & Press, 2013; Flash & 
Hogan, 1985; Todorov & Jordan, 1998) and closely resemble trajectories predicted by 
minimum jerk and two-thirds power law equations (Flash & Hogan, 1985; Todorov & Jordan, 
1998). Normalized jerk metrics have been used to show differences in smoothness of 
movements between neurotypical and neurodivergent populations (Hogan & Sternad, 2009). 
The advantage of normalizing jerk to a dimensionless value is that signals of different duration 
and amplitude can be compared (Hogan and Sternad 2009). 

The aim of this study was to compare autistic and neurotypical children’s dynamic 
postural control, quantified as the smoothness of goal-directed medial-lateral movements to a 
static target. Specifically, we assessed derivatives of time-series kinematic data, including 
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velocity, acceleration, and jerk. We hypothesized that smoothness would be significantly 
disrupted in autism, reflecting atypical motor control. 

METHOD 

The study protocol and informed consent/assent procedures were approved by the North 
Texas Regional Institutional Review Board. Informed consent/assent procedures were 
completed by participants and their guardian(s) as appropriate based on age and capacity.  

Participants 

Participants included 15 autistic children (Male=13, Female=2; MAge=10.47 years, 
SDAge=1.77 years) and 11 neurotypical children (Male=7, Female=4; MAge=8.91 years, SDAge=1.58 
years).  

Participants were recruited from schools, community organizations, clinics, and 
advocacy groups via face-to-face interactions, e-mail, and social media. Recruitment ads did 
not specifically solicit autistic participants with motor problems. Participants and their 
guardian(s) completed a developmental and medical history. Potential participants were 
excluded if they had a comorbid genetic or neurological disorder, seizure disorder, history of 
brain injury, structural brain abnormality, prior concussion with loss of consciousness, or 
coordination difficulties due to a general medical condition (e.g., cerebral palsy, hemiplegia, 
muscular dystrophy). Individuals taking medications known to significantly affect motor 
functioning (e.g., benzodiazepines, antipsychotics) were excluded, but given the comorbidity of 
attention disorders and prevalence of stimulant use in autism (DeFlippis & Wagner 2016), we 
did not exclude participants reporting stimulant use.  

All autistic participants had a diagnosis assigned by a medical or educational 
professional based on the 4th or 5th edition of the Diagnostic and Statistical Manual of Mental 
Health Disorders (DSM; APA, 2000; 2013) and confirmed by the research team using the 
Autism Diagnostic Observation Schedule–Second Edition (ADOS-2; Lord et al., 2012). All 
participants had a non-verbal IQ score ≥ 70 confirmed by the research team using the 
Wechsler Abbreviated Scale of Intelligence–2nd edition (WASI-2; Wechsler, 2011). Participants in 
the neurotypical group had no prior history of developmental conditions and scored > 8 on the 
Social Communication Questionnaire (SCQ; Rutter, Bailey, & Lord, 2003), a conservative cutoff 
indicating no concern for autism. 
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Dynamic Postural Control Task 

Participants performed a dynamic postural control task in an immersive virtual 
environment (see Miller, Bugnariu, Patterson, Wijayasinghe & Popa, 2017 for detailed 
description of apparatus). In this task, participants were instructed to move a user-controlled 
object (blue ball, 29.21 cm in diameter) into a static target area referred to as the safe zone 
(green box, 31.75 cm wide). The user-controlled object was controlled by medial-lateral 
movement of a marker placed on the participant’s 7th cervical vertebrae (C7). The movement of 
the C7 marker was scaled by scaled by a factor of 5 when projected on the screen, such that a 
1 cm change in the medial-lateral position of the C7 marker resulted in a 5 cm change of the 
user-controlled object.  

Trials were classified as a “hit” if 70% of the user-controlled object was within the target 
area for 0.2 s. If 3 s elapsed without a successful hit, the safe zone disappeared. After each 
trial, the screen was then blank for 1s after which a central fixation cross appeared for 600 ms, 
prompting the participant to return to the starting position. The safe zones were located on 
either side of the participant (left or right) and at either 26.8 cm or 13.4 cm (far or near) away 
from the starting location (center). Four instances of each of these safe zone locations (a total 
of 16) were displayed in the virtual environment in a randomized order. After the last safe zone 
disappeared, the task ended.   

