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Abstract

Supervision during resistance training (RT) may enhance strength gains by optimizing trainee effort.
We investigated supervision’s role in effort during RT in a unique setting with private strength clinics,
where members train either unsupervised (“Core” membership) or supervised by a qualified exer-
cise scientist (“Assisted” membership). Using both retrospective analysis of member training records
and a prospective experimental study, we examined supervision’s impact on exercise performance,
measured as time under load (TUL), rating of perceived effort (RPE), and rating of perceived dis-
comfort (RPD). Bayesian methods were applied, using empirically informed prior distributions from
retrospective data to model the experimental study. The previous observational sample included
~1000 members training sessions from each membership type, while the experimental study involved
45 Core members performing both supervised and unsupervised sessions in randomized order, using
their current training loads to momentary failure. Our findings suggest that, in real-world settings (in
situ), exercise performance differed little between supervised and unsupervised training. However,
in our experimental study, supervision improved TUL (Core = 125.12 [95%QI: 113.70, 131.90] sec;
Assisted = 147.35 [95%QI: 134.29, 154.81] sec; contrast = -22.10 [95%QI: -26.60, -17.61] sec). In
percentage points RPE was slightly higher with supervision in both previous observational real-world
(Core = 53% [95%QI: 51%, 55%]; Assisted = 59% [95%QI: 57%, 61%]; contrast = -6% [95%QI:
-8%, -4%]) and experimental settings (Core = 81% [95%QI: 75%, 86%]; Assisted = 87% [95%QI:
83%, 91%]; contrast = -6% [95%QI: -10%, -4%]), suggesting trainees push closer to failure un-
der supervision. This was further supported by higher RPD during the experimental study (Core =
6.3 [95%QI: 5.1, 7.3]; Assisted = 7.5 [95%QI: 6.5, 8.3]; contrast = -1.2 [95%QI: -1.6, -0.9]).
Overall, these results reinforce research on the benefits of supervision in RT, indicating that unsu-
pervised trainees—especially in real-world conditions—likely train with suboptimal effort. Keywords:
supervision; effort; resistance training; bayesian
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Introduction

Recent work has highlighted the importance of supervision in optimising strength outcomes
from resistance training (RT). In a recent systematic review and meta-analysis from Fisher
et al. (2022) there was a moderate standardised mean effect (0.40 [95%CI: 0.06, 0.74])
of supervised vs unsupervised RT on strength outcomes synthesised from ten studies. Since
then, a further study has reported that even in previously trained participants there may be
benefit to strength outcomes from supervision (Coleman et al., 2023).

It has been speculated (J. Fisher et al., 2022) that an explanation for this effect may be due
to the role that a trainer plays in prescribing load progression for the trainee, whereas when
there is no clear load progression rule unsupervised trainees may be less likely to train with
appropriate loads, and ultimately appropriate effort. Effort is conceptualised at the relation of
task demands to the capacity to meet those demands (Steele, 2020) and so in RT is determined
by both the load utilised and also the proximity to momentary failure due to the fatigue (i.e.,
reduction in capacity) that occurs with continued performance.

A recent meta-analysis examining the relative loads selected by trainees when given the ability
to self-select highlights that they tend to choose loads which, whilst initially efficacious in
novice trainees, become sub-optimal quickly as training experience progresses (~53% of one
repetition maximum [1RM]) particularly when combined with the typical repetition ranges
prescribed i.e., ~8 to 15 repetitions (Steele et al., 2022). Further, when given the opportunity
to self-select load and the number of repetitions to complete there is evidence that trainees
likely train with relatively low effort as determined from their proximity to momentary failure
i.e., they select ~10 repetitions at ~53% 1RM (Nuzzo et al., 2024; Steele et al., 2022). Thus,
whether self-selecting a load for a typically prescribed repetition range or self-selecting a load
and self-selecting the number of repetitions to perform, most will naturally perform sets with
an estimated proximity of ~10-20 repetitions shy of momentary failure.

As such it has also been suggested that a supervising trainer plays the role of providing mo-
tivation and enhancing trainee effort (J. Fisher et al., 2022). Indeed, recent survey studies
highlight that trainees perceive supervision to have an important role in determining their mo-
tivation and resultant effort during RT which they also perceive to be important to achieve
their training goals (Carlson et al., 2024; J. Fisher et al., 2023).

However, a recent meta-analysis of the dose-response relationship of proximity to momentary
failure for strength and hypertrophy outcomes highlights that, while there is increased hyper-
trophy with closer proximity to failure, there is not a clear relationship for strength (Robinson
et al., 2024). But a caveat is that there was limited data for proximities to failure >10 rep-
etitions, and that the models were adjusted for load (average loads were typically ~75-85%
of one repetition maximum). Thus, the results of this meta-analysis apply to proximity to
failure after selecting load (i.e., intraset effort) and a higher relative load requires a greater
effort all else being equal. When considering the average self-selected load of ~53% 1RM cou-
pled with a typical ~10 repetitions per set equating to proximities to failure >10 repetitions
(Steele et al., 2022) it seems plausible that unsupervised trainees may train with a less-than-
optimal load, repetitions, and resultant effort to optimise strength outcomes. Ultimately, and
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in combination, supervision should provide trainees with feedback of their past performance,
whether technical, effort- or program-based, and guidance toward their future performance (J.
P. Fisher, 2025).

We were afforded an opportunity to examine the role of supervision on effort during RT in a
unique setting with several private strength clinics whose members train either unsupervised
on a “Core” membership1 or supervised by an exercise scientist on an “Assisted” membership
both retrospectively and through a prospective experimental study. As such, using Bayesian
methods, we examined samples of historical data from both types of member and in a sample
of current Core members we investigated experimentally the impact of supervision from a
qualified exercise scientist.

