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Abstract 

The sports science replication project has raised concerns about the replicability of published research. Low 

replication rates can have several causes. One possible cause is an excess of significant results caused by 

publication bias, where selection for significance inflates the proportion of significant findings in the literature, 

while the statistical power to detect effects is substantially lower. To date, no study has systematically assessed 

the average statistical power of research in the field. One method to assess publication bias and average statistical 

power is the z-curve method. In this study, we manually extracted 350 independent p-values corresponding to the 

hypothesis tested in 350 studies published across 10 applied sports and exercise science journals. After exclusions, 

a z-curve analysis was performed on 269 independent p-values. The estimate of the Observed Discovery Rate 

(0.68) is larger than the upper bound of the 95% confidence intervals (CI) of the Expected Discovery Rate of 

[0.05; 0.33] indicating strong publication bias in the literature. The average statistical power is 11% [0.05; 0.33], 

and only 29% of studies are estimated to have been designed with high power. The Expected Replication Rate 

was 0.49 95% CI [0.36; 0.61], indicating that only 49% of direct replications with the same sample size should be 

expected to replicate. Publication bias, combined with low average statistical power, is likely to result in a body 

of literature characterized by inflated effect sizes, a high proportion of type I and type II errors, and therefore low 

replicability. Addressing these issues requires a collective effort to build a more informative and reliable 

knowledge base. 

  



1. Introduction 
To appropriately evaluate how well scientific claims are empirically supported, it is essential that all observed 

results are reported in the published scientific literature. Problematically, there are clear signs of selective 

reporting, and statistically significant results are much more likely to be published than nonsignificant results 

(Scheel et al., 2021; Sterling et al., 1995). Meta-scientific research has observed that between 73% and 81% of 

published studies in sports and exercise science journals report a statistically significant effect that supports the 

hypothesis that the researchers set out to test (Büttner et al., 2020; Mesquida et al., 2023; Twomey et al., 2021). 

Is this estimate too high, and a possible sign of bias in the literature, or is it in line with what should be expected 

in an unbiased literature? The answer to this question depends on two unknown properties: the statistical power 

of the studies (henceforth, power), and the proportion of hypotheses that test true effects in the published literature 

(Brunner & Schimmack, 2020; Scheel et al., 2021). Power is the probability of observing a statistically significant 

effect if there is a true effect, and in turn depends on the sample size, the effect size, the statistical test that is 

performed, and the alpha level. Although the power of studies is unknown, the average power of studies can be 

meta-analytically estimated under specific assumptions. Although the proportion of tested hypotheses that 

examine true effects is also unknown, we can examine how high the proportion of hypotheses testing true effects 

would need to be to achieve the observed rate of significant effects in the literature, given an estimate of the 

average statistical power. By comparing the proportion of studies supporting their tested hypotheses with the 

average power of those studies, we offer insights about the plausibility that publication bias is one of the 

contributing factors of low replicability in sports and exercise science. 

 

The percentage of significant findings in a set of studies, also referred to as the Observed Discovery Rate (ODR) 

can be computed as follows (Scheel et al., 2021): ODR = α × (1 − t) + (1 − β) × t, where α is the alpha level, t is 

the proportion of true hypotheses, β is the type II error and 1 − β is the power of a test. The Observed Discovery 

Rate in sports and exercise science of 73% to 81% can therefore result from a range of combinations of the power 

of tests and proportions of true hypotheses. For example, an Observed Discovery Rate of 73% can be achieved 

when 100% of the hypotheses tested are true and the average power of studies is 73%, or when 73% of the 

hypotheses tested are true and the average power of studies is close to 100%, or any combination in between these 

two extremes. Figure 1 visualizes the relationship between power and the proportion of true hypotheses, and as 

illustrated, the lower the proportion of true hypotheses is, the higher the power of the tests must be.  

 

 



 
Figure 1. Combinations of the proportion of true hypotheses (x-axis) and power (y-axis) required to produce 73% 

or 81% statistically significant findings assuming α = 5% and no bias. Notably, achieving 73% significant findings 

requires the average power to be at least 73% if all tested hypotheses are true.  

 

The assumption that sports and exercise scientists almost exclusively examine true hypotheses seems unrealistic, 

and this assumption is not in line with empirical evidence from other fields (Szucs & Ioannidis, 2017; Wilson & 

Wixted, 2018), or with the results of sports science replication project (Murphy et al., 2024). A field that only 

studies true hypotheses is arguably not sufficiently pushing the boundaries of our current understanding. Less is 

known about how reasonable the assumption is that studies in sports and exercise science achieve an average 

power of 73%. If this is not the case, then the high percentage of significant findings could only be explained by 

bias towards significant effects in the published literature. Given the small sample sizes reported in the field (Abt 

et al., 2020; Mesquida et al., 2022, 2023), it seems doubtful that the average power could as high as 73%. However, 

high power could be achieved if studies investigate large effects, or employ within-subject designs. The aim of 

the current study is to provide the first systematic assessment of the average power of the published sports and 

exercise science literature to inform future discussions about the presence of publication bias in the field, and its 

potential effect on the replicability of sports and exercise science. 

