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Abstract 21 

Introduction: Directed acyclic graphs (DAGs) illustrate causal structures, but their application 22 

in physical activity and nutrition research remains unclear. We aimed to characterise DAG use 23 

in this literature, highlighting best practices and areas for improvement. 24 

Methods: We conducted a scoping review of DAG use in physical activity and nutrition-related 25 

articles published between 1999 and 2024, extracting data on study topic, design, DAG 26 

justification and construction, number of arcs, nodes, exposures, outcomes, confounders, 27 

mediators, mediator-outcome confounders, competing exposures, and instrumental variables.  28 

Results: Of 115 included studies, 110 contained extractable DAG data. Five could not be 29 

extracted due to DAG size or unfixed nodes. Among the 110 studies, 86 (78%) made their DAG 30 

available. Most (61, 55%) did not specify methods for identifying variables or causal arcs. 31 

When specified, the most common approach was literature review (32, 29%). DAGitty software 32 

was used in 68 studies (62%). A total of 96 DAGs were identified, with the majority addressing 33 

nutritional exposures (75, 68%). DAGs had a median number of 13 nodes; 2 causal paths; 6 34 

confounders; 1 mediator; and 0 mediator-outcome confounders, instrumental variables and 35 

competing exposures.   36 

Conclusion: DAGs support causal inference but their value depends on accurately representing 37 

the true causal structure. Many studies lacked a systematic approach for DAG construction and 38 

omitted potentially informative nodes such as mediators and mediator-outcome confounders. 39 

We provide recommendations to improve the use and transparency of DAGs in physical activity 40 

and nutrition research.  41 

Keywords: causal inference; confounding; collider bias; epidemiology; kinesiology. 42 

43 



Introduction 44 

Establishing cause-effect relationships, that is, whether a specific treatment, 45 

intervention, or condition under investigation directly affects a given outcome (1), is 46 

fundamental to advancing physical activity and nutrition research. Examples of causal 47 

questions include “does exercise training reduce the risk of bone fractures?” or “does 48 

consuming more ultra-processed foods increase cardiovascular risk?”. In the health sciences, 49 

randomized controlled trials (RCTs) are commonly employed to determine cause-effect 50 

relationships (2); however, in many cases, randomized experiments are not feasible or ethical 51 

to conduct. For example, it may not be ethical to assign individuals to consume diets high in 52 

saturated fats or to restrict their physical activity levels for prolonged periods to determine the 53 

long-term influence of these practices on health outcomes. Furthermore, both nutrition and 54 

physical activity are complex behaviours that influence each other, along with multiple other 55 

outcomes, such as stress levels or sleep patterns. Understanding these complex relationships is 56 

fundamental to developing fit-for-purpose interventions, but controlling these parameters in 57 

free-living situations and for prolonged periods is difficult. As such, many relevant scientific 58 

questions in physical activity and nutrition research—particularly those requiring large samples 59 

and long follow-up periods—may be best addressed using observational designs, such as 60 

prospective cohort studies.  61 

Although powerful tools with considerable potential to advance understanding of how 62 

nutritional and physical activity behaviours influence health outcomes, observational designs 63 

are vulnerable to various sources of bias that can limit their interpretation (3). These biases can 64 

be broadly classified within two categories, namely those arising from common causes 65 

(generally referred to as confounding) and those arising from conditioning on common effects 66 



(also known as collider bias) (4). Examples of how these biases may manifest in nutrition and 67 

physical activity-based investigations are described in Table 1.  68 

To reduce these biases and strengthen causal inference, researchers are advised to first 69 

define and visualize assumed causal relationships between variables of interest (5). This can be 70 

achieved by constructing a directed acyclic graph (DAG), whereby the hypothesized direction 71 

of causal relationships between variables of interest are plotted (5,6). DAGs help identify 72 

potential sources of confounding and collider bias, guiding the selection of appropriate 73 

statistical models to reduce bias and improve causal inference (7).  74 

A previous systematic review that assessed DAG use in applied health research showed 75 

that their use is increasing in this area (6). Whether this increase is reflected in the more specific 76 

areas of physical activity and nutrition remains unclear. It is also unclear whether DAGs are 77 

being used effectively, as these fields share unique methodological challenges that can foster 78 

biases. For example, researchers in physical activity research may inadvertently adjust for 79 

variables that are not confounders, but rather lay on the causal path between exposure and 80 

outcome (i.e., mediators), therefore underestimating the total effect. A further common 81 

challenge across both nutrition and physical activity research is measurement error. Indirect 82 

tools such as dietary and physical activity surveys are prone to misreporting and information 83 

bias—issues that DAGs can help visualize and potentially mitigate (8). Therefore, the aim of 84 

this scoping review is to map how DAGs are currently being used in nutrition and physical 85 

activity sciences, including the justifications provided for their use, the adequacy of their 86 

design, and their practical application in these fields.  87 



Table 1. Definitions and practical examples of bias in physical activity and nutrition research 88 

Bias type (also 

known as) 

Definition Example of bias in physical activity and 

nutrition research 

DAG depiction 

Bias due to 

common causes 

(confounding) 

When the exposure and outcome 

share a common cause, creating a 

non-causal association between 

them. 

Example 1) A cross-sectional study examining the 

effect of vitamin D levels (E) on osteoporosis 

incidence (O) fails to account for physical activity 

(C), which influences both vitamin D and 

osteoporosis. 

 

Bias due to 

conditioning on 

common effects 

(selection bias, 

collider bias). 

When the exposure and outcome 

both influence a third variable (a 

common effect), conditioning on 

this variable (e.g., through 

selection or adjustment) induces a 

spurious association between 

exposure and outcome (Example 

2). Collider bias can also occur 

Example 2) A prospective cohort study examining 

the effect of exercise habits (E) on muscle 

functionality (O) experiences greater loss to 

follow-up among non-exercising individuals. 

Because muscle function affects likelihood of 

follow-up (those with better muscle function are 

more likely to remain), analysing only those that 

remain (L: follow-up availability) conditions on a 

 



when adjusting for a mediator that 

shares a common cause with the 

outcome (mediator-outcome 

confounding, Example 3). 

collider. This biases the association between 

exercise and muscle function because the non-

exercisers who remain in the study tend to have 

better muscle function than non-exercisers in the 

full population. 