Methods

Experimental approach to the problem

The study was conducted at a selection of strength clinics operated by Kieser Australia recruit-
ing from the existing pool of Core members at these locations. All Kieser Australia members
are prescribed the same protocol. This consists of a single set of the resistance machine ex-
ercises prescribed on their current training programme card using a load that should permit
them to reach momentary failure within a time-under-load (TUL) of 90-120 seconds (though
an upper limit of 180 seconds TUL is enforced to avoid machines being occupied for too long
on the clinic floor preventing other members from using them) using a ~ 12 seconds repetition
duration (i.e., ~4:4 seconds concentric:eccentric actions with a 2 isometric second hold whilst
still under load with tension, not “locked-out”, on the involved musculature at the end of each
concentric and eccentric muscle action). Core trainees are prompted to progress load by ~5%
for the next session once a TUL of >120 seconds is achieved for a particular exercise before
reaching momentary failure, and for Assisted trainees this is actioned by their supervising Ex-
ercise Scientist. Trainees are prompted to complete a session rating of perceived effort (RPE)
at the end of their training session.

An acute randomised cross-over design was employed to examine participants completing an
RT session with and without direct supervision with one week apart (i.e., a Core vs Assisted
session). Participants were instructed to complete a single set of the resistance machine exer-
cises on their current training programme card using their current training loads to momentary
failure. The TUL performed, and ratings of perceptions of effort (RPE) and discomfort (RPD)
were recorded and compared between both conditions. This study was not pre-registered and
as described below the sample size was justified based on logistical concerns and the analysis
is considered exploratory.

In addition to the experimental study design noted above, we also took samples of Core and
Assisted trainees from historical data records in Kieser Australia’s database. We took separate
random samples to obtain both TUL and session RPE data as not all members record their

1Note, Core members do typically have a “Review” session every ~3 months with an exercise scientist to complete
strength testing, and review their training programme cards including selection of exercises and weights.
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RPE. There were two reasons for examining these historical samples. Firstly, we used this
data to generate empirical informative prior distributions to use in our Bayesian modelling
of the experimental study data. Secondly, they allowed us to also explore the descriptive2

difference between Core and Assisted training in situ, but also that we could compare the
prior distribution for the random samples of members in situ with the posterior distribution
of members completing their sessions in the experimental study to understand the extent to
which study effects might also influence outcomes.

The experimental study component of this project was approved by the Southampton Solent
University Health Exercise and Sport Science Ethics committee (id: STEELEAUG2016). All
participants provided informed consent to participate in the study. Data in the previous obser-
vational sample was used in de-identified form and with member consent for data to be used
for research purposes.

Participants

Experimental

The study was advertised at five Kieser Australia strength clinics and we sought to recruit mem-
bers who had > 6 months previous training experience at the strength clinics, were healthy
(no clinical conditions on their member record as recorded by a physiotherapist or exercise
physiologist), both males and females (age +18 years), and without any current condition for
which RT would be contraindicated. They were recruited from the existing member pool of
Core members. We recruited a sample size based on considerations of what was logistically
feasible given the availability of the exercise scientist staff at each clinic to conduct data col-
lection and perform the supervised Assisted sessions and wanting to minimise the burden on
day-to-day operation of the clinics. As such it was decided that a target of 50 participants
across clinics would be acceptable. The final sample size was n = 45 participants recruited
across the five clinics.

Previous Observational Sample

We queried the Kieser Australia database to generate random samples from historical data.
We opted to generate reasonably large samples to ensure precise prior estimates, though
did not use the entirety of the historical data (~50000 members, >10 years of data) so as
to reduce computation time for Bayesian modelling. For TUL we limited data to Core and
Assisted members training sessions that either were not led by an exercise scientist or were
respectively3, took the first training session after at least 6 months of previous training at
Kieser Australia had been completed by each member, randomly sampled 1000 Core and

2Note that we do not claim this difference to be an estimated causal effect in this data given that we have not
adjusted for confounders; for example, that different types of people might self-select into either Core or Assisted
memberships and that this might confound comparisons of either TUL or session RPE.

3Whilst members can have Core or Assisted memberships the former also have sessions that are supervised (i.e.,
their “Review” sessions noted in footnote1) and the latter can have unsupervised sessions (i.e., they can attend the
clinic outside of their scheduled sessions with the exercise scientist and train unsupervised). Thus we limited our
sample to only normal training sessions which had been either unsupervised or supervised for both Core and Assisted
members respectively.
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1000 Assisted members and then filtered to the resistance machines used in by members in
the experimental study so that we had a selection of members across varied clinic locations
and completing sessions with a selection of resistance machine exercises and had TUL data
for each exercise. Thus our final sample size was n = 1751 (Core = 849, Assisted = 902).
For session RPE we performed a similar database query and randomly sampled 1000 Core and
1000 Assisted members who had reported session RPE values.

Protocols

All RT was performed using resistance machines (Kieser Training AG, Zurich, Switzerland) in-
cluding the A1 (hip extension), A2 (torso flexion), A3 (hip abduction), B1 (leg extension), B6
(leg press), B7 (seated leg curl), C3 (torso arm i.e., pulldown), C7 (seated row), D5 (arm
cross i.e., pectoral fly), D6 (chest press), D7 (seated dip), F2/F2.1 (abdominal flexion), and
K2 (supported supinated grip pullup). Note, not all participants performed exercise using
each machine, but had at least some of these machines in their current training cards. For
the experimental study participants were instructed to attend two training sessions at least
one-week apart where they completed either their current Core session (i.e., unsupervised)
or an Assisted session (i.e., supervised). During the Core session the participant completed
their training session as prescribed with the only difference for the Assisted session being that
an exercise scientist supervised them providing instruction and motivation; however, they did
not interfere in any physical way during the set (e.g. to spot or assist in completing a failing
repetition). Each participant had an existing training programme card. In both conditions they
utilised the current training loads for each machine that were recorded in the last session of
their training programme card before participation in the study. Participants were instructed
to ensure that they continue performing the exercise to momentary failure independently of
the TUL achieved for the purposes of the study i.e., if they realised during the set that their
previous load selection was evidently too low for the prescribed TUL range they should con-
tinue to momentary failure regardless off the TUL acheived. Momentary failure was defined as
per Steele et al. (2017) i.e., the point at which, despite their greatest effort, participants are
unable to continue concentrically contracting and moving the resistance, and this was clearly
communicated to the participants. During each session for each exercise the trainees/trainers
recorded their TUL achieved as they would do for their usual sessions using standard timers
situated around the clinic in view during training specifically for this purpose (these are es-
sentially Swiss engineered clocks with sweep movement for the second hand and positioned
so that there is always one in eye line for every machine to enable recording of the TUL in
seconds). These TUL recordings where then input to their training cards. In addition, they
recorded their RPE and RPD in that order immediately upon completing the exercise using
previously validated scales for differentiating these perceptions (Steele, Fisher, McKinnon, et
al., 2017); scripts and scales are available here: https://osf.io/ufvy8/.

