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Abstract

Supervision during resistance training (RT) may enhance strength gains by optimizing trainee effort.
We investigated supervision’s role in effort during RT in a unique setting with private strength clinics,
where members train either unsupervised (“Core” membership) or supervised by a qualified exer-
cise scientist (“Assisted” membership). Using both retrospective analysis of member training records
and a prospective experimental study, we examined supervision’s impact on exercise performance,
measured as time under load (TUL), rating of perceived effort (RPE), and rating of perceived dis-
comfort (RPD). Bayesian methods were applied, using empirically informed prior distributions from
retrospective data to model the experimental study. The prior sample included ~1000 members train-
ing sessions from each membership type, while the experimental study involved 45 Core members
performing both supervised and unsupervised sessions in randomized order, using their current train-
ing loads to momentary failure. Our findings suggest that, in real-world settings (in situ), exercise
performance differed little between supervised and unsupervised training. However, in our experi-
mental study, supervision improved TUL (Core = 125.12 [95%QI: 113.70, 131.90] sec; Assisted =
147.35 [95%QI: 134.29, 154.81] sec; contrast = -22.10 [95%QI: -26.60, -17.61] sec). In percent-
age points RPE was slightly higher with supervision in both prior real-world (Core = 53% [95%QI:
51%, 55%]; Assisted = 59% [95%QI: 57%, 61%]; contrast = -6% [95%QI: -8%, -4%]) and exper-
imental settings (Core = 81% [95%QI: 75%, 86%]; Assisted = 87% [95%QI: 83%, 91%]; contrast
= -6% [95%QI: -10%, -4%]), suggesting trainees push closer to failure under supervision. This was
further supported by higher RPD during the experimental study (Core = 6.3 [95%QI: 5.1, 7.3]; As-
sisted = 7.5 [95%QI: 6.5, 8.3]; contrast = -1.2 [95%QI: -1.6, -0.9]). Overall, these results reinforce
prior research on the benefits of supervision in RT, indicating that unsupervised trainees—especially
in real-world conditions—likely train with suboptimal effort. Keywords: supervision; effort; resistance
training; bayesian
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Introduction

Recent work has highlighted the importance of supervision in optimising strength outcomes
from resistance training (RT). In a recent systematic review and meta-analysis from Fisher
et al. (2022) there was a moderate standardised mean effect (0.40 [95%CI: 0.06, 0.74])
of supervised vs unsupervised RT on strength outcomes synthesised from ten studies. Since
then, a further study has reported that even in previously trained participants there may be
benefit to strength outcomes from supervision (Coleman et al., 2023).

It has been speculated (Fisher et al., 2022) that an explanation for this effect may be due to the
role that a trainer plays in prescribing load progression for the trainee, whereas when there is
no clear load progression rule unsupervised trainees may be less likely to train with appropriate
loads, and ultimately appropriate effort. Indeed, a recent meta-analysis examining the relative
loads selected by trainees when given the ability to self-select highlights that they tend to
choose loads which, whilst initially efficacious in novice trainees, become sub-optimal quickly
as training experience progresses (~53% of one repetition maximum [1RM]) particularly when
combined with the typical repetition ranges prescribed i.e., ~8 to 15 repetitions (Steele et al.,
2022). Further, when given the opportunity to self-select load and the number of repetitions
to complete there is evidence that trainees likely train with relatively low effort as determined
from their proximity to momentary failure i.e., they select ~10 repetitions at ~53% 1RM
(Nuzzo et al., 2024; Steele et al., 2022). Thus, whether self-selecting a load for a typically
prescribed repetition range or self-selecting a load and self-selecting the number of repetitions
to perform, most will naturally perform sets with an estimated proximity of ~10-20 repetitions
shy of momentary failure.

As such it has also been suggested that a supervising trainer plays the role of providing motiva-
tion and enhancing trainee effort (Fisher et al., 2022). Indeed, recent survey studies highlight
that trainees perceive supervision to have an important role in determining their motivation
and resultant effort during RT which they also perceive to be important to achieve their training
goals (Carlson et al., 2024; Fisher et al., 2023).