Example 3) A prospective cohort study estimating 

the direct effect of physical activity levels (E) on 

total mortality adjusts for blood pressure (M), a 

mediator. However, smoking (MOC) influences 

both blood pressure and total mortality, 

introducing bias through mediator-outcome 

confounding. 

 

E: exposure; O: outcome; C: common cause of exposure and outcome (confounder); L: common effect of exposure and outcome (collider); M: 89 

mediator; MOC: mediator-outcome confounder. White nodes denote variables that have been conditioned on; purple arrows indicate open biasing 90 
paths. Figures created using DAGitty.com.  91 



Methods 92 

The review was conducted in accordance with the JBI methodology for scoping 93 

reviews (9). 94 

 95 

Eligibility criteria 96 

Inclusion criteria for this review were defined using the PCC (Population or 97 

Participants, Concept, Context) framework (9). The concept of interest was the use of 98 

DAGs to inform research investigating causal phenomena, and the context physical 99 

activity and nutrition-related research. For the purposes of this review, physical activity 100 

research was defined as studies with any physical activity-related exposure of interest, 101 

such as physical activity levels, participation in exercise or rehabilitation programs, 102 

measurements of muscle strength or function, and related factors; while nutrition research 103 

was defined as studies with a nutrition-related exposure of interest, such as dietary 104 

patterns, specific nutrients (e.g., iron intake), and similar factors. Studies were restricted 105 

to human populations.  106 

 107 

Types of Sources 108 

Peer-reviewed studies of any research design that reported employing a DAG as 109 

part of its investigation (i.e., prospective and retrospective cohort studies, case-control 110 

studies, cross-sectional studies, RCTs, meta-analyses) were included. Reviews and 111 

tutorial papers were excluded.  112 

 113 

Search strategy 114 



An initial limited search of MEDLINE was performed to identify relevant articles 115 

and refine the main search strategy. Subsequently, MEDLINE, Embase, Cochrane 116 

Central and SPORTDiscus were searched from January 1999—following the publication 117 

of a seminal paper on DAGs (5)—to the present (search conducted in March 2024), using 118 

the terms ‘graphical model theory’, ‘directed acyclic graph(s)’, ‘causal diagram(s)’, 119 

‘causal graph(s)’ or ‘causal DAG’ (6) concatenated with identifiers for the fields of 120 

physical activity and nutrition research (e.g., ‘physical activity’, ‘exercise’, ‘nutrition’, 121 

‘diet’). The initial search string was developed for MEDLINE, and was then translated 122 

for the remaining databases utilizing Polyglot Search Translator (10). The detailed search 123 

strings used are available in Supplementary File 1. Searches were conducted across all 124 

available fields (title, abstract, keywords, and index terms).  125 

 126 

Study/Source of Evidence selection 127 

All retrieved citations were uploaded into Covidence (Veritas Health Innovation, 128 

Melbourne, Australia), an online systematic review screening tool, which was used to 129 

remove duplicates and manage screening. Each title and abstract were screened 130 

independently by G. Esteves and J. Shim against the inclusion criteria. Full texts were 131 

retrieved and again screened independently by G. Esteves and J. Shim. Reasons for 132 

exclusion at full text were recorded. Discrepancies between reviewers were resolved 133 

through discussion or by consulting a third reviewer (P. Swinton). The search results are 134 

reported using the PRISMA-ScR flow diagram (11). 135 

 136 

Definitions used for review 137 



To more clearly describe the data extracted from the identified papers, we first 138 

offer some operational definitions of important terms related to DAGs according to their 139 

common use in the literature (6,12–14). DAGs are diagrams that represent the data-140 

generating process. They are directed in the sense that each variable, represented by a 141 

node, is connected to other variables by arrows (arcs) that assume a single direction. A 142 

path is the sequence of arcs that connect one variable to another. DAGs are also acyclic, 143 

meaning that a variable cannot cause itself.  144 

Exposure variables are the main cause under study, that affects a given outcome. 145 

For example, a DAG on how dietary protein intake influences bone mineral density would 146 

consider protein as the exposure, whereas bone mineral density would be the outcome. 147 

Each DAG typically focuses on one main relationship of interest (i.e., includes one 148 

exposure and outcome). This relationship is affected by variables which can bias 149 

interpretation of the true relationship between the exposure and outcome. In this review, 150 

we focused on confounders, mediators, mediator-outcome confounders, instrumental 151 

variables, and competing exposures.  152 

Confounders are those variables that have arcs pointed at both the exposure and 153 

the outcome, i.e., they have a causal effect on both variables. For instance, age may a 154 

confounder when considering the effect of protein on bone, considering that different age 155 

groups might have differing protein intakes, and that age also affects bone mineral density 156 

directly. Once potential confounders have been identified, they can then be conditioned 157 

on using statistical approaches, e.g., via covariate adjustment in multivariable regression. 158 

This adjustment closes the biased path between exposure and outcome introduced by the 159 

confounder (Figure 1, panel A). Mediators are variables that lie on the causal path 160 

between the exposure and the outcome, with part of the causal effect of the exposure 161 

acting through the mediator. For example, in a DAG where physical activity influences 162 



cardiovascular mortality both directly and indirectly via blood pressure, blood pressure is 163 

a mediator, meaning it explains part (but not all) of the effect of physical activity on 164 

cardiovascular mortality. Studies may wish to estimate the total effect of the intervention, 165 

where the estimated effect of the exposure includes that of the mediator; or, they may 166 

wish to estimate the direct effect of the exposure, where the effect of the mediator is 167 

separated from that of the exposure. 168 

Mediator-outcome confounders are variables that causally influence both a  169 

mediator and the outcome. They do not bias estimates of the total effect, as this does not 170 

involve conditioning on the mediator. However, when researchers aim to partition the 171 

total effect into direct and indirect components, they must condition on the mediator. In 172 

doing so, the mediator acts as a collider between the exposure and the mediator–outcome 173 

confounder. If the mediator–outcome confounder is not also adjusted for, this opens a 174 

non-causal path from exposure to outcome, introducing bias. To estimate the direct effect 175 

without bias, both the mediator and the mediator–outcome confounder must be included 176 

in the adjustment set (Figure 1, panel B).  177 

Instrumental variables are those that only affect the exposure and are independent 178 

from confounders, while competing exposures are those that only affect the outcome, and 179 

are independent from the exposure (Figure 1, panel C). Instrumental variables can be used 180 

in mendelian randomization studies in an attempt to identify causal effects in 181 

observational data. For instance, studies have used single-nucleotide polymorphisms 182 

associated with physical activity to estimate its causal effect on depression (15). 183 