Data Collection and Processing 

28 reflective markers were placed on participants’ head, trunk, pelvis, and feet. 
Kinematic data were acquired from an 18-camera motion capture system at 120 Hz using 
Cortex software (Motion Analysis Corporation, Santa Rosa, CA, USA). Kinematic data were 
filtered using a fourth order low-pass Butterworth filter with cutoff frequency of 6 Hz. The 
filtered medial-lateral C7 position data was extracted from Cortex. Frontal plane trunk angle 
(trunk lean) and medial-lateral pelvis center-of-mass (COM) position were calculated using 
Visual3D (C-Motion, Inc., Germantown, MD, USA). Velocity, acceleration, and jerk profiles were 
calculated in MATLAB (Mathworks Inc., Natick, MA, USA) using first, second, and third order 
three-point derivatives, respective of the position and joint angle data. Each derivative profile 
was filtered with the same fourth order low-pass Butterworth filter with cutoff frequency of 6 
Hz. For trials when the safe zone appeared on the left, each data point (position, velocity, 
acceleration, and jerk profiles) was multiplied by -1, so that right- and left-side safe zones could 
be pooled for analysis.   
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Trial duration was calculated as elapsed time from safe zone onset to offset (either due 
to a “hit” or because the maximum 3s had elapsed). Each position, velocity, acceleration, and 
jerk profile was resampled to 101 points to represent 0-100% of the trial and grouped by 
diagnosis (autistic, neurotypical) and target distance (near, far).  
Movement smoothness was quantified as the natural logarithm of the normalized and 
integrated squared jerk of an entire trial (Equation 1), as in previous work (Dixon et al., 2018; 
Gulde & Hermsdörfer, 2018). The start and endpoint of a trial were defined as the safe zone 
onset and offset, respectively.  

𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = −𝑙𝑙𝑙𝑙 � (𝑡𝑡2−𝑡𝑡1)5

(𝑥𝑥(𝑡𝑡2)−𝑥𝑥(𝑡𝑡1))2 ∫ 𝑥𝑥𝑡𝑡2
𝑡𝑡1

(𝑡𝑡)2𝑑𝑑𝑑𝑑�    (1) 

Since trial duration was not held constant, and integrated squared jerk is sensitive to 
trial duration, it was important that this metric was normalized and converted to a 
dimensionless unit to make valid comparisons across trials (Hogan & Sternad, 2009). In 
addition, the natural logarithm brings the normalized and integrated squared jerk into the 
physiological range (Balasubramanian, Melendez-Calderon, & Burdet, 2012). 

Data Analysis 

Of the possible 416 trials available across the sample, 398 (95.7%) were included in 
analysis. Trials with durations shorter than 0.65 s were excluded because they were too short 
to represent volitional movement towards the target. These were either (1) trials in which the 
participant’s starting position was already inside the safe zone, or (2) trials in which the 
participant was already moving toward the safe zone at the start of the trial.  

Data were analyzed in a series of generalized mixed-effects models using the lme4 
package in R (version 4.1). Generalized linear mixed-effects models (GLMM) using Gamma 
distribution with a log link were used to regress trunk and pelvic range of motion (ROM) and 
jerk cost onto group (autistic, neurotypical), distance (near, far), and age (in months at the time 
of data collection) with a random intercept by participant. A GLMM using a binomial 
distribution with a logit link was used to regress the number of steps taken during a movement 
onto the fixed effects of group, distance, and age with a random intercept by participant. 
Effects were considered significant if p < 0.05, and b weights are reported in log or log odds 
scale, respectively.  
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Results 

Range of Motion 

Generalized linear mixed-effects models using Gamma distribution with a log link were 
used to regress trunk leaning range of motion (ROM) and medial-lateral ROM of the pelvis 
position onto the fixed effects of group, distance, and age with a random intercept by 
participant. Figure 1 presents time-series kinematic data for the C7 marker, the trunk segment, 
and the pelvis segment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spatiotemporal characteristics of autistic and neurotypical children’s C7 marker, trunk 
segment, and pelvis segment movements to near and far targets from 0-100% of trial duration; 
mean (bold line) and standard deviation (lighter shading) of each derivative are displayed by 
group (autistic vs. neurotypical) and by distance to target (near vs. far). 

 

C7 Marker         Trunk              Pelvis 

Neurotypical 
Autistic 
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Analysis of trunk leaning ROM yielded the expected main effect of distance (Wald 
χ2

1=94.76, p<0.001), such that trunk ROM was higher for far targets (b=0.48, SE=0.05), but no 
main effect of group (Wald χ2

1=0.31, p=0.58) or age (Wald χ2
1=0.27, p=0.61). Analysis of medial-

lateral ROM of the pelvis position yielded a main effect of group (Wald χ2
1=8.49, p=0.004) such 

that pelvic ROM was greater for autistic children (b=0.72, SE=0.25), a main effect of age (Wald 
χ2

1=3.88, p=0.049), such that older participants had lower pelvic ROM (b=-0.23, SE=0.12). There 
was also a main effect of distance (Wald χ2

1=17.42, p<0.001), such that pelvic ROM was greater 
for far targets (b=0.35, SE=0.09). There were no significant interaction effects for trunk or pelvic 
ROM. 

Movement Smoothness 

C7 Marker. 