However, a recent meta-analysis of the dose-response relationship of proximity to momentary
failure for strength and hypertrophy outcomes highlights that, while there is increased hyper-
trophy with closer proximity to failure, there is not a clear relationship for strength (Robinson
et al., 2024). But a caveat is that there was limited data for proximities to failure >10 repeti-
tions, and that the models were adjusted for load (average loads were typically ~75-85% of
one repetition maximum). Thus, the results of this meta-analysis apply to proximity to failure
after selecting load (i.e., intraset effort) and a higher relative load requires a greater effort
all else being equal. When considering the average self-selected load of ~53% 1RM coupled
with a typical ~10 repetitions per set equating to proximities to failure >10 repetitions (Steele
et al., 2022) it seems plausible that unsupervised trainees may train with a less-than-optimal
load, repetitions, and resultant effort to optimise strength outcomes. Ultimately, and in combi-
nation, supervision should provide trainees with feedback of their past performance, whether
technical, effort- or program-based, and guidance toward their future performance (Fisher,
under review).
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We were afforded an opportunity to examine the role of supervision on effort during RT in a
unique setting with several private strength clinics whose members train either unsupervised
on a “Core” membership1 or supervised by an exercise scientist on an “Assisted” membership
both retrospectively and through a prospective experimental study. As such, using Bayesian
methods, we examined samples of historical data from both types of member and in a sample
of current Core members we investigated experimentally the impact of supervision from a
qualified exercise scientist.

Methods

Experimental approach to the problem

The study was conducted at a selection of strength clinics operated by Kieser Australia recruit-
ing from the existing pool of Core members at these locations. All Kieser Australia members
are prescribed the same protocol. This consists of a single set of the resistance machine ex-
ercises prescribed on their current training programme card using a load that should permit
them to reach momentary failure within a time-under-load (TUL) of 90-120 seconds (though
an upper limit of 180 seconds TUL is enforced to avoid machines being occupied for too long
on the clinic floor preventing other members from using them) using a ~ 12 seconds repeti-
tion duration (i.e., ~4:4 seconds concentric:eccentric actions with a 2 isometric second hold
whilst still under load with tension on the involved musculature at the end of each concentric
and eccentric muscle action). Core trainees are prompted to progress load by ~5% for the
next session once a TUL of >120 seconds is achieved for a particular exercise before reach-
ing momentary failure, and for Assisted trainees this is actioned by their supervising Exercise
Scientist. Trainees are prompted to complete a session rating of perceived effort (RPE) at
the end of their training session. An acute randomised cross-over design was employed to
examine participants completing an RT session with and without direct supervision with one
week apart (i.e., a Core vs Assisted session). Participants were instructed to complete a single
set of the resistance machine exercises on their current training programme card using their
current training loads to momentary failure. The TUL performed, and ratings of perceptions
of effort (RPE) and discomfort (RPD) were recorded and compared between both conditions.
This study was not pre-registered and as described below the sample size was justified based
on logistical concerns and the analysis is considered exploratory.

In addition to the experimental study design noted above, we also took samples of Core and
Assisted trainees from historical data records in Kieser Australia’s database. We took separate
random samples to obtain both TUL and session RPE data as not all members record their
RPE. There were two reasons for examining these historical samples. Firstly, we used this
data to generate empirical informative prior distributions to use in our Bayesian modelling
of the experimental study data. Secondly, they allowed us to also explore the descriptive2

1Note, Core members do typically have a “Review” session every ~3 months with an exercise scientist to complete
strength testing, and review their training programme cards including selection of exercises and weights.

2Note that we do not claim this difference to be an estimated causal effect in this data given that we have not
adjusted for confounders; for example, that different types of people might self-select into either Core or Assisted
memberships and that this might confound comparisons of either TUL or session RPE.
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difference between Core and Assisted training in situ, but also that we could compare the
prior distribution for the random samples of members in situ with the posterior distribution
of members completing their sessions in the experimental study to understand the extent to
which study effects might also influence outcomes.

The experimental study component of this project was approved by the Southampton Solent
University Health Exercise and Sport Science Ethics committee (id: STEELEAUG2016). All
participants provided informed consent to participate in the study. Data in the prior sample
was used in de-identified form and with member consent for data to be used for research
purposes.