Competing exposure variables can potentially increase precision in estimating the 184 

outcome. For example, a family history of heart disease might affect cardiovascular 185 

mortality, while being independent from the exposure physical activity, potentially 186 

providing increased accuracy if conditioned on.  187 



 188 

Figure 1. Illustration of main DAG components, such as nodes and paths. A) displays a 189 
confounder variable creating a biasing path (pink) between exposure and outcome. 190 
Conditioning (square, dashed box) on the variable closes the biasing path. B) displays an 191 
example of collider bias when adjusting for a mediator in the presence of a mediator-192 

outcome confounder. C) displays all variables of interest extracted during the review.  193 



After a DAG has been drawn, an adjustment set of variables can be identified 194 

according to the principles of graph model theory underlying DAGs (16). An adjustment 195 

set is the set of variables that, given the assumptions encoded in the DAG, will yield an 196 

unbiased estimate of the causal effect of the exposure on the outcome when adequately 197 

conditioned on. Knowing which variables do not need to be conditioned on is also 198 

relevant, as it helps researchers to avoid adjusting for unnecessary variables, which could 199 

inadvertently introduce noise or additional bias. This adjustment set can be obtained 200 

visually by applying the rules briefly summarised here or though software-based 201 

algorithms that apply these rules automatically, such as DAGitty (12). 202 

 203 

Data Extraction 204 

Two reviewers (G. Esteves and J. Slaton) extracted data from the included papers. 205 

Extracted variables covered three domains: study characteristics, DAG-related 206 

information, and statistics-related information. Study characteristics included first author; 207 

journal; publication year; study title and design (case-control, causal model creation, 208 

longitudinal cohort, mendelian randomization, randomized controlled trial, cross-209 

sectional, systematic review and/or meta-analysis); research area (biomechanics, clinical 210 

nutrition, exercise epidemiology, exercise physiology, nutritional epidemiology, sports 211 

medicine, strength and conditioning); the database utilized for the analysis (name of 212 

study, cohort or secondary database); and sample size.  213 

DAG-related information included whether the DAG was available in the 214 

publication; number of DAGs per paper; software used to visually construct the DAG; 215 

the development method (categorized as not reported, literature-based, expert-based, 216 

literature and expert-based, causal discovery algorithm or Delphi consensus); the stated 217 



justification for DAG usage (verbatim statements from authors); number of variables in 218 

the DAG; shortest and longest path between exposure and outcome; whether the DAG 219 

estimated the total effect, direct effect or both; number of edges; and whether the DAG 220 

adhered to the acyclic property. Additionally, we noted the name and frequency (counts) 221 

of each node type, namely, the number of exposures, outcomes, confounders, mediators, 222 

mediator-outcome confounders, instrumental variables, and competing exposures. We 223 

also computed whether or not each DAG included at least one of each type (e.g., includes 224 

at least one confounder). To determine the name and frequency of each variable type, we 225 

initially registered the name of all variables verbatim as used by the original authors in 226 

their DAG. Then, these extracted names were recoded into overarching constructs to 227 

allow for meaningful aggregation. For instance, “diet”, “food consumption” and 228 

“nutritional patterns” were all recoded as the overarching term “diet”. Similarly, 229 

“physical activity”, “leisure-time physical activity” and “exercise”, were recoded as 230 

“physical activity”. This recoding facilitated consistent counting across studies. 231 

Supplementary Table S1 details how each variable was recoded, and further explanation 232 

about the extraction and coding process is provided in Supplementary File 2. 233 

Statistical method information included the type of model used (e.g., generalized 234 

linear model, proportional hazards model); the functional form of the exposure–outcome 235 

association (e.g., categorical, continuous linear, spline); whether the adjustment set was 236 

reported in some manner; and whether causal or associational language was used to 237 

interpret results. To classify the type of language, we reviewed the results and conclusion 238 

sections of each article. Statements such as “The exposure was associated with a change 239 

in the outcome” were classified as associational, whereas “The exposure led to a change 240 

in the outcome” or “The exposure had an effect on the outcome” were classified as causal. 241 

If both types of statements were present, the most emphasized and frequent type was 242 



recorded. Extracted quantitative data were summarised using medians and interquartile 243 

ranges for continuous variables, and counts and proportions for categorical variables.  244 

 245 

Results 246 

Figure 2 shows a flow diagram of study screening. Initially, 648 studies were 247 

identified through the literature search, and 2 additional studies were manually added. 248 

Following screening, a total of 115 studies were included in the review, with DAG-related 249 

data extracted from 110. These data were not extracted from 5 studies, either because the 250 

DAGs presented were too large (17,18), or because they lacked fixed variables (e.g., the 251 

DAG served as a base model for other researchers rather than representing a fixed causal 252 

structure) (19–21). However, their article-related characteristics and DAG construction 253 

methods were still recorded and analyzed. 254 

 255 



256 

Figure 2. PRISMA-ScR flow diagram showing study identification and screening 257 

 258 

Article characteristics 259 

Figure 3 shows article-related characteristics of the included studies, namely the 260 

first author’s country affiliation, research area, study design, and year of publication. A 261 

detailed description of all article characteristics is provided in Supplementary Table S2. 262 

Briefly, out of 115 articles, most first-authors were affiliated with institutions in Brazil 263 

(n=19, 17%) and China (n=18, 16%). The most common study areas were nutritional 264 

epidemiology (n=70, 61%) and exercise epidemiology (n=23, 20%), and most studies 265 

employed cross-sectional (n=52, 45%) or prospective cohort (n=50, 43%) designs. The 266 

earliest studies were published in 2013, and the number of published studies appeared to 267 



increase yearly (Figure 3, panel D), with most publications appearing in 2023 (n=30, 268 