The data generated from the sample of historical members was generated according to the
standard protocol described above that all Kieser Australia members are prescribed. TUL was
also recorded similarly using timers available about the clinic which are then entered onto their
training cards, or for some sessions using a more recently developed mobile phone application
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(Kieser Konnect, Kieser Australia) which is placed on a stand on the resistance machines with
a start/stop recording button used to track TUL for each exercise in their training card which is
programmed to the application. Session RPE was recorded using either the mobile application
for Core members, or via the application used by staff during Assisted sessions and used a
modified version of the Borg 6-20 scale where the scale is displayed as scrollable and the verbal
anchors are “6 - None”, “7- Very, very light”, “13 – Somewhat hard”, “19 - Very, very hard”,
and “20 – Maximal Exertion”. All of this data is directly collected on training cards manually,
or via the mobile phone app, or trainers app, is recorded and stored in the Kieser Australia
backend database.

Statistical Analysis4

All code utilised for data preparation and analyses are available in either the Open Science
Framework page for this project https://osf.io/etb34/ or the corresponding GitHub repository
https://github.com/jamessteeleii/supervision_tul. We cite all software and packages used in
the analysis pipeline using the grateful package (Rodriguez-Sanchez et al., 2023) which can
be seen here: https://osf.io/ew79g.

As noted, the project was not pre-registered but involved exploratory analysis of the exper-
imental and previous observational datasets. All analyses have been conducted within a
Bayesian framework and are primarily focused upon estimation of the relevant parameters
of interest from our models (Kruschke & Liddell, 2018). A Bayesian framework was used
specifically because it allows for the explicit updating of beliefs regarding prior probable val-
ues for parameters of interest with new evidence (i.e., data) to form updated posterior beliefs
regarding probable parameter values. Given that we had previous observational data from
which we could generate our prior beliefs regarding probable values for parameters of interest,
and we had collected new experimental data that could be used to update these, the Bayesian
framework is ideally suited to this type of inferential problem. Contrastingly, within traditional
frequentist inference prior beliefs are not specifically incorporated in this fashion. Further, our
choice to utilise Bayesian approaches was also based upon the specific modelling choices made
and the flexibility of current Bayesian software packages such as those used here to implement
such models. To aid the reader in understanding the flow of our modelling strategy we refer
them to Figure 1 which is also colour coded to reflect the prior and posterior models in the
results section

All posterior estimates and their precision, along with conclusions based upon them, are inter-
preted continuously and probabilistically, considering priors, data quality, and all within the
context of each outcome and the assumptions of the model employed as the estimator (Kr-
uschke & Liddell, 2018). All models were run with 2000 warmup and 2000 sampling iterations

4Note, we thank the reviewers for noting the complexity of the analyses performed in the present study relative
to what both researchers and practitioners are used to encountering in the field. We have done our best to provide
both detailed explanation and justification of the choices made, describe what the models being used are doing,
provided mathematical notation for them, and all code for the analyses conducted is available. We have also included
in the online supplementary material a brief “lay” summary which was generated making use of ChatGPT to assist
in developing these explanations. We prompted ChatGPT explicitly by providing it with the copied text, including
equations, from our quarto manuscript files and asked it to provide a lay description. We then edited these. These
can be seen here https://osf.io/b9n4v.
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Previous observational data

(i.e., TUL, session RPE)

Experimental study data

(i.e., TUL, RPE, RPD)

Weakly informative priors

Fit prior models
(Hurdle Student−t or

Ordered Beta Regression)

Estimate posterior effects from
previous observational data models

Use posteriors from previous observational data models

as priors for experimental data models

Fit experimental models
(Hurdle Student−t or

Ordered Beta Regression)

Estimate posterior effects from

experimental data models

Data Weak Prior Prior Model Posterior Model

Modelling Strategy: Previous Observational and Experimental Data and Models

Figure 1: Flow chart displaying the modelling strategy employed in the present study incorporating both previous observational and
experimental study data (grey), modelling of the previous study data using weakly informative priors (white) to produce prior models
and estimates (light blue) to use in modelling the experimental data (orange).
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and four Monte Carlo Markov Chains. Trace plots were produced along with �̂� values to ex-
amine whether chains had converged, and posterior predictive checks for each model were
also examined to understand the model implied distributions (see https://osf.io/u7g8c. We fit
two sets of models for the TUL and RPE outcomes, one on the previous observational sample
of data using weakly regularising priors in order to generate posterior distributions to inform
the priors used in the other model using the experimental data, and a single model on the
experimental data for the RPD outcome using weakly regularising priors. These models are
described below. For all models we calculated average marginal effects as the global grand
means for both predictions under each condition as well as contrasts between conditions and
visualise both prior and posterior distributions along with median and 95% quantile interval
(QI) estimates from these.

Time Under Load Analysis

Upon inspecting the raw distribution of the previous observational sample of data for TUL we
noticed that there was a spike at 120 seconds concomitant with the top of the target TUL
range prescribed to members under both Core and Assisted conditions (see Figure 2). Before
to exploring the data we had received anecdotal reports from Kieser Australia staff. These sug-
gested to us that, despite the prescription to train to momentary failure, many Core members
were instead selecting loads and training only to the upper 120 second TUL range threshold
irrespective of proximity to failure. We did not however expect this to be the same for the pre-
vious observational sample of Assisted members. As such, it suggested to us that there might
be two processes underlying the observed data: a tendency to target a specific TUL threshold
and to stop the exercise at that point, or to otherwise continue the exercise to momentary
failure (or to stop the exercise based on some other process such as tolerable proximity to
failure). Thus, we opted to use a hurdle type model comprising a Bernoulli distribution for the
probability of having a TUL of 120 seconds, and a student 𝑡 distribution for all other values of
TUL5. We expected this may also be the case in our experimental dataset given we recruited
Core members and so utilised the same type of model for this. As such this allowed us to ex-
amine both the expectations of the global grand mean for TUL, in addition to the probabilities
of having a TUL of 120 seconds.