It is important to distinguish between two broad categories of bias: “publication bias” (Mahoney, 1977; Rosenthal, 

1979) and “p-hacking” (Bakker et al., 2012; Stefan & Schönbrodt, 2023). Publication bias occurs when the studies 

in the scientific literature are systematically unrepresentative of the studies that are performed. It is often caused 

by the tendency of editors, reviewers, and researchers to prefer studies that support the hypothesis tested over 

those that failed to support it (e.g., significance bias). In the context of null hypothesis significance testing, a study 

reporting a p-value below α would provide support in favor of the hypothesis tested, and thus would be more 

likely to get published than a study that failed to support the same hypothesis. P-hacking can be defined as a set 

of problematic practices that opportunistically exploit flexibility in data collection and analysis to render non-

significant findings significant. Surveys among scientists suggest that p-hacking is widespread across disciplines 

(see Lakens et al., 2024 for an overview), and therefore there is no reason to believe that sport and exercise science 

is an exception. In a research environment shaped by publication pressures and incentives that reward significant 

findings, researchers might resort to p-hacking to render their non-significant effect significant and thus increase 

their chances of publication. A main consequence of publication bias and p-hacking is that the percentage of 

significant findings in the literature is higher than the average power of studies, contributing to an excess of 

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0
proportion of true hypotheses

av
er

ag
e 

st
at

is
tic

al
 p

ow
er

ODR
0.73

0.81



significant findings that reflect type 1 errors. An excess of significant findings has been reported in sports therapy 

and rehabilitation (Borg et al., 2023) and in the Journal of Sports Sciences (Mesquida et al., 2023). Whether these 

findings can be generalized to the field of sport and exercise science has yet to be established and is the primary 

focus of the current study.  

 

Z-curve 

One method that models the presence of publication bias and identifies underpowered designs from the 

distribution of p-values is the z-curve method (Bartoš & Schimmack, 2020). Briefly, the z-curve method 

transforms reported p-values into absolute z-scores and compares the observed and expected distribution of z-

scores. If these two distributions are sufficiently similar there is no indication of bias, whereas large differences 

between the observed and expected distribution suggest the presence of bias. The z-curve method estimates 4 

parameters that provide insights into the replicability of a literature, under specific assumptions (Brunner & 

Schimmack, 2020). First, z-curve assumes that observed z-scores are obtained from multiple sampling 

distributions with different means allowing for heterogeneity in power estimates. This makes z-curve a better 

choice for our study as opposed to the related p-curve analysis since high heterogeneity can be expected when 

studies are selected from different subdisciplines such as sports performance, exercise physiology, biomechanics, 

and sports psychology.  

Second, z-curve assumes that all p-values are independent. This assumption is met if, as in our study, only one p-

value per study is included in the z-curve analysis. Finally, z-curve assumes that all studies used the same criterion 

for statistical significance (α = 0.05). Thus, if a study corrected a for multiple comparisons or used a more 

conservative criterion (e.g., α = 0.01), bias is modelled based on an alpha level of 0.05 instead of the actual more 

conservative criterion.  This is a conservative assumption, as z-curve will overestimate replicability when the 

assumed alpha level is higher than the actual alpha level. The 4 parameters computed in a z-curve analysis are 

described in Table 1. 

 

Table 1. Description of the 4 parameters estimated by z-curve 

Parameter Description 

Observed 
Discovery Rate 

(ODR) 

The ODR is the rate of studies reporting a significant p-value that would support the 
hypothesis tested. However, this rate is not necessarily an accurate reflection of true effects 
because this rate also includes type I errors. For instance, imagine that researchers test 100 
hypotheses of which 70 correspond to true effects and 30 correspond to null effects. 
Furthermore, assume that researchers design their studies with 80% power and set α to 0.05. 
Using equation (1), the ODR would be 58% (0.05 × (1 – 0.7) + (1 – 0.2) × 0.7 = 58%). Out 
of these 58 significant effects, 56 would correspond to true effects (70 x 0.8) and ~2 would 
correspond to type I errors (30 x 0.05). Furthermore, publication bias inflates the ODR. 
Following with the previous example, if 15 out of the 30 null effects were not published due 
to publication bias, the ODR would be 68% (56 + 2 /85 = 68%). Publication bias and p-
hacking also increase the proportion of type I errors, thereby inflating the ODR. 

Expected 
Discovery Rate 

(EDR) 

The EDR is an estimate of the average power of all studies included in the z-curve analysis. 
For example, if we have three studies with 20%, 50% and 90% power each, the EDR would 
be 50% ((10 + 50 + 90)/3). The EDR can be compared to the ODR to determine the presence 
of publication bias. If the point estimate of the ODR is larger than the upper bound of the 
95% CI of the EDR, we can statistically reject the hypothesis that there is no publication bias 
(Bartoš & Schimmack, 2022). 