 The GLMM analysis for jerk cost of the C7 marker yielded main effects of group (Wald 
χ2

1=4.02, p=0.045; Figure 2), such that autistic children had a higher jerk cost than neurotypical 
children (b=0.12, SE=0.06), and distance (Wald χ2

1=6.51, p=0.011; Figure 2), such that 
movements to far targets were less smooth than movements to near targets (b=0.047, 
SE=0.02). There was not a main effect of age (Wald χ2

1=1.89, p=0.17), nor were there any 
significant interaction effects.  

Figure 2. Jerk cost of autistic and neurotypical children’s C7 marker movements to near and far 
targets. 

Neurotypical 
Autistic 
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Trunk Segment. 

 The GLMM analysis for jerk cost of the C7 marker yielded main effects of group (Wald 
χ2

1=4.02, p=0.045; Figure 2), such that autistic children had a higher jerk cost than neurotypical 
children (b=0.12, SE=0.06), and distance (Wald χ2

1=6.51, p=0.011; Figure 2), such that 
movements to far targets were less smooth than movements to near targets (b=0.047, 
SE=0.02). There was not a main effect of age (Wald χ2

1=1.89, p=0.17), nor were there any 
significant interaction effects.  
 

Figure 3. Jerk cost of autistic and neurotypical children’s trunk segment movements to near 
and far targets. 
 

Pelvis Segment. 

 The GLMM analysis for jerk cost of the pelvis segment yielded a main effect of distance 
(Wald χ2

1=20.94, p<0.0001; Figure 4), such that movements to far targets were less smooth 
than movements to near targets (b=0.08, SE=0.02). There was not a main effect of age (Wald 
χ2

1=2.33, p=0.13) or group (Wald χ2
1=0.47, p=0.49), nor were there any significant interaction 

effects.  

Neurotypical 
Autistic 
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Figure 4. Jerk cost of autistic and neurotypical children’s pelvis segment movements to near 
and far targets. 

 

Trial Duration. 

  The GLMM analysis for trial duration yielded main effects of group (Wald χ2
1=5.64, 

p=0.018; Figure 5), such that autistic children took more time to get to the safe zone than 
neurotypical children (b=0.15, SE=0.06), distance (Wald χ2

1=69.0, p<0.0001; Figure 5), such that 
movements to far targets took more time than movements to near targets (b=0.24),  and age 
(Wald χ2

1=6.26, p=0.012; Figure 5), such that older participants reached the target more quickly 
than younger participants (b=-0.08, SE=0.03).  

 

 

 

 

Neurotypical 
Autistic 
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Figure 5. Trial duration for autistic and neurotypical children’s movements to near and far 
targets.  

 

Likelihood of Taking a Step. 

The GLMM analysis for log odds of taking a step yielded a main effect of group (Wald 
χ2

1=4.52 p=0.033; Figure 6), such that autistic children took a step during a trial more 
frequently relative to neurotypical children (b=2.40, SE=1.13), and distance (Wald χ2

1=12.17, 
p=0.0005; Figure 6), such that participants were more likely to take a step towards a far target 
than a near target (b=1.07, SE=0.31). There was not a significant main effect of age (Wald χ2

1=-
1.05, p=0.059), nor were there any significant interaction effects. 
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Figure 6. Results of a generalized linear mixed effects model using a binomial distribution with 
a logit link regressing the number of steps taken during a movement onto the fixed effects of 
group, distance, and age with a random intercept by participant showed that neurotypical 
children took fewer steps during the task compared to autistic children. 

 

Discussion 
This is the first study to quantify differences in movement smoothness between autistic 

and neurotypical children during goal-directed leaning. Consistent with r a prior study of gait 
smoothness (Nobile et al., 2011), autistic children in our sample exhibited higher jerk cost 
during goal-directed movement. Because participants were not given specific instructions 
about the mechanism of action for the user-controlled ball, they had to formulate their own 
movement strategy.  

Participants generally adopted one of three strategies: 1) leaning at the trunk while 
keeping feet and lower body stationary, 2) moving the entire body by stepping, or 3) a mixture 
of both. For safe zones in far (versus near) locations, both groups exhibited jerkier movements, 
longer trial durations, and were more likely to take a step to maintain balance. This suggests 
that coordinating movements over a larger distance posed a greater challenge to both groups. 
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This is consistent with previous studies showing that movement duration is scaled by 
movement amplitude, and smoothness decreases as duration increases (Salmond, Davidson, 
& Charles, 2017; Ketcham et al., 2002).  

Analysis of trunk leaning and medial-lateral position of the pelvis revealed that although 
trunk leaning ROM did not statistically differ between neurotypical and autistic children, 
medial-lateral pelvic ROM was significantly greater in the autistic group. Additionally, autistic 
children were more likely to take a step during a trial than neurotypical children. This 
demonstrates that autistic children relied more heavily on moving their entire body, rather 
than on isolating trunk movements, to reach the safe zone.  