26%).  269 

 270 

Figure 3. Article-related characteristics of included studies. Figure shows counts and 271 

percentages for articles according to A) country affiliation of the first-author; B) research 272 
area; C) study design; D) articles identified in each year. In panel A, countries with only 273 

one identified paper were omitted to facilitate visualization.  274 

 275 

DAG-related characteristics 276 

Table 2 presents key DAG-related information. Of the 110 studies for which 277 

DAG-related data were extracted, 86 (78%) made their DAG available. Approximately 278 

two-thirds of the studies examined nutrition-related exposures (n=75, 68%), while one-279 

third examined physical activity-related exposures (n=35, 32%). The most frequently 280 



cited reason for constructing DAGs was covariate selection, with studies commonly 281 

stating they were used “to identify covariates”, “to select adjustment sets” or “to avoid 282 

incomplete adjustment or overadjustment”. Where software was specified, DAGitty (12) 283 

was the only tool reported (68, 62%). Most studies (n=61, 55%) did not describe a specific 284 

approach for DAG construction. Among those that did, the most common approach was 285 

literature-based (i.e., formal or informal literature reviews) (n=32, 29%), and often 286 

described briefly, for example, that the DAG was “based on the literature”, “based on 287 

the recent literature and research evidence” or “based on a review of the literature”. 288 

However, some studies provided more detailed descriptions, such as those that conducted 289 

a systematic review to inform DAG construction (17,22,23), or supplied decision logs 290 

explaining each node and arc inclusion in the DAG and its supporting literature (20,24–291 

26). Some studies (17,23,24) reported following the Evidence Synthesis for Constructing 292 

Directed Acyclic Graphs (ESC-DAGs) method (13). No studies reported using a Delphi 293 

consensus approach. The majority of studies (n=92, 84%) primarily used associative 294 

rather than causal language. 295 

Among the 86 studies with available DAGs, most (n=77, 90%) presented a single 296 

DAG, with a total of 96 DAGs extracted. The median (IQR) number of nodes per DAG 297 

was 13 (9, 16), with 2 (1, 4) causal paths, 6 (3, 9) confounders, 1 (0, 3) mediator, 0 (0, 1) 298 

mediator-outcome confounders, and 0 (0, 0) instrumental variables or competing 299 

exposures. Most DAGs were acyclic (n=87, 91%) and comprised a median 32 (18, 49) 300 

edges.  301 

 302 

  303 



Table 2. DAG-related characteristics in physical activity and nutrition research articles 304 

Characteristic 
Overall,  

N = 110 

Physical activity, 

N = 35 

Nutrition,  

N = 75 

DAG availability 86 (78%) 24 (69%) 62 (83%) 

DAG software 

  DAGitty 68 (62%) 19 (54%) 49 (65%) 

  Not reported 42 (38%) 16 (46%) 26 (35%) 

DAG development method 

  Not reported 61 (55%) 19 (54%) 42 (56%) 

  Literature-based 32 (29%) 9 (26%) 23 (31%) 

  Expert-based 9 (8.2%) 2 (5.7%) 7 (9.3%) 

  Literature and expert-based 8 (7.3%) 5 (14%) 3 (4.0%) 

Number of DAGs per paper   

  One 77 (90%) 21 (88%) 56 (90%) 

  Two 8 (9.3%) 3 (12%) 5 (8.1%) 

  Three 1 (1.2%) 0 (0%) 1 (1.6%) 

Language used    

  Causal 18 (16%) 9 (26%) 9 (12%) 

  Associational 92 (84%) 26 (74%) 66 (88%) 

Reported adjustment set 109 (99%) 35 (100%) 74 (99%) 

Characteristic 
Overall,  

N = 96 

Physical activity, 

N = 27 

Nutrition,  

N = 69 

Nodes 13.0 (9.0, 16.0) 10.0 (6.0, 13.0) 14.0 (11.0, 18.0) 

Causal paths 2.0 (1.0, 4.0) 2.0 (1.0, 3.0) 2.0 (1.0, 4.0) 

Direct (Yes/No) 84 (88%) 23 (85%) 61 (88%) 

Shortest path 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 

Longest path 2.0 (1.0, 3.0) 2.0 (1.0, 2.0) 2.0 (1.0, 3.0) 

Confounders 6.0 (3.0, 9.0) 4.0 (3.0, 8.0) 6.0 (4.0, 9.0) 

Mediators 1.0 (0.0, 3.0) 1.0 (0.0, 2.5) 2.0 (0.0, 3.0) 

Mediator-outcome 

confounder 
0.0 (0.0, 1.0) 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) 

Competing exposures 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) 

Instrumental variables 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

Included confounders 93 (97%) 26 (96%) 67 (97%) 

Included mediators 58 (60%) 15 (56%) 43 (62%) 

Included mediator-outcome 

confounders 
27 (28%) 5 (19%) 22 (32%) 

Included instrumental 

variables 
22 (23%) 2 (7.4%) 20 (29%) 

Included competing 

exposures 
11 (11%) 2 (7.4%) 9 (13%) 

Estimating total or direct effect 

  Total effect 73 (76%) 21 (78%) 52 (75%) 

  Direct effect 14 (15%) 3 (11%) 11 (16%) 

  Both 9 (9.4%) 3 (11%) 6 (8.7%) 

Number of edges 32 (18, 48) 22 (11, 33) 35 (20, 50) 

DAG acyclic (Yes) 87 (91%) 25 (93%) 62 (90%) 



Numerical data are reported as median (interquartile range lower and upper limits); 

categorical data are reported as n (%). 