Expected 
Replication Rate 

(ERR) 

The ERR is an estimate of the average power of studies reporting a significant p-value. This 
estimate reflects the probability of observing the same significant effect if the study were to 
be replicated using the same sample size and following the same procedures. Using the prior 
example, if the study with a 90% power was the only one that yielded a significant finding, 
then the ERR would be 90%. Thus, the higher the ERR, the more likely it is that the studies 
that reported a significant effect would replicate. 

Maximum False 
Discovery Risk 

(MFDR) 

Th MFDR is an estimate of the maximum percentage of significant findings that are type I 
errors. Importantly, the MFDR does not aim to estimate the actual rate type I errors among 
significant p-values. Rather, it provides an estimate of the worst-case scenario with the 
highest possible proportion of type I errors. If a literature has a low MFDR, readers can be 
assured that most significant findings are true effects. The MFDR is estimated using the 
Expected Discovery Rate and a, and it is computed as MFDR =  !"#$%

#$%
	𝑥	 &

!"	&
. For example, 

with an EDR of 50% and α = 0.05, the MFDR is 0.053, which is close to the nominal α set 
to 0.05. 

 

The distribution of p-values (and therefore the distribution of z-scores) in the published literature is determined 

by four factors, namely, the proportion of studies that investigate true and null effects, the power of studies that 

investigate true effects, publication bias, and p-hacking. To help readers understand which findings to expect from 

a z-curve analysis, we first simulate 300 p-values to represent five distinct scenarios, and then conduct the 

corresponding z-curve analysis. The rationale behind these scenarios is to provide readers with a diverse set of 

conditions, illustrating how the distribution of z-scores is influenced by power and selection bias. We simulate 

300 p-values because this closely represents the number of p-values we will report in our study (i.e., N = 269 after 

exclusions). In the first scenario (“80% power”), p-values are simulated based on a true effect size (Cohen’s ds) 

of 0.3 and a total sample size (N) of 278, which yields a power of ~ 80%. In the second scenario (“Null effect”), 

p-values are simulated based on a true effect size of 0, and therefore the number of significant findings corresponds 

to α. That is, ~ 5% of studies report a significant effect, but all these findings are type I errors, as there is no real 

effect to be found. In the third scenario (“Publication bias and 18% power”), p-values are simulated based on a 

true effect size of 0.3 and N = 30, which yields a power of ~ 20%. Additionally, publication bias is introduced, 

such that 40% of the non-significant findings remain unpublished. In the fourth scenario (“Mild optional 

stopping”), p-values are simulated based on a true effect size of 0 and a mild optional stopping strategy where 

researchers perform a maximum of 5 hypothesis tests. When researchers engage in optional stopping, they 

repeatedly perform a hypothesis test after adding new participants, until either the maximum sample size that 

researchers are willing to recruit is achieved (in the scenario N = 50), or a significant p-value is observed, without 

correcting the alpha level for multiple comparisons. In the last scenario (“Mixed”), the p-values are simulated 

using a number of possible outcomes as follows; 300 p-values are first simulated, of which 100 are based on a 

true effect size of 0.3 and N of 278, 100 are based on a true effect size of 0.3 and N = 100, and 100 are based on 

a true effect size of 0.3 and N of 26. 100 of the non-significant p-values have been then randomly replaced by p-

values obtained through severe optional stopping. The distributions of z-scores under each scenario are presented 

in Figure 2 and the corresponding results of each z-curve are presented in Table 2. 

 



 
Figure 2. Distribution of 300 z-scores over the interval 0-6. For all five scenarios we simulated 300 p-values using 

an unpaired one-tailed t-test and set α to 0.05. The vertical red line refers to a z-score of 1.96, the critical value 

for statistical significance when using an a of 0.05 in a two-sided test. The solid blue line is the expected density 

distribution for the observed p-values (represented in the histogram as z-scores). The dotted lines represent the 

95% CI for the density distribution. The code for the simulations and the z-curve analyses can be found at 

https://osf.io/d7wyc/.  

 
Table 2. Parameter estimates [95% CI] of the z-curves conducted under five scenarios.  