For both the previous observational sample and experimental study data the following model
was employed which included a fixed (i.e., population level) effect for the session type, Core
or Assisted, where Assisted was coded as the intercept. The model also included random
(i.e., cluster or group level) effects as intercepts for the location (i.e., the clinic the session
was performed at), the member id, and the resistance machine used (note, due to the cross-
over nature of the experimental design the random effects for location, member, and machine
were modelled as nested in this dataset). These fixed and random effects were modelled as
predictors for both the hurdle and student 𝑡 components of the model. TUL was centred at
zero for modelling (i.e., all values of TUL𝑖 has 120 subtracted from them before to modelling).
Formally the model(s) for 𝑖𝑡ℎ TUL across condition 𝑐 within the 𝑗𝑡ℎ location, 𝑘𝑡ℎ member, 𝑙𝑡ℎ

5A custom family for the hurdle-student 𝑡 model was produced for use with the brms R package, adapted from the
hurdle-normal distribution developed by Heiss (n.d.).
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machine were as follows:

TUL𝑖𝑐 ∼ Hurdle log-student𝑡(𝜋𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] , 𝜈, 𝜇𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] , 𝜎) ... or alternatively,

TUL𝑖𝑐 ∼
⎧{
⎨{⎩

0 with probability 𝜋𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]
Student𝑡(𝜇𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] , 𝜈, 𝜎) with probability 1 − 𝜋𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

⎫}
⎬}⎭

Models for distribution parameters

logit(𝜋𝑖𝑐) = (𝛾0 + 𝛾0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛾1Condition𝑖𝑐 120 seconds/not-120 seconds process

𝜇𝑖𝑐 = (𝛽0 + 𝑏0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛽1Condition𝑖𝑐 Location parameter in student 𝑡 process

𝛾0𝑗 ∼ 𝒩(0, 𝜎𝛾0𝑗
), for location j = 1, ..., J Variation in intercepts for location in hurdle model

𝛾0𝑘 ∼ 𝒩(0, 𝜎𝛾0𝑘
), for member k = 1, ..., K Variation in intercepts for member in hurdle model

𝛾0𝑙 , ∼ 𝒩(0, 𝜎𝛾0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in hurdle model

𝑏0𝑗 ∼ 𝒩(0, 𝜎𝑏0𝑗
), for location j = 1, ..., J Variation in intercepts for location in student 𝑡 model model

𝑏0𝑘 ∼ 𝒩(0, 𝜎𝑏0𝑘
), for member k = 1, ..., K Variation in intercepts for member in student 𝑡 model model

𝑏0𝑙 ∼ 𝒩(0, 𝜎𝑏0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in student 𝑡 model model

(1)

where, for logit(𝜋𝑖𝑐) i.e., the hurdle portion of the model, 𝜋𝑖𝑐 refers to the probability of TUL
being 120 seconds, 𝛾0 refers to the intercept for logit(𝜋𝑖𝑐) which in this case is the Core
condition, 𝛾0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

refers to the relevant random intercept for 𝑗𝑡ℎ location, 𝑘𝑡ℎ member,

𝑙𝑡ℎ machine, and 𝛾1Condition𝑖𝑐 is the difference between the Core and Assisted conditions.
Similarly for 𝜇𝑖𝑐 i.e., the student 𝑡 portion of the model, 𝜇𝑖𝑐 refers to the mean TUL (i.e.,
location parameter), 𝛽0 refers to the intercept for 𝜇𝑖𝑐 which in this case is the Core condition,
𝑏0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

refers to the relevant random intercept for 𝑗𝑡ℎ location, 𝑘𝑡ℎ member, 𝑙𝑡ℎ machine,
and 𝛽1Condition𝑖𝑐 is the difference between the Core and Assisted conditions. The 𝜎 term
refers to the standard deviation for the student 𝑡 portion of the model, and the other 𝜎 terms
refer to the standard deviation of the random effects for their respect models (i.e., standard
deviation in intercepts for probability of stopping at 120 seconds and TUL for location, member,
and machine). Finally, 𝜈 refers to the estimated degrees of freedom for the student 𝑡 portion
of the model.

Weakly regularising priors were employed for previous observational sample dataset. These
were the default priors in the brms package for all intercept terms which are scaled to the
expected response value when all predictors are at their means and use a student 𝑡 distribution
with degrees of freedom 𝜈 = 3, and variance terms similarly scaled with 𝜇 = 0. The only
change to this was to set reasonable upper and lower bounds for the prior condition effects to
limit prediction of impossible TUL values. The priors were as follows:
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Priors (prior sample data model)

𝛾0 ∼ Logistic(2, 0.1) Prior for intercept in hurdle model i.e., Assisted condition

𝛽0 ∼ Student 𝑡(3, 3, 13.3) Prior for intercept in student 𝑡 model i.e., Assisted condition
𝛾1, 𝛽1 ∼ Student 𝑡(3, 0, 15, lb = −60, ub = 60) Prior for Condition effects in both models i.e., Core minus Assisted condition

𝜎, 𝜎𝛾0𝑗
, 𝜎𝛾0𝑘

, 𝜎𝛾0𝑙
, 𝜎𝑏0𝑗

, 𝜎𝑏0𝑘
, 𝜎𝑏0𝑙

∼ Student 𝑡(3, 0, 13.3, lb = 0) Prior for all variability parameters

𝜈 ∼ Gamma(2, 1) Prior for student 𝑡 degrees of freedom
(2)

We then took posterior parameter estimates from the previous observational sample model
and used these to generate informative priors for the experimental data models which were
as follows:

Priors (experimental sample data model)

𝛾0 ∼ Student 𝑡(3.28, −3.03, 0.12) Prior for intercept in hurdle model i.e., Assisted condition

𝛽0 ∼ Student 𝑡(3.28, 2.79, 1.30) Prior for intercept in student 𝑡 model i.e., Assisted condition
𝛾1 ∼ Student 𝑡(3.28, −0.19, 0.11) Prior for Condition effects in hurdle model i.e., Core minus Assisted condition