 305 

Commonly reported variables 306 

Figure 4 provides a visual summary of the most commonly reported variables 307 

across node types. The most frequent exposures were diet (n=17, 18%), physical activity 308 

(n=13, 13%), breastfeeding, dietary inflammatory index, food security, structured 309 

exercise, sugar, and ultra-processed foods (all n=4, 4.1%, see Supplementary Table S3 310 

for a comprehensive list). The most frequent outcomes were cancer (n=6, 6.1%), mental 311 

health (n=6, 6.1%), cardiometabolic health, diabetes or glucose metabolism status, and 312 

physical function/strength (all n=5, 5.1%), as well as obesity or weight status (n=4, 4%), 313 

among others. Additionally, 93 (97%) DAGs included confounders (Table 2), the most 314 

common being age (n=59, 9.8%), sex (n=48, 8.0%), education (n=34, 5.6%), smoking 315 

(n=34, 5.6%), income (n=26, 4.3%), and physical activity (n=17, 2.8%), followed by 316 

other less common factors related to demographic information or disease history 317 

(Supplementary Table S3). Mediators were present in 58 (60%) DAGs, the most frequent 318 

being BMI (n=23, 13%), cardiovascular disease, diabetes, and energy intake (all n=10, 319 

5.8%), dyslipidaemia (n=9, 5.2%), adiposity or obesity (n=8, 4.6%), as well as physical 320 

activity (n=5, 2.9%). Mediator-outcome confounders were included in 27 (28%) DAGs, 321 

the most frequent being alcohol, physical activity and smoking (all n=8, 12%). Finally, 322 

22 (23%) DAGs included instrumental variables, and 11 (11%) included competing 323 

exposures. 324 

 325 

Statistical approaches 326 



Out of the 115 studies, most relied on generalized linear models using linear 327 

(n=32, 28%) or logistic (n=32, 28%) approaches, followed by proportional hazards 328 

regression (cox regression, n=16, 14%), poisson family (n=8, 7%), or other variations. In 329 

75 (67%) studies, the exposure-outcome relationship was treated as categorical, whereas 330 

25 (22%) used linear continuous coding, and 8 (7.1%) used restricted cubic splines. Most 331 

analyses (n=73, 76%) estimated the total effect of the exposure rather than the direct 332 

effect (n=14, 15%) or both (n=9, 9.4%). Almost all studies reported their adjustment set 333 

in some format (n=109, 99%). Further methodological details are provided in 334 

Supplementary Table S4.  335 



 336 

Figure 4. Visual representation of the most frequently reported variables across extracted DAGs.  337 

Visual presents the common variables according to node type. Variables reported four or more times were selected to facilitate visualization. 338 



Discussion 339 

Summary of findings 340 

Our scoping review identified a marked increase in the use of DAGs in physical 341 

activity and nutrition research in recent years. A major shortcoming in the DAG-building 342 

process was insufficient reporting of the methods used to construct DAGs. We also 343 

identified other issues of concern, such as studies not presenting their DAG, despite 344 

reporting using one, or presenting DAGs that were not acyclic. Regarding common 345 

structures found in DAGs, we identified limited consideration of key variables, such as 346 

mediators and mediator-outcome confounders. DAGs were more common in nutrition-347 

focused than in physical activity-related research and were typically used in observational 348 

designs, namely, cross-sectional or cohort studies. We consider these findings and 349 

provide recommendations to enhance and expand the use of DAGs in these fields. 350 

 351 

The DAG-building process 352 

An important driver of DAG usefulness is the processes by which they are built, 353 

including how researchers determine which nodes and arcs to include. We identified that 354 

most studies (55%) provided no explanation regarding this methodological step. When 355 

explanations were available, authors typically stated that decisions were informed by a 356 

literature review, with varying degrees of transparency on how the literature was used.  A 357 

prototypical example of insufficient reporting is the statement: “a directed acyclic graph 358 

was developed (…) based on expert knowledge and the literature”. This provides little 359 

context on the source or role of expert input, how it informed the DAG structure, or how 360 

the literature was used to support specific arcs. In contrast, examples of greater 361 



methodological transparency included the provision of decision logs (20,24–26) linking 362 

individual causal arcs to specific references or theoretical assumptions.  363 

Three studies (17,23,24) reported employing the ESC-DAGs method (13). This 364 

approach follows systematic review principles and begins with a fully saturated DAG, 365 

meaning all possible arcs are initially included. A step-by-step evaluation process 366 

(including counterfactual thought experiments and theory) is then used to remove 367 

implausible arcs. While methodologically rigorous, this process can be technically 368 

demanding. For example, one publication (27) reported that the DAGitty software 369 

occasionally failed when handling DAGs with an extensive number of nodes and arcs. 370 

This underscores the potential utility of computational approaches for data-driven causal 371 

structure learning, such as the PC-algorithm, a tool designed for building high-372 

dimensional DAGs (28,29). Recently, however, a simulation study showed that while 373 

these tools have the potential to arrive at similar adjustment sets and estimated effects 374 

when compared to expert-based assessments, they also frequently produce inappropriate 375 

adjustment sets (30). As such, and although promising, causal discovery algorithms 376 

should be used with caution and may require manual refinement by topic-specific experts. 377 

Given that one of the main strengths of DAGs is making analysts’ assumptions 378 

explicit, and our current findings of insufficient information on the DAG-building process 379 

in most papers, we recommend that comprehensive guides, such as ESC-DAGs (31) and 380 

the framework proposed by Poppe et al. (32), be followed by researchers in physical 381 

activity and nutrition research in order to improve both methodological rigor and 382 

transparency. 383 

 384 

Common structures of observed DAGs 385 



The most frequently represented nodes identified in this analysis were 386 

confounders, followed by a smaller number of mediators, whereas competing exposures, 387 

instrumental variables and mediator-outcome confounders were relatively uncommon. 388 

This pattern suggests that DAGs were primarily used to identify confounders rather than 389 

to depict more complete causal structures. While identifying confounders is crucial, 390 

focusing solely on them risk overlooking key variables such as mediators and colliders 391 

that are essential for understanding the full set of causal pathways between exposure and 392 

outcome. Mediators are critical variables that account for part of the effect of an exposure 393 

on an outcome. When estimating the total effect, mediators should not be adjusted for, as 394 

they transmit part of the exposure’s effect. In contrast, if the goal is to estimate the direct 395 

effect, mediators must be adjusted for to isolate on the exposure’s direct impact. For 396 

example, the effect of physical activity on cardiovascular mortality may be partially 397 

mediated by changes in blood pressure. Whether or not to adjust for blood pressure 398 

depends on the analytic objective. If the aim is to estimate the total effect of physical 399 

activity, then blood pressure should not be adjusted for, as it lies on the causal pathway. 400 