 
Observed 

Discovery Rate 

Expected 

Discovery Rate 

Expected 

Replication Rate 

Maximum False 

Discovery Rate 

80% power 0.82 [0.77; 0.86] 0.78 [0.64; 0.91] 0.8 [0.70; 0.88] 0.02 [0.01 0.03] 

null effect 0.06 [0.03; 0.09] 0.05 [0.05; 0.10] 0.03 [0.03; 0.06] 1 [0.47; 1] 
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publication bias and 
20% power 0.30 [0.25.; 0.36] 0.08 [0.05; 0.22] 0.10 [0.03; 0.20] 0.65 [0.19; 1] 

mild optional 
stopping 0.14 [0.10; 0.19] 0.05 [0.05; 0.10] 0.03 [0.03; 0.06] 1 [0.47; 1] 

mixed 0.62 [0.57; 0.68] 0.09 [0.05; 0.20] 0.35 [0.23; 0.46] 0.5 [0.21; 1] 

 

The results of these simulations illustrate that in the absence of bias, when studies are designed with 80% power, 

the average power of studies matches the Observed Discovery Rate, whose estimate lies within the 95% CI of the 

Expected Discovery Rate. The Maximum False Discovery Risk is close to the alpha level because studies are 

designed with high power. When studies investigate a null effect, the Observed Discovery Rate corresponds to α, 

and the Maximum False Discovery Risk is 1, because all significant findings are indeed type I errors. In the 

presence of publication bias and studies with 20% power we can see that publication bias inflates the Observed 

Discovery Rate and yields an estimate that is larger than the upper limit of the Expected Discovery Rate 95% CI. 

This indicates there is bias in the set of studies. Furthermore, when the Expected Discovery Rate does not exclude 

5%, it suggests that all observed effects may be type I errors. In the fourth situation, where optional stopping was 

simulated under the null distribution, we can see that Observed Discovery is inflated beyond the alpha level. Note 

that the Observed Discovery Rate is higher than the upper bound of the Expected Discovery Rate 95% CI, again 

indicating bias. It is important to note that although the z-curve method can be used to assess publication bias, it 

is not developed to identify p-hacking, and the z-curve method might not be able to distinguish between 

publication bias and p-hacking. Furthermore, the Expected Discovery Rate is 5% which corresponds to the 

expected type I error under the null distribution. When the Expected Discovery Rate does not exclude 5%, it 

suggests that all effects might be, in fact, null effects. Additionally, the Maximum False Discovery Risk is 1, in 

line with the fact that all significant findings are type I errors. Finally, in the mixed scenario the Observed 

Discovery Rate is higher than the upper bound of the Expected Discovery Rate 95% CI, once again indicating the 

presence of bias, but also highlighting how z-curve analysis is not able to distinguish between publication bias 

and p-hacking. 

To sum up, the z-curve method can be used to distinguish between an unbiased and biased published literature by 

comparing the Observed Discovery Rate, the Expected Discovery Rate and the Expected Replication Rate. In the 

absence of bias, and high average power, the Observed Discovery Rate should lie inside the 95% CI of the 

Expected Discovery Rate and the higher the power, the more z-scores should be larger than 3 (i.e., p < 0.001). In 

such case, the published literature is characterized by studies investigating true effects with high-power designs 

and therefore it should be expected to be highly replicable in direct replications. On the contrary, if the Observed 

Discovery Rate is larger than the upper bound of the 95% CI of the Expected Discovery Rate, the published 

literature is biased and researchers have reasons to doubt the likelihood that effects will replicate. Put even more 

simply, the blue solid line shows the expected distribution of p-values in all simulations. In the cases where there 

is a questionable absence of observed p-values below this line, in particular to the left of the red line of z =1.96 

(representing non-significant effects), the model would indicate evidence of bias.  

 



To date, there is no study that has complemented the percentage of significant studies with the average power in 

the same sample of studies in sports and exercise science, which is required to interpret whether there is an excess 

of significant findings. Furthermore, although the recently reported replication rate of the sports science 

replication project (Murphy et al., 2024) should provide empirical evidence of the low replicability of the field, 

skeptical sport and exercise scientists may argue that such low replication rates are not representative of the field 

due to the small number of replications conducted. Alternatively, they might attribute failures to replicate original 

studies to deviations from the original studies, replication studies with underpowered designs, unaccounted 

experimental factors, or even to a bias towards non-replication by replication labs. The study aims to contribute 

to the sports science replication project by providing empirical support for the idea that low replication rates are 

at least in part caused by publication bias. Specifically, we assess the presence of publication bias and average 

power in a sample of 350 studies published across 10 quartile 1 applied sports and exercise science journals using 

a z-curve analysis of primary statistical results.  

 

2. Methods 
This is a retrospective observational study. The preregistration of this study can be found at https://osf.io/d7wyc/. 

 
2.1. Study sample size 

A sample of 350 studies was used for the purpose of this study. As stated in the preregistration, this sample size 

was based on a precision analysis conducted for a previous study to estimate an expected proportion of 30% of 

studies reporting an a priori power analysis (https://osf.io/mqbr2/). To estimate a proportion of 30% with a margin 

of error of 5%, the precision analysis returned a sample of 323 studies, which was rounded up to 350 studies. 

These 350 studies were also used to conduct the z-curve analysis. 