𝛽1 ∼ Student 𝑡(3.28, 0.07, 0.58) Prior for Condition effects in student 𝑡 model i.e., Core minus Assisted condition
𝜎 ∼ Student 𝑡(3, 10.59, 0.19, lb = 0) Prior for residual variability parameter

𝜎𝛾0𝑗
∼ Student 𝑡(3, 0.31, 0.08, lb = 0) Prior for location variability parameter in hurdle model

𝜎𝛾0𝑘
∼ Student 𝑡(3, 1.16, 0.07, lb = 0) Prior for member variability parameter in hurdle model

𝜎𝛾0𝑙
∼ Student 𝑡(3, 0.15, 0.08, lb = 0) Prior for machine variability parameter in hurdle model

𝜎𝑏0𝑗
∼ Student 𝑡(3, 3.43, 0.62, lb = 0) Prior for location variability parameter in student 𝑡 model

𝜎𝑏0𝑘
∼ Student 𝑡(3, 10.2, 0.23, lb = 0) Prior for member variability parameter in student 𝑡 model

𝜎𝑏0𝑙
∼ Student 𝑡(3, 3.72, 0.93, lb = 0) Prior for machine variability parameter in student 𝑡 model

𝜈 ∼ Gamma(2, 1) Prior for student 𝑡 degrees of freedom

(3)

Rating of Perceived Effort and Discomfort Analysis

Despite the use of two different scales and protocols for data collection of perception of effort
in our samples i.e., a session RPE using the 6-20 Borg scale for the previous observational sam-
ple and immediately post each exercise RPE using a 0-10 scale, both scales were anchored at
their limits as in essence no effort (6 or 0) or maximal effort (20 or 10). As such, and as the
intention was to utilise the previous observational sample data to assist in producing empirical
prior distributions for our experimental data models, we opted to rescale both outcomes to lie
on the (0, 1) interval such that they reflected the percent effort that was reported as perceived
(Steele, 2020). We then employed an ordered beta regression model (Kubinec, 2022) which
employs a cutpoint process similar to ordered logistic models in order to model both the con-
tinuous responses on the (0, 1) interval reflecting some effort though not maximal, and the
degenerate response on the bounds [0, 1] reflecting both no and maximal effort respectively.
We approached the RPD similarly as this scale was also anchored between no discomfort and
the maximum imaginable.

For both the previous observational sample and experimental study data the following model
was employed which included a fixed (i.e., population level) effect for the session type, Core
or Assisted, where Assisted was coded as the intercept. The model also included random
(i.e., cluster or group level) effects as intercepts for the location (i.e., the clinic the session
was performed at), the member id, and the resistance machine used for the experimental
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data model only (note, due to the session RPE reported in the previous observational sample
data and that we sampled only one session we do not have member or machine random
effects, and due to the cross-over nature of the experimental design the random effects for
location, member, and machine were modelled as nested in this dataset). These fixed and
random effects were modelled as predictors for both the mean and precision parameters of
the ordered beta regression model. As noted, RPE in both datasets was rescaled to lie on the
(0, 1) interval. Formally the model(s) for 𝑖𝑡ℎ RPE across condition 𝑐 within the 𝑗𝑡ℎ location,
𝑘𝑡ℎ member, 𝑙𝑡ℎ machine were as follows (note that the model for the previous observational
dataset omits the random effect for machine):

RPE𝑖𝑐 ∼
⎧{{
⎨{{⎩

0 with probability 𝛼𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]
∈ (0, 1) with probability 𝛿𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

1 with probability 𝛾𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

⎫}}
⎬}}⎭

logit(𝛼𝑖𝑐) = 1 − (𝑋′𝛽 − 𝑘1) Probability of obtaining a 0

logit(𝛿𝑖𝑐) =[(𝑋′𝛽 − 𝑘1) − (𝑋′𝛽 − 𝑘2)]Beta(𝑋′𝛽, 𝑋′𝛽𝜙) Probability of obtaining a value between 0 and 1

logit(𝛾𝑖𝑐) = (𝑋′𝛽 − 𝑘2) Probability of obtaining a 1

𝑋′𝛽 = (𝛽0 + 𝑏0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛽1Condition𝑖𝑐 Vector of predictors for mean parameter

𝑏0𝑗 ∼ 𝒩(0, 𝜎𝑏0𝑗
), for location j = 1, ..., J Variation in intercepts for location in mean parameter

𝑏0𝑘 ∼ 𝒩(0, 𝜎𝑏0𝑘
), for member k = 1, ..., K Variation in intercepts for member in mean parameter

𝑏0𝑙 ∼ 𝒩(0, 𝜎𝑏0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in mean parameter

𝑋′𝛽𝜙 = (𝛽𝜙0 + 𝑏𝜙0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛽𝜙1Condition𝑖𝑐 Vector of predictors for precision parameter

𝑏𝜙0𝑗 ∼ 𝒩(0, 𝜎𝑏𝜙0𝑗
), for location j = 1, ..., J Variation in intercepts for location in precision parameter

𝑏𝜙0𝑘 ∼ 𝒩(0, 𝜎𝑏𝜙0𝑘
), for member k = 1, ..., K Variation in intercepts for member in precision parameter

𝑏𝜙0𝑙 ∼ 𝒩(0, 𝜎𝑏𝜙0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in precision parameter

(4)

where, 𝛼𝑖𝑐 refers to the probability of the rescaled RPE being 0, 𝛿𝑖𝑐 refers to the probability of
the rescaled RPE being in the interval (0, 1), and 𝛾𝑖𝑐 refers to the probability of the rescaled
RPE being 1. 𝛽0 refers to the intercept for the mean rescaled RPE which in this case is the Core
condition, 𝑏0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

refers to the relevant random intercept for 𝑗𝑡ℎ location, 𝑘𝑡ℎ member, 𝑙𝑡ℎ

machine, and 𝛽1Condition𝑖𝑐 is the difference between the Core and Assisted conditions means.
Similarly, 𝛽𝜙0 refers to the intercept for the precision of the rescaled RPE which in this case
is the Core condition, 𝑏𝜙0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

refers to the relevant random intercept for 𝑗𝑡ℎ location, 𝑘𝑡ℎ

member, 𝑙𝑡ℎ machine, and 𝛽𝜙0Condition𝑖𝑐 is the difference between the Core and Assisted
conditions precision.