Participants

Experimental

The study was advertised at five Kieser Australia strength clinics and we sought to recruit
members who had > 6 months prior training experience at the strength clinics, were healthy
(no clinical conditions on their member record as recorded by a physiotherapist or exercise
physiologist), both males and females (age +18 years), and without any current condition for
which RT would be contraindicated. They were recruited from the existing member pool of Core
members. We recruited a sample size based on considerations of what was logistically feasible
given the availability of the exercise scientist staff at each clinic to conduct data collection and
perform the supervised Assisted sessions and wanting to minimise the burden on day-to-day
operation of the clinics. As such it was decided that a target of 50 participants across clinics
would be acceptable. We ended up with n = 45 participants recruited across the five clinics.

Prior Sample

We queried the Kieser Australia database to generate random samples from historical data. We
opted to generate reasonably large samples to ensure precise prior estimates, though did not
use the entirety of the historical data (~50000 members, >10 years of data) so as to reduce
computation time for Bayesian modelling. For TUL we limited data to Core and Assisted mem-
bers training sessions that either were not led by an exercise scientist or were respectively3,
took the first training session after at least 6 months of prior training at Kieser Australia had
been completed by each member, randomly sampled 1000 Core and 1000 Assisted members
and then filtered to the resistance machines used in by members in the experimental study so
that we had a selection of members across varied clinic locations and completing sessions with
a selection of resistance machine exercises and had TUL data for each exercise. Thus we ended
up with a sample of n = 1751 (Core = 849, Assisted = 902). For session RPE we performed
a similar database query and randomly sampled 1000 Core and 1000 Assisted members who
had reported session RPE values.

3Whilst members can have Core or Assisted memberships the former also have sessions that are supervised (i.e.,
their “Review” sessions noted in footnote1) and the latter can have unsupervised sessions (i.e., they can attend the
clinic outside of their scheduled sessions with the exercise scientist and train unsupervised). Thus we limited our
sample to only normal training sessions which had been either unsupervised or supervised for both Core and Assisted
members respectively.
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Protocols

All RT was performed using resistance machines (Kieser Training AG, Zurich, Switzerland)
including the A1 (hip extension), A2 (torso flexion), A3 (hip abduction), B1 (leg extension),
B6 (leg press), B7 (seated leg curl), C3 (torso arm i.e., pulldown), C7 (seated row), D5 (arm
cross i.e., pectoral fly), D6 (chest press), D7 (seated dip), F2/F2.1 (abdominal flexion), and
K2 (supported supinated grip pullup). Note, not all participants performed exercise using
each machine, but had at least some of these machines in their current training cards. For
the experimental study participants were instructed to attend two training sessions at least
one-week apart where they completed either their current Core session (i.e., unsupervised)
or an Assisted session (i.e., supervised). During the Core session the participant completed
their training session as prescribed with the only difference for the Assisted session being that
an exercise scientist supervised them providing instruction and motivation; however, they did
not interfere in any physical way during the set (e.g. to spot or assist in completing a failing
repetition). Each participant had an existing training programme card. In both conditions they
utilised the current training loads for each machine that were recorded in the last session of
their training programme card prior to participation in the study. Participants were instructed
to ensure that they continue performing the exercise to momentary failure independently of
the TUL achieved for the purposes of the study i.e., if they realised during the set that their
prior load selection was evidently too low for the prescribed TUL range they should continue
to momentary failure regardless off the TUL acheived. Momentary failure was defined as per
Steele et al. (2017) i.e., the point at which, despite their greatest effort, participants are
unable to continue concentrically contracting and moving the resistance, and this was clearly
communicated to the participants. During each session for each exercise the trainees/trainers
recorded their TUL achieved as they would do for their usual sessions using timers situated
around the clinic in view during training specifically for this purpose. In addition, they recorded
their RPE and RPD in that order immediately upon completing the exercise using previously
validated scales for differentiating these perceptions (Steele, Fisher, McKinnon, et al., 2017);
scripts and scales are available here: https://osf.io/ufvy8/.