 

2.2. Journal and study selection protocol 

The 350 studies were sampled from 10 journals ranked in quartile 1 according to www.scimagojr.com (as of 13th  

September, 2022). The list of journals can be found at https://osf.io/d7wyc/. The study selection protocol was 

based on the Proposal of a Selection Protocol for Replication of Studies in Sports and Exercise Science (Murphy 

et al., 2022). Only applied sport and exercise science studies (studying changes in human performance in response 

to physical activity, exercise, and sport) in the subdisciplines of physiology, sports performance, physical activity, 

injury prevention and psychology were considered. Moreover, only confirmatory studies that tested a hypothesis 

with an experimental or quasi-experimental design were included. We followed the protocol described in Murphy 

et al., (2022) to select studies, but we deviated on two points from the original protocol. First, while the Proposal 

of a Selection Protocol for Replication of Studies in Sports and Exercise only selected studies that reported a 

statistically significant main effect, we considered both statistically significant and nonsignificant effects. Second, 

we also considered interaction effects as opposed to the original selection protocol.  

 

2.3. Inter-rater reliability 

Prior to collecting any data, and in anticipation of difficulties to select the statistical result central to the tested 

hypothesis, we developed coding strategy over a 4-step process. First, the four authors (CM, JM, DL and JW) 

developed and discussed the coding form created by CM. Ambiguities in the coding form were discussed, and 



amendments were made. Second, three raters (CM, JM and JW) independently coded a randomly selected subset 

of 28 studies from the sample pool of studies (350) as a pilot study. Subsequently, raters’ responses were 

compared, and any disagreements were used to improve the clarity of coding form. Third, the same three raters 

(CM, JM and JW) independently coded a second random subset of 19 studies. Interrater agreement was assessed 

by calculating a pooled Fleiss’ Kappa estimate for each coding category across the 47 studies coded in the first 

two rounds of coding. The mean interrater agreement for the categorical responses was 0.61, indicating substantial 

agreement. The second round of coding was also used to discuss disagreements. The remaining 303 studies were 

double coded whereby both JM and JW each coded ~176 studies and CM coded the full sample of studies (350). 

Interrater agreement was assessed by calculating a pooled Cohen’s Kappa estimate. The interrater agreement for 

the final round of coding was 0.84, indicating almost perfect agreement. Interrater agreements across variables 

and the coding form can be found at https://osf.io/d7wyc/. After termination of data collection, any discrepancies 

in coding decisions were resolved through discussion between the two pairs of raters and can be found at  

https://osf.io/d7wyc/. DL provided guidance when discrepancies arose and agreement between two raters could 

not be reached.  

 

2.4. Procedures and data extraction 

The z-curve analysis is an example of a p-value meta-analysis and is based on the manually coded p-values from 

the 350 studies. Only one p-value per study was extracted, which corresponded to the main statistical test for the 

central hypothesis of each study. Because hypotheses statements often include vague language and the primary 

dependent variable is not always operationalized clearly, we used a coding strategy that consisted of several steps 

to select the key dependent variable. First, the selected dependent variable would be the one for which researchers 

controlled for both type I and type II error rates. Specifically, in addition to controlling for type I error, researchers 

conducted an a priori power analysis to control for type II error. Thus, the key dependent variable should be listed 

in both the a priori power analysis and hypothesis statements. However, on some occasions the dependent variable 

stated in the a priori power analysis would not match the dependent variable stated in the hypothesis. In these 

cases, we would select the dependent variable stated in the hypothesis, if clearly identifiable. Often, the statistical 

result central to the hypothesis tested was difficult to identify due to the lack of a priori power analysis and 

vagueness of the hypothesis tested. This included hypothesis statements that predicted the effect of one or several 

interventions on more than one dependent variable or a dependent variable that was measured in multiple ways. 

In those cases, we selected a dependent variable linked to the central hypothesis test and listed in: 1) the sentence 

describing the aim of the study; 2) the abstract; 3) title; 4) or the results, in this order of priority. We selected the 

dependent variable that best matched the language the authors use to imply the focus of the study, in cases where 

there were still several dependent variables listed. For each study the following pieces of information were 

extracted the a priori power analysis statement, the hypothesis statement, whether the hypothesis predicted the 

presence or absence of an effect, the type of effect (i.e., a mean difference, a main effect or interaction effect), the 

statistical result including the degrees of freedom, the test statistic, the effect sizes and its confidence interval (CI), 

and the p-value. A disclosure table containing all extracted information used to justify the coding decisions 

regarding the selected key statistical result for each selected study can be found at https://osf.io/d7wyc/. 