Weakly regularising priors were employed for previous observational sample dataset. These
were the default priors in the ordbetareg package for all intercept terms which are scaled to the
expected response value when all predictors are at their means and use a student 𝑡 distribution
with degrees of freedom 𝜈 = 3, and variance terms similarly scaled with 𝜇 = 0. We left the
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flat prior on the fixed effect for condition given we were primarily interested in letting the
previous observational dataset speak for itself in generating a posterior distribution to use as
prior in the experimental data model. As noted, the previous observational sample model only
included the random effects for location. The priors were as follows:

Priors (prior sample data model)

𝛽0 ∼ Student 𝑡(3, 0.6, 2.5) Prior for intercept of mean parameter i.e., Assisted condition

𝛽𝜙0 ∼ Student 𝑡(3, 0, 2.5) Prior for intercept of precision parameter i.e., Assisted condition

𝛽1, 𝛽𝜙1 ∼ Uniform(lb = −∞, ub = ∞) Prior for Condition effects in both location and precision parameters i.e., Core minus Assisted condition

𝜎𝑏0𝑗
, 𝜎𝑏𝜙0𝑗

∼ Student 𝑡(3, 0, 2.5, lb = 0) Prior for location variability parameters

𝑘1, 𝑘2 ∼ Induced dirichlet(1, 1, 1) Prior for cutpoint probabilities

(5)

We then took posterior parameter estimates from the previous observational sample model
and used these to generate informative priors for the experimental data model which were as
follows:

Priors (experimental sample data model)

𝛽0 ∼ Student 𝑡(3, 0.35, 0.05) Prior for intercept of mean parameter i.e., Assisted condition

𝛽𝜙0 ∼ Student 𝑡(3, 2.01, 0.07) Prior for intercept of precision parameter i.e., Assisted condition

𝛽1 ∼ Student 𝑡(3, −0.24, 0.04) Prior for Condition effects in mean parameter i.e., Core minus Assisted condition

𝛽𝜙1 ∼ Student 𝑡(3, −0.48, 0.06) Prior for Condition effects in precision parameter i.e., Core minus Assisted condition

𝜎𝑏0𝑗
∼ Student 𝑡(3, 0.19, 0.04, lb = 0) Prior for location variability parameters

𝜎𝑏𝜙0𝑗
∼ Student 𝑡(3, 0.26, 0.05, lb = 0) Prior for all other variability parameters

𝜎𝑏0𝑘
, 𝜎𝑏0𝑙

, 𝜎𝑏𝜙0𝑘
, 𝜎𝑏𝜙0𝑙

∼ Student 𝑡(3, 0, 2.5, lb = 0) Prior for all variability parameters

𝑘1, 𝑘2 ∼ Induced dirichlet(1, 1, 1) Prior for cutpoint probabilities

(6)

We did not have previous observational sample data for RPD and so for this outcome we used
the same model as above for the RPE outcomes but with wholly default weakly regularising
priors.

Results

In the experimental dataset there were a final sample of 135 observations for each outcome
across for each of the two conditions. Our previous observational sample for TUL after filtering
to the same sample of machines came from 1751 members (Core = 849, Assisted = 902) from
27 locations encompassing 11541 observations. The distributions of raw data from both the
previous observational sample and experimental datasets can be seen in Figure 2.

Time Under Load

In our previous observational sample model there was little difference between Core and As-
sisted sessions in terms of both mean TUL and the probability of stopping at 120 seconds.
The estimated TUL for Core sessions was 122.76 [95%QI: 120.25, 125.2] seconds, for As-
sisted sessions was 122.65 [95%QI: 120.17, 125.12] seconds, and the between condition
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Figure 2: The top two panels show the distributions as histograms of both time under load and session rating of perceived effort in
the previous observational sample of data, and the bottom three panels show the paired responses for time under load in addition
to the paired responses and histograms for the rating of perceived effort and discomfort in the current experimental data (note, the
prescribed target time under load range of 90-120 seconds is indicated by the vertical dashed lines in the top left panel and horizontal
dashed lines in the bottom left panel).
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contrast (Core minus Assisted) was 0.08 [95%QI: -1.02, 1.19] seconds. The probability of
stopping at 120 seconds for Core sessions was 4% [95%QI: 3%, 5%], for Assisted sessions
was 5% [95%QI: 4%, 6%], and the between condition contrast (Core minus Assisted) was
-1% [95%QI: -2%, 0%].

Our experimental sample model showed far greater difference between Core and Assisted ses-
sions in terms of both mean TUL and the probability of stopping at 120 seconds, in addition
to the posterior estimates differing considerably from the previous observational sample es-
timates in terms of between condition contrasts for TUL and probability of stopping at 120
seconds, Assisted condition TUL, and both conditions probability of stopping at 120 seconds.
The estimated TUL for Core sessions was 125.12 [95%QI: 113.7, 131.9] seconds, for Assisted
sessions was 147.35 [95%QI: 134.29, 154.81] seconds, and the between condition contrast
(Core minus Assisted) was -22.1 [95%QI: -26.59, -17.61] seconds. The probability of stop-
ping at 120 seconds for Core sessions was 15% [95%QI: 10%, 24%], for Assisted sessions
was 1% [95%QI: 1%, 3%], and the between condition contrast (Core minus Assisted) was
14% [95%QI: 8%, 23%].

All marginal predictions (i.e., global grand means) for predictions and contrasts can be seen
in Figure 3.

Rating of Perceived Effort and Discomfort

In our previous observational sample model there was a small difference between Core and
Assisted sessions in RPE. The estimated RPE as a percentage for Core sessions was 53%
[95%QI: 51%, 55%], for Assisted sessions 59% [95%QI: 57%, 61%], and the between
condition contrast (Core minus Assisted) was -6% [95%QI: -8%, -4%]. The 𝜙 parameter for
Core sessions was 1.53 [95%QI: 1.4, 1.67], for Assisted sessions 2.01 [95%QI: 1.87, 2.15],
and the between condition contrast (Core minus Assisted) was -0.48 [95%QI: -0.6, -0.35].