In contrast, estimating the direct effect requires adjusting for blood pressure to isolate the 401 

portion of the effect that does not operate through this mediator.  402 

An additional level of structure that was rarely included in studies was the 403 

potential for collider bias when adjusting for mediators. If another variable acts as a 404 

common cause of both the mediator and the outcome, it becomes a mediator-outcome 405 

confounder. Since the mediator is necessarily caused by the exposure, this opens a 406 

backdoor path and generates bias between exposure and outcome. If mediator-outcome 407 

confounders are correctly identified, however, adjusting for these variables will avoid the 408 

introduction of collider bias, even when estimating direct effects. Authors are therefore 409 

recommended to contemplate the role of mediators in their causal questions, while also 410 



interrogating the presence of mediator-outcome confounders to avoid potential collider 411 

bias. 412 

We noted that demographic variables such as age, sex or gender, education and 413 

income were commonly identified as confounders. Additionally, common mediators 414 

included BMI, chronic diseases and energy intake. This is reasonable, as the effects of 415 

diet and/or physical activity on common outcomes (such as cancer, mental health, 416 

strength) might be due, in part, to indirect effects mediated by changes in body 417 

composition, status of chronic diseases, and energy intake. Similarly, the most common 418 

mediator-outcome confounders included alcohol intake, amount of physical activity, and 419 

smoking. Although we did not formally assess whether authors correctly applied the 420 

concepts of confounders and mediators, we observed instances where mediators (as 421 

depicted in the DAG) were inadvertently treated as confounders. In this case, wrongfully 422 

adjusting for mediators may lead to an underestimation of the total effect of the exposure. 423 

Similarly, certain DAGs aggregated variables into broad categories (e.g., 424 

“demographics”) rather than listing specific variables separately. This can be misleading 425 

unless all grouped variables (e.g., “age”, “ethnicity”, “income”) share the same causal 426 

structure. 427 

Energy intake is a common and nuanced example of how researchers 428 

accommodate mediator variables in their analyses. It is standard practice to adjust for 429 

total energy intake when estimating the effect of a specific macronutrient, since 430 

carbohydrates, fats and proteins are components of total energy intake. However, doing 431 

so can introduce collider bias (33). This highlights the importance of carefully 432 

considering the causal relationships between variables when constructing a DAG, as 433 

traditional adjustment methods for energy intake can distort causal estimates (33). To 434 

mitigate this, Tomova et al. (33) propose that all macronutrients are included in the causal 435 



model. This also enables “substitution analysis”, that is, estimating the effect of 436 

increasing one nutrient while reducing another (34,35). Not only does this avoid bias, but 437 

it also aligns with how nutrition RCTs and real-world dietary recommendations are 438 

structured: to increase one nutrient, another must typically be reduced to maintain energy 439 

balance. This logic is not limited to total energy intake, but can also be applied to any set 440 

of mutually constrained dietary exposures, such as saturated and unsaturated fat, or ultra-441 

processed and minimally processed foods. 442 

 443 

Common issues of observed DAGs  444 

We identified several recurring issues across the studies analyzed in our review. 445 

First, there were issues with transparency and reproducibility, with approximately one-446 

fifth of studies failing to provide their DAGs. Second, 9% of graphs contained cycles, 447 

violating the core assumption of acyclicity, which states that a variable cannot cause itself 448 

(36). Authors might encounter difficulty in removing loops from their DAG structures if 449 

they believe that certain variables influence each other reciprocally. For example, caloric 450 

intake increases body mass, but an increased body mass could, in turn, also impact caloric 451 

intake, as larger individuals eat more to maintain their current body mass. In this case, 452 

identifying the causal sequence of these effects often hinges on establishing the correct 453 

temporal ordering of variables. Constructing the DAG from left to right, with the x-axis 454 

representing the passage of time may aid in resolving cyclicality (6,32).  455 

If a study explores various parameters, each with its own underlying assumptions, 456 

then it is important to construct dedicated DAGs that are specific to each outcome of 457 

interest. Despite this, very few studies presented multiple DAGs, even when using 458 

multiple statistical models with varying assumptions. This limits the capacity of the DAG 459 



to inform the most appropriate statistical analysis, considering that each outcome will 460 

have its own causal structure and specific confounding and mediating variables. In these 461 

cases, it stands to reason that the different assumptions under each model should be 462 

accompanied by altered DAGs illustrating each scenario. For instance, a study that aims 463 

to quantify the impact of physical activity levels on the separate outcomes of insulin 464 

sensitivity and quality of life would necessitate two different DAGs illustrating each 465 

scenario, given that the causal structure surrounding each outcome is likely to be 466 

different. Also, given that the true causal structure is unknown, creating separate DAGs 467 

for each model—or applying sensitivity analyses under different causal assumptions—468 

could strengthen causal inferences (13,32).  469 

 470 

Expanding the application of DAGs  471 

This review found that most studies used DAGs in observational studies, whereas 472 

they were less commonly employed in other designs such as RCTs. Certainly, DAGs have 473 

clear application in observational designs; however, it is worth considering how they 474 

might also be used to visualize and mitigate bias in other designs. For example, Lee et al. 475 

(37) proposed a DAG-based approach for experimental studies that provides insight into 476 

potential strategies to handle missing data by incorporating the hypothesized mechanisms 477 

underlying missingness. Additionally, Bulbulia (38) recently described how DAGs can 478 

be used to visualize and mitigate biases that commonly arise in RCTs. One example 479 

relates to per-protocol analyses—when an RCT analyzes individuals according to their 480 

adherence to the intervention, rather than including all participants regardless of 481 

adherence. In this scenario, bias may arise if a confounder influences both adherence to 482 

the intervention and the outcomes. An unbiased per-protocol effect can be recovered if 483 



the analyst can identify and condition on the confounder in question, or a proxy thereof 484 

(38).  485 

One study included in our review, Evanchuk et al (39) included an effect modifier 486 

in the visual representation of their DAG. Modifiers are understood as variables that alter 487 

the magnitude and potentially the directionality (e.g. positive/negative effect) of the 488 

causal effect between exposure and outcome. This is in contrast with mediators, which 489 

carry part of the effect of the exposure, but don’t change the total effect of the exposure. 490 