The data generated from the sample of historical members was generated according to the
standard protocol described above that all Kieser Australia members are prescribed. TUL was
also recorded similarly using timers available about the clinic, or for some sessions using a
more recently developed mobile phone application (Kieser Konnect, Kieser Australia) which is
placed on a stand on the resistance machines and used to track TUL for each exercise in their
training card which is programmed to the application. Session RPE was recorded using either
the mobile application for Core members, or via the application used by staff during Assisted
sessions and used a modified version of the Borg 6-20 scale where the scale is displayed as
scrollable and the verbal anchors are “6 - None”, “7- Very, very light”, “13 – Somewhat hard”,
“19 - Very, very hard”, and “20 – Maximal Exertion”.
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Statistical Analysis

All code utilised for data preparation and analyses are available in either the Open Science
Framework page for this project https://osf.io/etb34/ or the corresponding GitHub repository
https://github.com/jamessteeleii/supervision_tul. We cite all software and packages used in
the analysis pipeline using the grateful package (Rodriguez-Sanchez et al., 2023) which can
be seen here: https://osf.io/ew79g.

As noted, the project was not pre-registered but involved exploratory analysis of the exper-
imental and prior datasets. All analyses have been conducted within a Bayesian framework
and all posterior estimates and their precision, along with conclusions based upon them, are
interpreted continuously and probabilistically, considering priors, data quality, and all within
the context of each outcome and the assumptions of the model employed as the estimator
(Kruschke & Liddell, 2018). All models were run with 2000 warmup and 2000 sampling itera-
tions and four Monte Carlo Markov Chains. Trace plots were produced along with 𝑅̂ values to
examine whether chains had converged, and posterior predictive checks for each model were
also examined to understand the model implied distributions (see https://osf.io/u7g8c. We
fit two sets of models for the TUL and RPE outcomes, one on the prior sample of data using
weakly regularising priors in order to generate posterior distributions to inform the priors used
in the other model using the experimental data, and a single model on the experimental data
for the RPD outcome using weakly regularising priors. These models are described below. For
all models we calculated average marginal effects as the global grand means for both predic-
tions under each condition as well as contrasts between conditions and visualise both prior
and posterior distributions along with median and 95% quantile interval (QI) estimates from
these.

Time Under Load Analysis

Upon inspecting the raw distribution of the prior sample of data for TUL we noticed that there
was a spike at 120 seconds concomitant with the top of the target TUL range prescribed to
members under both Core and Assisted conditions (see Figure 1). Anecdotal reports from
Kieser Australia staff had also prior to exploring the data suggested to us that, despite the
prescription to train to momentary failure, many Core members were instead selecting loads
and training only to the upper 120 second TUL range threshold irrespective of proximity to
failure. We did not however expect this to be the same for the prior sample of Assisted
members. As such, it suggested to us that there might be two processes underlying the
observed data: a tendency to target a specific TUL threshold and to stop the exercise at that
point, or to otherwise continue the exercise to momentary failure (or to stop the exercise
based on some other process such as tolerable proximity to failure). Thus, we opted to use
a hurdle type model comprising a Bernoulli distribution for the probability of having a TUL of
120 seconds, and a student 𝑡 distribution for all other values of TUL4. We expected this may
also be the case in our experimental dataset given we recruited Core members and so utilised
the same type of model for this. As such this allowed us to examine both the expectations of

4A custom family for the hurdle-student 𝑡 model was produced for use with the brms R package, adapted from the
hurdle-normal distribution developed by Heiss (n.d.).
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the global grand mean for TUL, in addition to the probabilities of having a TUL of 120 seconds.

For both the prior sample and experimental study data the following model was employed
which included a fixed (i.e., population level) effect for the session type, Core or Assisted,
where Assisted was coded as the intercept. The model also included random (i.e., cluster or
group level) effects as intercepts for the location (i.e., the clinic the session was performed at),
the member id, and the resistance machine used (note, due to the cross-over nature of the
experimental design the random effects for location, member, and machine were modelled as
nested in this dataset). These fixed and random effects were modelled as predictors for both
the hurdle and student 𝑡 components of the model. TUL was centred at zero for modelling (i.e.,
all values of TUL𝑖 has 120 subtracted from them prior to modelling). Formally the model(s) for
𝑖𝑡ℎ TUL across condition 𝑐 within the 𝑗𝑡ℎ location, 𝑘𝑡ℎ member, 𝑙𝑡ℎ machine were as follows:

TUL𝑖𝑐 ∼ Hurdle log-student𝑡(𝜋𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] , 𝜈𝑦, 𝜇𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] , 𝜎𝑦) ... or alternatively,

TUL𝑖𝑐 ∼
⎧{
⎨{⎩

0 with probability 𝜋𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]
Student𝑡(𝜇𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] , 𝜈𝑦, 𝜎𝑦) with probability 1 − 𝜋𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

⎫}
⎬}⎭

Models for distribution parameters

logit(𝜋𝑖𝑐) = (𝛾0 + 𝛾0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛾1Condition𝑖𝑐 120 seconds/not-120 seconds process

𝜇𝑖𝑐 = (𝛽0 + 𝑏0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛽1Condition𝑖𝑐 Location parameter in student 𝑡 process

𝛾0𝑗 ∼ 𝒩(0, 𝜎𝛾0𝑗
), for location j = 1, ..., J Variation in intercepts for location in hurdle model

𝛾0𝑘 ∼ 𝒩(0, 𝜎𝛾0𝑘
), for member k = 1, ..., K Variation in intercepts for member in hurdle model

𝛾0𝑙 , ∼ 𝒩(0, 𝜎𝛾0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in hurdle model

𝑏0𝑗 ∼ 𝒩(0, 𝜎𝑏0𝑗
), for location j = 1, ..., J Variation in intercepts for location in student 𝑡 model model

𝑏0𝑘 ∼ 𝒩(0, 𝜎𝑏0𝑘
), for member k = 1, ..., K Variation in intercepts for member in student 𝑡 model model

𝑏0𝑙 ∼ 𝒩(0, 𝜎𝑏0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in student 𝑡 model model

(1)
Weakly regularising priors were employed for prior sample dataset. These were the default
priors in the brms package for all intercept terms which are scaled to the expected response
value when all predictors are at their means and use a student 𝑡 distribution with degrees of
freedom 𝜈 = 3, and variance terms similarly scaled with 𝜇 = 0. The only change to this was
to set reasonable upper and lower bounds for the prior condition effects to limit prediction of
impossible TUL values. The priors were as follows:

Priors (prior sample data model)

𝛾0 ∼ Logistic(2, 0.1) Prior for intercept in hurdle model i.e., Assisted condition

𝛽0 ∼ Student 𝑡(3, 3, 13.3) Prior for intercept in student 𝑡 model i.e., Assisted condition
𝛾1, 𝛽1 ∼ Student 𝑡(3, 0, 15, lb = −60, lb = 60) Prior for Condition effects in both models i.e., Core minus Assisted condition

𝜎𝑦, 𝜎𝛾0𝑗
, 𝜎𝛾0𝑘

, 𝜎𝛾0𝑙
, 𝜎𝑏0𝑗

, 𝜎𝑏0𝑘
, 𝜎𝑏0𝑙

∼ Student 𝑡(3, 0, 13.3, lb = 0) Prior for all variability parameters

𝜈𝑦 ∼ Gamma(2, 1) Prior for student 𝑡 degrees of freedom
(2)
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We then took posterior parameter estimates from the prior sample model and used these to
generate informative priors for the experimental data models which were as follows:

Priors (experimental sample data model)

𝛾0 ∼ Student 𝑡(3.28, −3.03, 0.12) Prior for intercept in hurdle model i.e., Assisted condition

𝛽0 ∼ Student 𝑡(3.28, 2.79, 1.30) Prior for intercept in student 𝑡 model i.e., Assisted condition
𝛾1 ∼ Student 𝑡(3.28, −0.19, 0.11) Prior for Condition effects in hurdle model i.e., Core minus Assisted condition

𝛽1 ∼ Student 𝑡(3.28, 0.07, 0.58) Prior for Condition effects in student 𝑡 model i.e., Core minus Assisted condition
𝜎𝑦 ∼ Student 𝑡(3, 10.59, 0.19, lb = 0) Prior for residual variability parameter

𝜎𝛾0𝑗
∼ Student 𝑡(3, 0.31, 0.08, lb = 0) Prior for location variability parameter in hurdle model

𝜎𝛾0𝑘
∼ Student 𝑡(3, 1.16, 0.07, lb = 0) Prior for member variability parameter in hurdle model