 

2.5. Recomputing p-values  



The z-curve method requires exact p-values (e.g., p = 0.002) as the input parameter. If the corresponding p-value 

was reported relatively (e.g., p < 0.05), we attempted to recompute the p-value when sufficient information was 

available (i.e., degrees of freedom and F-ratio or t-statistic). P-values were recomputed in Microsoft Excel using 

the functions T.DIST.2T or F.DIST.RT for t-tests and F-tests, respectively. These functions require both the test 

statistic and degrees of freedom. In case where a t-statistic or F-ratio from a one-way ANOVA with two levels 

was reported but the degrees of freedom was not reported, degrees of freedom were determined using the sample 

size per group and study design reported in the original study. When the exact p-value and the corresponding 

statistic were not reported, but an effect size was available, we attempted to convert effect sizes into p-values for 

study designs involving a t-test and one-way ANOVAs with two levels. Formulas used to recompute p-values 

from effect sizes can be found in the supplementary information at https://osf.io/d7wyc/. We did not attempt to 

compute other ANOVA effect sizes (i.e., ω2, ω(
)) because they require information that is seldom reported in 

articles such as mean-square (MS) and sum-of-squares (SS) errors.  

 

2.6. Study exclusions 

P-values reported as p < 0.05 or p > 0.05, which could not be recomputed in their exact form, were excluded. 

There is no optimal decision in how to deal with p-values that in studies where results are underreported, and 

exact p-values cannot be recomputed, which stresses the importance of fully reporting the results of statistical 

tests. Second, p-values extracted from studies that tested the hypothesis of no effect or equivalence using a classic 

hypothesis test were not included. Similarly, p-values obtained from studies that tested a directional hypothesis 

but obtained a significant result in the other direction were not included because they can also distort the results 

of the z-curve. Finally, studies that used a mixed design but did not directly compare two interventions were 

excluded, such as claims that one intervention is superior to a control condition after observing a pre-post 

significant difference in the intervention group, while the corresponding pre-post difference in the control group 

is not significant. Performing two paired t-tests is statistically invalid because it does not test the hypothesis that 

researchers set out to test (i.e., one intervention is superior or inferior to the other) which would require a direct 

comparison between the two groups (Bland & Altman, 2011). Out of the 350 independent p-values extracted, 57% 

(46/81) could not be recomputed into an exact p-value, 28% (23/81) studies tested the hypothesis of no difference, 

7% (6/81) studies reported a significant p-value in the opposite direction as predicted, for 6% (5/81) of studies 

key statistical result was unclear and 1% (1/81) used a within-subject comparison instead of an interaction. 

Therefore, a total of 81 p-values were excluded, and a total of 269 p-values were converted into z-scores to fit the 

z-curve model.  

 

2.7. Study deviations 



In the preregistration it was stated that studies reporting absolute p-values (e.g., p > 0.05) that could not be 

recomputed into their exact form would not be included. However, p-values reported as p < 0.001 or p < 0.005 

were coded as p = 0.0001 and p = 0.0005, respectively and included in the z-curve analysis. This decision 

represented a deviation from the preregistration. We made this conservative decision because it is common (and 

defensible) to report results with such small p-values using the ‘smaller than’ notation, and this reporting strategy 

is more likely to be observed for studies investigating true effects with high power. Excluding such studies would 

bias our inclusion criteria towards lower-powered studies, while deviating from our preregistration leads to the 

inclusion of studies with higher power. A sensitivity analysis excluding these p-values can be found at 

[https://osf.io/d7wyc/]. The results of the sensitivity analysis are similar to the results of primary z-curve analysis.  
 

3. Results 

Out of all 269 included p-values, 3% (11/350) were reported as p < 0.001, 0.35% (1/350) as p < 0.003 and 0.35% 

(1/350) as p < 0.005 which were coded as p = 0.0001, p = 0.0003 and p = 0.0005, respectively, and were included 

in the z-curve model. As a sensitivity analyses, z-curve analysis excluding the p-values coded as p = 0.0001 and 

p = 0.0005 can be found at [https://osf.io/d7wyc/]. The z-curve analysis was performed with the z-curve 2.0 

package in R (R Core Team, 2019). The results of the z-curve analysis are shown in Figure 3. The Observed 

Discovery Rate was 0.68 95% CI [0.62; 0.74] indicating that 68% of sampled studies supported the hypothesis 

tested. The Expected Discovery Rate was 0.11 [0.05; 0.33] indicating an average power of 11% for studies 

reporting both significant and non-significant results. The Expected Replication Rate was 0.49 95% CI [0.36; 

0.61] indicating that studies reporting significant results have an average power of 49%. This suggests that if we 

were going to conduct direct replications with the sample size of the original studies reporting significant results, 

only 49% of these studies would be expected to yield another significant effect. Publication bias can be examined 

by comparing the Observed Discovery Rate (the percentage of significant results in the set of studies) to the 

Expected Discovery Rate (the proportion of the area under the curve on the right side of the significance criterion). 

The point estimate of the Observed Discovery Rate (0.68) is larger than the upper bound of the 95% CI of the 

Expected Discovery Rate of [0.05; 0.33] suggesting that we can statistically reject the null hypothesis that there 

is no publication bias. The point estimate of the Maximum False Discovery Risk was 0.43 95% CI [0.11; 1] 

indicating that, in a worst-case scenario, an estimated 43% of the significant effects could be type I errors. Finally, 

a visual inspection of Figure 3 also indicates that there is a high number of studies (79 out of 269) with z-scores 

greater than 2.8 that indicates the presence of studies investigating true effects with high-power designs (≥ 80%).  