Our experimental sample model showed a similar magnitude of difference between Core and
Assisted sessions in RPE, though the posterior estimates for RPEs were considerably greater
compared with the previous observational sample estimates. The estimated RPE as a per-
centage for Core sessions was 81% [95%QI: 75%, 86%], for Assisted sessions 87% [95%QI:
83%, 91%], and the between condition contrast (Core minus Assisted) was -6% [95%QI: -
10%, -4%]. The 𝜙 parameter for Core sessions was 2.89 [95%QI: 2.35, 3.36], for Assisted
sessions 3.34 [95%QI: 2.78, 3.81], and the between condition contrast (Core minus Assisted)
was -0.46 [95%QI: -0.61, -0.22].

The RPD results showed a similar pattern to the RPE albeit with a slightly larger magnitude of
difference between conditions. The estimated RPD as a percentage for Core sessions was 6.3
[95%QI: 5.1, 7.3], for Assisted sessions 7.5 [95%QI: 6.5, 8.3], and the between condition
contrast (Core minus Assisted) was -1.2 [95%QI: -1.6, -0.9]. The 𝜙 parameter for Core
sessions was 3.52 [95%QI: 2.56, 5.02], for Assisted sessions 2.91 [95%QI: 1.98, 3.55], and
the between condition contrast (Core minus Assisted) was 0.59 [95%QI: -0.25, 2.36].

All marginal predictions (i.e., global grand means) for predictions and contrasts can be seen
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Figure 3: The top two panels show the prior (i.e., generated from the previous observational sample) and posterior (i.e., the updated
distributions after observing the current experimental data) distributions with median (point) and 95% quantile intervals (error bar)
of time under load (note, the prescribed target time under load range of 90-120 seconds is indicated by the vertical dashed lines in
the top left panel) and the bottom panels show the probabilities of stopping at 120 seconds.
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in Figure 4.
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Figure 4: The top two panels show the prior (i.e., generated from the previous observational sample) and posterior (i.e., the updated
distributions after observing the current experimental data) distributions with median (point) and 95% quantile intervals (error bar)
of rating of perceived effort on the percentage scale, and the bottom panels show posterior disributions only for rating of perceived
discomfort transformed back to the arbitrary unit scale (0,10).

Discussion

Our study is a first to offer insights into the role of supervision (i.e., Core vs Assisted sessions)
during RT both in situ in an ecologically valid real world setting in addition to during an exper-
imental study. Under standardised training protocol prescription (i.e., single sets of RT using
resistance machines, performed to momentary failure using a fixed repetition duration and
load that should permit momentary failure in a target TUL range of 90-120 seconds) we exam-
ined exercise performance as the TUL, in addition to RPE and RPD. Our key findings were that
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under real world settings in our previous observational sample there did not appear to be a
difference in TUL between Core and Assisted sessions nor the probability of whether members
targeted the upper bound of the prescribed TUL range (i.e., 120s), yet in our experimental
study there was a clear benefit to TUL performance when under supervision and reduction in
the probability of targeting the upper prescribed TUL range. There was a small difference in
RPE reported with and without supervision under both real world and experimental conditions
with members reporting higher RPE in Assisted training conditions, though RPE on the percent-
age points scale was notably higher during the experimental study compared with the previous
observational sample for both Core and Assisted sessions. Lastly, RPD was also higher in the
experimental study under supervised Assisted sessions compared to Core sessions. These
results in general support previous work highlighting the importance of supervision during RT
(Carlson et al., 2024; J. Fisher et al., 2022, 2023) and that under unsupervised, and perhaps
more so during real world conditions, trainees likely train with suboptimal effort.

We will first discuss the findings from the previous observational sample of Core and Assisted
members. In this in situ dataset we find for both Core and Assisted members there is clear
evidence of targeting a specific TUL based on the prescribed TUL range of 90-120 seconds. For
Core members this is perhaps unsurprising given that, in repetition count based RT prescrip-
tion, when given the opportunity to self-select repetition number people tend to target ~10
repetitions regardless of the load they self-select and that also most RT prescriptions tend to
emphasise that particular target repetition number (Steele et al., 2022). Thus, that members
are also shooting for targets under this TUL focused RT protocol suggests that this might be
characteristic of most people training under real world unsupervised conditions. It is how-
ever surprising that this is also the case for Assisted members and that TUL differs very little
between Core and Assisted sessions. However, the lack of difference in TUL itself is not neces-
sarily indicative of suboptimal training effort, and we did observe slightly higher reported RPE
during Assisted training sessions compared to Core sessions. Thus it might be that during As-
sisted sessions trainees might be more likely to use loads more appropriate for the prescribed
TUL range and thus train with closer proximity to failure as compared to under Core sessions
in addition to greater clustering of RPE around higher values (indicated by the 𝜙 parameter
in the ordered beta regression). This may be due to load progression protocols being more
closely followed by supervising exercise scientists as compared to those training unsupervised
where, unless using initially heavy loads or in previously well trained persons, most unsuper-
vised trainees do not progress load sufficiently (J. Fisher et al., 2022; Steele et al., 2022).
In future work we plan to explore more thoroughly the causal effects of supervision in both
load progression and also isometric strength outcomes collected between Core and Assisted
members; but, an initial descriptive examination of load progression using linear-logarithmic
growth models known to theoretically describe strength progression with time from RT well
(Gschneidner et al., 2024; Latella et al., 2024; Steele et al., 2023) suggests that load pro-
gressions are typically similar between membership types (see https://osf.io/wcv6g)6. In fact,
despite the greater RPE reported under Assisted sessions, in percentage points RPE under both

6Similarly to the other previous observational historical samples used, we took a sample of 1000 Core and 1000
Assisted members fitting a linear-logarithmic model of time in weeks interacting with membership type (Core vs
Assisted) with random intercepts for location, machine, and participant id, and random slopes for log time for each
level. The model was fit using Restricted Maximum Likelihood estimation with the lme4 package (Bates et al., 2015).
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Core and Assisted sessions was considerably lower in our previous observational sample (Core
= 53% [95%QI: 51%, 55%], Assisted = 59% [95%QI: 57%, 61%]) compared with our ex-
perimental study (Core = 81% [95%QI: 75%, 86%], Assisted = 87% [95%QI: 83%, 91%])
suggesting that members in these real world conditions may not be training with sufficient
effort whether being supervised or not and many perhaps just “going through the motions”
(Steele, Fisher, Skivington, et al., 2017).