Leaning (versus stepping) to a lateral target requires coordination of fewer degrees of 
freedom, and may therefore be a more efficient strategy to produce smooth movements. 
However, increased trunk ROM places greater demand on core stabilizing muscles. Others 
have observed that autistic children have reduced core strength (Kern et al., 2011), which may 
explain heavier reliance on whole body movements (i.e., lateral stepping). Avoiding core muscle 
engagement may produce atypical and jerky movements as observed in the present study, or 
low-acceleration swaying movements when matching oscillating dynamic targets as we have 
previously reported (Miller et al., 2019). Examination of anticipatory and reactive muscle activity 
may help to explain why autistic individuals appear to adopt different strategies under varying 
task conditions. 

Interestingly, despite higher overall jerk cost, jerk cost in intermediate joint and 
segment trajectories (trunk leaning and medial-lateral pelvis position) was not significantly 
higher for autistic children. This suggests that autistic children may exhibit only slightly jerkier 
movements of isolated segments, but when coordinating multiple joints to achieve a task, the 
jerkiness of the overall movement is exacerbated. Motor coordination is influenced by several 
factors including sensory processing, motor planning, and muscle activations. Previous studies 
demonstrated that some or all of these features may be different in autism (e.g., Cook et al., 
2013; Dowd et al., 2012; Glazebrook et al., 2008; Luna et al., 2002; Mosconi et al., 2015; 
Mostofsky et al., 2007). Future work is needed to assess how autistic people acquire, process, 
and integrate sensory information to support planning, execution, and modification of goal-
directed movements. 

In our study, autistic children appeared to rely less on feed-forward information, often 
initiating movements and accelerating toward the target before sufficient visual intake and 
processing could occur. This may reflect anticipatory differences (Schmitz et al., 2003), or a 
learned response to a lifetime of experiences with atypical visual processing (Sharer et al., 
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2015) in turn forcing over-reliance on feed-back information after movement initiation. This 
approach is associated with reduced movement smoothness and efficiency (Liu & Todorov, 
2007), consistent with our results. Over-reliance on feed-back control (as opposed to 
stochastic optimal control) is also a more effortful, on-line processing approach (Todorov & 
Jordan, 2002), potentially contributing to the longer trial durations we observed. 

 

Conclusion 
While movement smoothness has not previously been a key variable of interest in 

autism research, our results demonstrate that it is related to both the motor strategy selected 
for a given task, and the efficiency with which that task is performed. Accuracy, efficiency, and 
flexibility in dynamic postural control are necessary for functional mobility and mitigation of fall 
risk. They are also important determinants of how effortful and fatiguing a motor task is, and 
thus relate to quality of life. It is important to characterize the mechanisms underlying postural 
control and the impact of movement smoothness on functional mobility and fall risk in autism. 
In doing so, we will be better equipped to develop accommodations and interventions that 
support autistic individuals’ ability to move more efficiently, safely, and comfortably 
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APPENDIX 
 
Participant Instructions & Feedback 

Participants heard and saw the following instructions with embedded visual examples 
of the user-controlled object and the safe zone on the screen:  

 
“In this game, you will see a blue ball on the screen. This is your ball. When you move your 
body, your ball will move too. This is a green safe zone. Move your body to get your ball in 
the green safe zone. Move as fast as you can! Sometimes, the safe zone is in a different place. 
Try to stay in the safe zone!”  
 
Participants were not given specific information about the control mechanism of the 

user-controlled object, the locations of the safe zones, or hit criteria. After a successful hit, 
virtual fireworks and a sound signaled success. If 3 s elapsed without a successful hit, the safe 
zone disappeared and a thumping sound signaled failure.  
 



 

   

                    22 

 

AUTHOR NOTE 
 

Out of respect for preferences expressed by many autistic self-advocates in our studies 
and in the community, we have chosen to use identity-first (rather than person-first) language 
throughout this manuscript. In doing so, it is not our intention to diminish or invalidate the 
preferences or perspectives of those who prefer person-first language. We continue to 
welcome feedback on ways that we can effectively partner with the autistic community to 
advocate for respect, acceptance, inclusion, and representation in research. 


	ABSTRACT
	INTRODUCTION
	METHOD
	The study protocol and informed consent/assent procedures were approved by the North Texas Regional Institutional Review Board. Informed consent/assent procedures were completed by participants and their guardian(s) as appropriate based on age and cap...
	Participants
	Dynamic Postural Control Task
	Data Collection and Processing
	Data Analysis

	Results
	Discussion
	Conclusion
	Contributions
	Acknowledgements
	Funding information
	Data and Supplementary Material Accessibility
	REFERENCES
	APPENDIX
	AUTHOR NOTE