 



 
Figure 3. Distribution of 269 z-scores over the interval 0-6. The vertical red line refers to a z-score of 1.96, the 

critical value for statistical significance when using a two-tailed p-value of 0.05. The dark blue line is the density 

distribution for the inputted p-values (represented in the histogram as z-scores). The dotted lines represent the 

95% CI for the density distribution. Range represents the minimum and maximum values of z-scores used to fit 

the z-curve. 

 

4. Discussion 

The first aim of this meta-study was to estimate the average power of studies published across ten journals by 

conducting a z-curve analysis. The Expected Discovery Rate – the average power of studies reporting a significant 

and non-significant effect– was only 11% 95% CI [0.05; 0.33] which is much lower than the minimum 

recommended level of power of 80%. Despite the low average power, 79 out of the 269 (29%) studies included 

in the z-curve analysis had z-scores greater than 2.8, suggesting that some studies tested true effects with high-

power designs (≥ 80%). In other words, while average power is low, approximately one quarter of studies seem 

to have been designed with adequate power, likely due to examining large effects, using large sample sizes, or 

both. Conversely, many studies had extremely low power, in some cases approaching the lower limit of 5%–the 

type I error rate, which is the expected probability of a significant result if the true effect size is zero. Low power 

is not unique to sports and exercise science but a recurrent issue across disciplines (Button et al., 2013; Maxwell, 

2004; Quintana, 2020). Studies designed with low power yielding non-significant effects have low informational 

value because such findings have a high probability of being a type II error. A more widespread adoption of 

equivalence tests (Lakens, 2017) to statistically test for the absence of meaningful effects could highlight the 

difficulty of interpreting null findings, particularly when sample sizes are small. Furthermore, studies with 

underpowered designs to detect the effect of interest increase the uncertainty around the true effect size, as 

reflected in the width of the CI. For instance, a study conducted with a small sample that reports a 95% CI for a 
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standardized effect size ranging from 0.10 to 0.90 offers little clarity about the true effect. In contrast, a study with 

a larger sample that reports a 95% CI ranging from 0.5 to 0.6 provides a more precise estimate to the scientific 

literature.  

 

Another consequence of studies with underpowered designs in a literature that selects for significance is a high 

false discovery risk (Button et al., 2013; Colquhoun, 2014). Researchers set α to 0.05 with the goal of limiting the 

long-term probability of making a type I error. However, setting α to 0.05 does not ensure that a literature will 

contain at most 5% of type I errors if there is publication bias in the literature. If researchers select a statistically 

significant study from a literature that suffers from high publication bias and low power, the probability that this 

study is a type I error will be much higher than 5%. This is indeed what our analysis reveals: an average power of 

11% results in a maximum false discovery risk of 0.43 95% CI [0.11; 1]. In other words, up to 43% (95% CI [11% 

to 100%]) of the significant findings in the literature could be a type I error. Researchers should be aware of the 

probability that findings in the literature can have a high average probability of being a type 1 error, and should 

aim to reduce this probability by fully reporting all findings regardless of significance, actively designing studies 

to control for bias, utilizing registered reports, and aiming to design well-powered studies.  

 

The second aim of this meta-study was to assess the presence of publication bias. Although our Observed 

Discovery Rate of 68% is not as high as the 81% estimate previously reported (Büttner et al., 2020; Twomey et 

al., 2021), there is a discrepancy of 35% between the Observed Discovery Rate (68%) and the upper bound of the 

Expected Discovery Rate 95% CI (0.33). This suggests strong publication bias. As explained above, strong 

publication bias increases the false discovery risk. The Expected Replication Rate was 49% which estimates that 

only half of the studies that reported a significant effect will replicate. Our observed Expected Replication Rate 

of 49% 95% CI [0.36; 0.61] is in line with the actually observed 56% replication rate (based on statistical 

significance of the replication studies) observed in the sports science replication project (Murphy et al., 2024). 

Therefore, taken together these findings present reasonable evidence of inflated type I error rates in our literature 

body. It is important to point out that the Expected Replication Rate is not a complement of the type I error rate. 

That is, a 50% expected replication rate does not indicate that 50% of the replications would fail because the 

original findings were type I errors. Recall that the Expected Replication Rate is defined as the probability of 

obtaining a significant result using the original sample size in a replication study. Thus, a replication study could 

fail because the original study was a type I error, but also because its study design lacks the power to detect the 

true effect. While the exact contributions of type I and type II errors to the Expected Replication Rate remain 

unknown in our sample of studies, we can compare the Expected Replication Failure Rate (1 – Expected 

Replication Rate) with the Maximum False Discovery Risk to interpret replication failures. The Maximum False 

Discovery Risk (0.43) is close to the Expected Replication Failure Rate (0.51) suggesting that in the worst-case 

scenario almost half of the potential replication failures could be due to type I errors in original studies. Although 

it is desirable to be able to determine how many type I errors are published in the literature, our study is a stark 

reminder that without high-powered study designs and an unbiased literature, distinguishing between true and 

false findings becomes increasingly difficult. The best we can do is to urge researchers to consider the possibility 

that published studies might not replicate, even though the exact probability remains unknown. 