In contrast to the previous observational sample, our experimental study clearly showed a
benefit to TUL performance with supervision suggesting that it might enhance trainee effort.
Further, given we recruited existing Core members and had them use their current training
loads, it also reinforces that members may be typically selecting loads that are too light and
also training with considerable distance from momentary failure. Though the prescribed proto-
col in situ in the Kieser Australia clinics is for trainees to perform each exercise to momentary
failure, despite the average TUL under Core conditions being similar between previous observa-
tional sample and experimental sample (see Figure 3), we can see in Figure 2 that many were
capable of achieving very long TUL before reaching momentary failure in both the Core and
Assisted sessions. Interestingly whilst the probability of targeting the 120 second threshold
was similar in the previous observational sample between session types, in the experimental
study this was far greater in the Core session condition. We speculate that it might be a result
of many members, whom were typically not achieving the 120 second TUL upper threshold in
their previous sessions, interpreting our explicit instructions in the study to continue to mo-
mentary failure as being to ensure that they continue to this upper TUL range target. Whereas
the wide range of TULs, and particularly some of the very high ones, might suggest that oth-
ers more literally interpreted the instruction to continue to momentary failure. In addition
to greater average RPE in both conditions, there was also greater clustering of RPE reported
under the Assisted condition suggesting that members might have achieved closer proximity
to failure whilst supervised. It was also the case that ratings of perceived discomfort were
higher under supervision which, as previous evidence has suggested increases with greater
proximity to failure (Refalo et al., 2022, 2023, 2025), also supports that members trained with
greater effort whilst supervised.

Of interest is the considerable difference between the in situ previous observational historical
sample and the experimental study. That under the explicit experimental study instructions
to train to momentary failure members were likely to train with a greater effort under both
unsupervised and supervised conditions, as evidenced by the TUL results, is reinforced by
the greater RPE in percentage points compared to that reported in the previous observational
sample. Indeed, this may reflect some degree of the so called “Hawthorne Effect” in both
members and the exercise scientists supervising sessions wherein both were more likely to
train/supervise training to a higher degree of effort and thus performance whilst under the
auspice of the explicit experimental study instructions and observation7. Whilst this so called
effect is not particularly well understood in its specifics there is general agreement that both
participants and researchers react differently under observational settings such as research

7At Kieser Australia the exercise scientists undertake an “exam” / “assessment” after 3-months of being employed
and anecdotally we have noted from staff conducting these observations that those exercise scientists will change
how they run a session when they are being watched as part of this process.
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(McCambridge et al., 2014; Paradis & Sutkin, 2017) as seems to be observed here.

The limitations of the present results and conclusions should be noted. Firstly, though anec-
dotal observations in the clinic generally confirm compliance broadly speaking, we do not
have systematically captured data on how accurately the repetition durations prescribed (or
other aspects of the prescribed training protocol) are complied with by members. Further,
the measurement error for the self-recorded or exercise scientist recorded TUL is not known;
though the large sample size for the previous observational data, combined with the multiple
observations per person in that and our experimental dataset, minimises the impact of any
non-systematic measurement error as this would merely affect the precision of estimates. Ad-
ditionally, the protocols were all performed using resistance machines thus minimising one
potential element of supervision; technical coaching (J. Fisher et al., 2022; J. P. Fisher, 2025).
Thus the generalisability to other resistance training modalities is unclear. The lack of differ-
ence in our previous observational sample of members regarding TUL does not necessarily
indicate that even during Assisted training sessions members are training sub-optimally as
this is a comparison unadjusted for other factors possibly causal of the TUL during training
(member characteristics, load used and load progression). However, the session RPE data
does perhaps corroborate the inference that, whilst training with slightly greater effort during
Assisted training, members in situmay still be training with suboptimal effort compared to what
occurs under experimental study conditions when explicitly the instruction to train to momen-
tary failure is reinforced. But, a further issue with this is that two separate tools/protocols for
capturing RPE were used in the previous observational sample (session RPE with an adapted
Borg 6-20 scale) vs the experimental study (scales taken from Steele et al. (2017)). Session
RPE is historically captured using the Borg Category Ratio Scale (Foster, 1998) but for reasons
unclear a choice was made when originally implementing this data capture to use the 6-20
scale. The adaptation to the 6-20 scale in particular involved changes to verbal anchors and
it was noticed in the raw distribution of data (see Figure 2) that there was an abundance of
values of 13 reported. Whether or not the tendency for lower RPE in percentage points in
the previous observational sample is necessarily caused by reporting behaviours due to scale
construction or due to members actually training with lower effort in situ is not clear. It is
planned that for future member data collection Kieser Australia will move towards an exercise
by exercise approach using adaptations of the Steele et al. (2017) scales. The similar degree
of contrast between Core and Assisted conditions in both previous observational sample and
experimental study data though does reinforce the role of supervision in influencing trainee
effort, or at least reported perception of effort. Lastly, despite the impact of supervision on
trainee effort, it is still relatively unclear the extent to which it influences adaptation to training.
As noted, Robinson et al. (2024) suggest that higher effort through load and/or proximity to
failure is important for outcomes and Fisher et al. (2022) reported a moderate standardised
mean effect in favour of supervision for strength adaptation (0.40 [95%CI: 0.06, 0.74]) but
estimates of these effects are still relatively imprecise. Kieser Australia also collect isometric
strength test data from their members and so in future work we intend to explore this lon-
gitudinally and generate causal estimates regarding the role of supervision during RT among
other variables from a large sample of members.
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Conclusions

To our knowledge this study is the first examine the role of supervision during RT both in situ in
an ecologically valid real world setting in addition to during an experimental study. Under real
world settings there was little difference in exercise performance, yet in our experimental study
there was a clear benefit to performance when under supervision. There was a small difference
in RPE reported with and without supervision under both real world and experimental conditions
suggesting that under supervision trainees train with greater proximity to failure, which was
also supported by greater RPD under supervision. These results in general support previous
work highlighting the importance of supervision during RT and that under unsupervised, and
perhaps more so during real world conditions, trainees likely train with suboptimal effort.
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