In this case, authors were interested in whether maternal iron biomarkers differently 491 

affected newborn birthweight according to their sex. While recent work has suggested 492 

methods for integrating effect modifiers into DAGs (40), this remains a limitation in 493 

widely used tools such as DAGitty, which currently lack functionality to represent these 494 

interaction effects. 495 

 496 

Conclusion 497 

The use of DAGs in physical activity and nutrition research-related research has 498 

grown in recent years. While DAGs are valuable for identifying adjustment sets, their 499 

practical utility depends on accurately representing the underlying causal structure. Many 500 

of the studies we reviewed did not sufficiently describe or employ a systematic DAG-501 

building process, often omitted critical nodes (e.g., mediators, mediator–outcome 502 

confounders), and, in some cases, did not make their DAGs publicly available.  503 

To address these issues, we recommend that researchers: 1) Clearly document 504 

their DAG-building process, for instance with a decision log, and to follow established 505 

guidelines and structured frameworks, such as ESC-DAGs (31) or the approaches 506 

outlined by Poppe et al (32); 2) Incorporate temporal information by arranging variables 507 



chronologically to reflect causal order and to avoid cyclical paths; 3) If multiple models 508 

or outcomes are of interest, use separate DAGs to clearly depict the potential causal 509 

structure and underlying assumptions of each one; 4) Consider all relevant variables, 510 

which in addition to confounders, includes mediators, mediator-outcome confounders, 511 

colliders, and effect modifiers. These latter variables are particularly relevant when 512 

estimating total versus direct effects; and 5) Expand DAG use to identify potential sources 513 

in bias in RCTs, including those related to adherence, missing data, and selection issues 514 

in randomized trials. Following these recommendations may enhance the transparency, 515 

reproducibility, and accuracy of DAG-based causal inference in physical activity and 516 

nutrition research. 517 

 518 

Acknowledgements 519 

G. Esteves, P. Swinton and E. Dolan conceptualized the idea for the review. P. Swinton 520 

and L. Santos assisted with methodology for the review. L. Santos assisted with 521 

conceptualizing the search strategy. G. Esteves wrote the initial draft of the manuscript. 522 

G. Esteves, P. Swinton and J. Shim screened articles for eligibility. G. Esteves and J. 523 

Slaton extracted the data. G. Esteves analysed the resulting data and created the 524 

visualizations and summaries. All authors contributed by reviewing, editing, and writing 525 

the final version of the manuscript. 526 

 527 

Funding 528 

G. Esteves, E. Dolan and L. Santos are supported by research grants from the São Paulo 529 

Research Foundation (FAPESP, grant numbers 2020/07860-9, 2019/05616-6, 530 

2019/26899-6, 2023/08433-5). No specific funding was provided for this investigation. 531 



 532 

Conflicts of interest 533 

The authors declare no conflict of interest. 534 

 535 

References 536 

1. Pearl J. Causal Inference in the Health Sciences: A Conceptual Introduction. 537 

Health Serv Outcomes Res Methodol. 2001;2(3/4):189–220.  538 

2. Hernán MA, Hsu J, Healy B. A Second Chance to Get Causal Inference Right: A 539 

Classification of Data Science Tasks. CHANCE. 2019 Jan 2;32(1):42–9.  540 

3. Grimes DA, Schulz KF. Bias and causal associations in observational research. 541 

The Lancet. 2002 Jan;359(9302):248–52.  542 

4. Hernán MA, Hernández-Díaz S, Robins JM. A Structural Approach to Selection 543 

Bias. Epidemiology. 2004 Sep;15(5):615–25.  544 

5. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. 545 

Epidemiology. 1999 Jan;10(1):37–48.  546 

6. Tennant PWG, Murray EJ, Arnold KF, Berrie L, Fox MP, Gadd SC, et al. Use of 547 

directed acyclic graphs (DAGs) to identify confounders in applied health 548 

research: review and recommendations. Int J Epidemiol. 2021 May 549 

17;50(2):620–32.  550 

7. Knüppel S, Stang A. DAG program: identifying minimal sufficient adjustment 551 

sets. Epidemiology. 2010 Jan;21(1):159.  552 

8. Hernan MA, Cole SR. Invited Commentary: Causal Diagrams and Measurement 553 

Bias. Am J Epidemiol. 2009 Oct 15;170(8):959–62.  554 

9. Peters MM, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: 555 

Scoping reviews. In: JBI Manual for Evidence Synthesis. JBI; 2020.  556 

10. Clark JM, Sanders S, Carter M, Honeyman D, Cleo G, Auld Y, et al. Improving 557 

the translation of search strategies using the Polyglot Search Translator: a 558 

randomized controlled trial. Journal of the Medical Library Association. 2020 559 

Apr 1;108(2).  560 

11. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. 561 

PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and 562 

Explanation. Ann Intern Med. 2018 Oct 2;169(7):467–73.  563 

12. Textor J, Hardt J, Knüppel S. DAGitty. Epidemiology. 2011 Sep;22(5):745.  564 



13. Ferguson KD, McCann M, Katikireddi SV, Thomson H, Green MJ, Smith DJ, et 565 

al. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a 566 

novel and systematic method for building directed acyclic graphs. Int J 567 

Epidemiol. 2020 Feb 1;49(1):322–9.  568 

14. Tennant PW, Arnold K, Berrie L, Ellison GT, Gilthorpe MS. ADVANCED 569 

MODELLING STRATEGIES Challenges and pitfalls in robust causal inference 570 

with observational data [Internet]. 2017. Available from: http://lida.leeds.ac.uk/ 571 

15. Choi KW, Chen CY, Stein MB, Klimentidis YC, Wang MJ, Koenen KC, et al. 572 

Assessment of Bidirectional Relationships Between Physical Activity and 573 

Depression Among Adults. JAMA Psychiatry. 2019 Apr 1;76(4):399.  574 

16. Pearl J. Causal Diagrams for Empirical Research. Biometrika. 1995 575 

Dec;82(4):669.  576 

17. Campbell T, Cullen B. Estimating the effect of physical activity on cognitive 577 

function within the UK Biobank cohort. Int J Epidemiol. 2023 Oct 5;52(5):1592–578 