Given the presence of publication bias and an average power of 11% in our sampled studies, statistically 

significant results in the literature are only possible with inflated effect sizes, where the true, unbiased effect size 

is actually much smaller – and possibly even zero. It is therefore not surprising that a common finding among 

replication projects is that unbiased replication studies with larger sample sizes produce much smaller effect sizes 

(Errington et al., 2021; Murphy et al., 2024; Open Science Collaboration, 2015). For instance, the sport science 

replication project found that 88% of the replication effect sizes were severely inflated in comparison to the 

original effect sizes, with a median percentage decrease of 75% (Murphy et al., 2024). The goal of any empirical 

science should be the accumulation of reliable knowledge that researchers can build upon to develop new theories, 

formulate hypotheses, design experiments or conduct meta-analyses (Curran, 2009). However, our findings in 

combination with those reported by the sports science replication project suggest that many studies published in 

our field are upwardly biased, hindering the notion of cumulative science. 

 

To improve the informational value of studies published in the sports and exercise literature there are two practices 

that should be widely adopted to prevent publication bias and underpowered studies. First, an effective safeguard 

against publication bias and p-hacking is the adoption of Registered Reports as a publication format (Chambers 

& Tzavella, 2021; Nosek & Lakens, 2014). Registered Reports prevent publication bias by peer-reviewing the 

study protocol containing the hypothesis, methods, and statistical analysis before data collection, and offer in-

principle acceptance – regardless of whether the hypothesis are supported or not – as long as the protocol is 

followed. Despite their utility as remedy against publication bias and p-hacking only two journals in sport and 

exercise science accept Registered Reports (Abt et al., 2021; Impellizzeri et al., 2019). Second, researchers should 

design their studies with high power to detect the effect of interest by conducting an a priori power analysis, and 

ideally even design a study that has a high probability to detect the absence of a meaningful effect in an 

equivalence test to guarantee an informative result both when the hypothesis is true, as when it is false. 

Regrettably, only 41% of studies in our sample performed an a priori power analysis to justify the sample size, 

and of those, many were poorly conducted (manuscript in preparation). These findings, along with the systematic 

use of small samples (Mesquida et al., 2022; Murphy et al., 2024) should be a real concern to all sport and exercise 

scientists. Journals should require valid sample size justifications (Lakens, 2022), researchers should make sure 

their power analyses are conducted correctly, and whenever it is difficult to collect sufficient data individually, 

researchers in our field should consider collaborative research projects. Where feasibility and resource constraints 

limit sample sizes, researchers should avoid making overly generalizable claims based on studies with 

underpowered designs.  

 

We need to highlight three limitations of our study. First, even though we followed a coding scheme, the raters 

often had to make subjective decisions when selecting the key statistical result. These difficulties arose because 

hypotheses were often vaguely stated, mainly as a result of two issues: 1) the effect of interest was often not 

clearly stated, and 2) the primary outcome was often operationalized using additional measures of the same 

construct, or measured in multiple ways (Wicherts et al., 2016). These two issues, either in isolation or in 

combination, result in a multiplicity of hypothesis tests, which makes it difficult to link the tested hypothesis to 

the statistical result. Second, we included only studies that tested their hypotheses with t-tests or ANOVAs and 

thus excluded studies that used other types of statistical tests such as mixed models or Bayesian analyses. We do 



not know if our results generalize to other designs or analyses. Third, 81 out of the 350 independent p-values, 

which represents 23% of the sampled studies, were excluded due to poor reporting practices or misuse of 

hypothesis tests (e.g., testing a hypothesis of no difference with a classic null hypothesis test). This means our 

findings do not generalize to studies that fail to fully report statistical results.  

 

5. Conclusion 

Overall, our findings indicate that there is substantial publication bias in sports and exercise science. The average 

power of the sampled studies is 11%, and just one quarter of the studies seem to have been designed with high 

power. The presence of publication bias in combination with low average power is likely to contribute to a 

literature characterized by inflated effect sizes, a high proportion of type I and II errors, and therefore a low 

replicability rate. The z-curve analysis estimates that about half of the published significant findings might not 

replicate in a direct replication. The recent replication project in sports science (Murphy et al., 2022) observed a 

replication rate of 56% (based on statistical significance of the replication studies), despite the fact that these 

replication studies had a larger sample size than original studies. Together, these findings should be a cause of 

concern for all researchers in the discipline. Sport and exercise science should make a collective effort to build a 

more informative and reliable knowledge base. 
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