611.  579 

18. Foraita R, Witte J, Börnhorst C, Gwozdz W, Pala V, Lissner L, et al. A 580 

longitudinal causal graph analysis investigating modifiable risk factors and 581 

obesity in a European cohort of children and adolescents. Sci Rep. 2024 Mar 582 

21;14(1):6822.  583 

19. Peng Z, Apfelbacher C, Brandstetter S, Eils R, Kabesch M, Lehmann I, et al. 584 

Directed acyclic graph for epidemiological studies in childhood food allergy: 585 

Construction, user’s guide, and application. Allergy. 2024 Aug 17;79(8):2051–586 

64.  587 

20. Schwartz MH, Steele KM, Ries AJ, Georgiadis AG, MacWilliams BA. A model 588 

for understanding the causes and consequences of walking impairments. PLoS 589 

One. 2022 Dec 28;17(12):e0270731.  590 

21. Horgan BG, Drew MK, Halson SL, Piromalli LE, Drinkwater EJ, Chapman DW, 591 

et al. Impaired recovery is associated with increased injury and illness: A 592 

retrospective study of 536 female netball athletes. Scand J Med Sci Sports. 2021 593 

Mar 18;31(3):691–701.  594 

22. Amaral YN di V do, Marano D, Filha MMT, Moreira MEL. Pre-gestational 595 

overweight and polyunsaturated fatty acids in human milk: theoretical causality 596 

model. Cien Saude Colet. 2024;29(2).  597 

23. Tang D, Xiao X, Chen L, Kangzhu Y, Deng W, Basang, et al. Association of 598 

dietary patterns with obesity and metabolically healthy obesity phenotype in 599 

Chinese population: a cross-sectional analysis of China Multi-Ethnic Cohort 600 

Study. British Journal of Nutrition. 2022 Dec 14;128(11):2230–40.  601 

24. Xiao X, Qin Z, Lv X, Dai Y, Ciren Z, Yangla Y, et al. Dietary patterns and 602 

cardiometabolic risks in diverse less-developed ethnic minority regions: results 603 

from the China Multi-Ethnic Cohort (CMEC) Study. Lancet Reg Health West 604 

Pac. 2021 Oct;15:100252.  605 



25. Preußel K, Milde-Busch A, Schmich P, Wetzstein M, Stark K, Werber D. Risk 606 

Factors for Sporadic Non-Pregnancy Associated Listeriosis in Germany—607 

Immunocompromised Patients and Frequently Consumed Ready-To-Eat 608 

Products. PLoS One. 2015 Nov 23;10(11):e0142986.  609 

26. Kwok WS, Khalatbari-Soltani S, Dolja-Gore X, Byles J, Oliveira JS, Pinheiro 610 

MB, et al. Differences in Falls and Physical Activity in Older Women From Two 611 

Generations. J Gerontol A Biol Sci Med Sci. 2024 Apr 1;79(4).  612 

27. Campbell T, Ferguson K, Whyte J, Cullen B. Constructing a graphical model of 613 

the relationship between physical activity and cognitive function based on a 614 

systematic review of prospective evidence. 2021.  615 

28. Foraita R, Witte J, Börnhorst C, Gwozdz W, Pala V, Lissner L, et al. A 616 

longitudinal causal graph analysis investigating modifiable risk factors and 617 

obesity in a European cohort of children and adolescents. Sci Rep. 2024 Mar 618 

21;14(1):6822.  619 

29. Kalisch M, Ch BME. Estimating High-Dimensional Directed Acyclic Graphs 620 

with the PC-Algorithm Peter B ¨ uhlmann. Vol. 8, Journal of Machine Learning 621 

Research. 2007.  622 

30. Gururaghavendran R, Murray EJ. Can algorithms Replace Expert Knowledge for 623 

Causal Inference? A Case Study on Novice Use of Causal Discovery. Am J 624 

Epidemiol. 2024 Aug 31;  625 

31. Ferguson KD, McCann M, Katikireddi SV, Thomson H, Green MJ, Smith DJ, et 626 

al. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a 627 

novel and systematic method for building directed acyclic graphs. Int J 628 

Epidemiol. 2020 Feb 1;49(1):322–9.  629 

32. Poppe L, Steen J, Loh WW, Crombez G, De Block F, Jacobs N, et al. How to 630 

develop causal directed acyclic graphs for observational health research: a 631 

scoping review. Health Psychol Rev. 2024 Sep 27;1–21.  632 

33. Tomova GD, Arnold KF, Gilthorpe MS, Tennant PWG. Adjustment for energy 633 

intake in nutritional research: a causal inference perspective. Am J Clin Nutr 634 

[Internet]. 2022 Jan 11;115(1):189–98. Available from: 635 

https://academic.oup.com/ajcn/article/115/1/189/6329041 636 

34. Tomova GD, Gilthorpe MS, Tennant PW. Theory and performance of 637 

substitution models for estimating relative causal effects in nutritional 638 

epidemiology. Am J Clin Nutr. 2022 Nov;116(5):1379–88.  639 

35. Ibsen DB, Dahm CC. Food substitutions revisited. Am J Clin Nutr. 2022 640 

Nov;116(5):1195–8.  641 

36. PEARL J. Causal diagrams for empirical research. Biometrika. 1995;82(4):669–642 

88.  643 



37. Lee KJ, Carlin JB, Simpson JA, Moreno-Betancur M. Assumptions and analysis 644 

planning in studies with missing data in multiple variables: moving beyond the 645 

MCAR/MAR/MNAR classification. Int J Epidemiol. 2023 Aug 2;52(4):1268–75.  646 

38. Bulbulia JA. Methods in causal inference. Part 4: confounding in experiments. 647 

Evol Hum Sci. 2024 Sep 27;6:e43.  648 

39. Evanchuk JL, Kozyrskyj A, Hanas N, Goruk S, Vaghef-Mehrabani E, Archundia-649 

Herrera CM, et al. Maternal Iron Status Is Dynamic Throughout Pregnancy and 650 

Might Predict Birth Outcomes in a Sex Dependent Manner: Results from the 651 

Alberta Pregnancy Outcomes and Nutrition (APrON) Cohort Study. J Nutr. 2023 652 

Sep;153(9):2585–97.  653 

40. Nilsson A, Bonander C, Strömberg U, Björk J. A directed acyclic graph for 654 

interactions. Int J Epidemiol. 2021 May 17;50(2):613–9.  655 

  656 