𝜎𝛾0𝑙
∼ Student 𝑡(3, 0.15, 0.08, lb = 0) Prior for machine variability parameter in hurdle model

𝜎𝑏0𝑗
∼ Student 𝑡(3, 3.43, 0.62, lb = 0) Prior for location variability parameter in student 𝑡 model

𝜎𝑏0𝑘
∼ Student 𝑡(3, 10.2, 0.23, lb = 0) Prior for member variability parameter in student 𝑡 model

𝜎𝑏0𝑙
∼ Student 𝑡(3, 3.72, 0.93, lb = 0) Prior for machine variability parameter in student 𝑡 model

𝜈𝑦 ∼ Gamma(2, 1) Prior for student 𝑡 degrees of freedom

(3)

Rating of Perceived Effort and Discomfort Analysis

Despite the use of two different scales and protocols for data collection of perception of effort in
our samples i.e., a session RPE using the 6-20 Borg scale for the prior sample and immediately
post each exercise RPE using a 0-10 scale, both scales were anchored at their limits as in
essence no effort (6 or 0) or maximal effort (20 or 10). As such, and as the intention was
to utilise the prior sample data to assist in producing empirical prior distributions for our
experimental data models, we opted to rescale both outcomes to lie on the (0, 1) interval
such that they reflected the percent effort that was reported as perceived (Steele, 2020). We
then employed an ordered beta regression model (Kubinec, 2022) which employs a cutpoint
process similar to ordered logistic models in order to model both the continuous responses on
the (0, 1) interval reflecting some effort though not maximal, and the degenerate response on
the bounds [0, 1] reflecting both no and maximal effort respectively. We approached the RPD
similarly as this scale was also anchored between no discomfort and the maximum imaginable.

For both the prior sample and experimental study data the following model was employed
which included a fixed (i.e., population level) effect for the session type, Core or Assisted,
where Assisted was coded as the intercept. The model also included random (i.e., cluster or
group level) effects as intercepts for the location (i.e., the clinic the session was performed at),
the member id, and the resistance machine used for the experimental data model only (note,
due to the session RPE reported in the prior sample data and that we sampled only one session
we do not have member or machine random effects, and due to the cross-over nature of the
experimental design the random effects for location, member, and machine were modelled as
nested in this dataset). These fixed and random effects were modelled as predictors for both
the mean and precision parameters of the ordered beta regression model. As noted, RPE in
both datasets was rescaled to lie on the (0, 1) interval. Formally the model(s) for 𝑖𝑡ℎ RPE
across condition 𝑐 within the 𝑗𝑡ℎ location, 𝑘𝑡ℎ member, 𝑙𝑡ℎ machine were as follows (note that
the model for the prior dataset omits the random effect for machine):

8



James Steele et al. (2025)

RPE𝑖𝑐 ∼
⎧{{
⎨{{⎩

0 with probability 𝛼𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]
∈ (0, 1) with probability 𝛿𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

1 with probability 𝛾𝑖𝑐𝑗[𝑖],𝑘[𝑖],𝑙[𝑖]

⎫}}
⎬}}⎭

logit(𝛼𝑖𝑐) = 1 − (𝑋′𝛽 − 𝑘1) Probability of obtaining a 0

logit(𝛿𝑖𝑐) =[(𝑋′𝛽 − 𝑘1) − (𝑋′𝛽 − 𝑘2)]Beta(𝑋′𝛽, 𝑋′𝛽𝜙) Probability of obtaining a value between 0 and 1

logit(𝛾𝑖𝑐) = (𝑋′𝛽 − 𝑘2) Probability of obtaining a 1

𝑋′𝛽 = (𝛽0 + 𝑏0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛽1Condition𝑖𝑐 Vector of predictors

𝑏0𝑗 ∼ 𝒩(0, 𝜎𝑏0𝑗
), for location j = 1, ..., J Variation in intercepts for location in student 𝑡 model model

𝑏0𝑘 ∼ 𝒩(0, 𝜎𝑏0𝑘
), for member k = 1, ..., K Variation in intercepts for member in student 𝑡 model model

𝑏0𝑙 ∼ 𝒩(0, 𝜎𝑏0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in student 𝑡 model model

𝑋′𝛽𝜙 = (𝛽𝜙0 + 𝑏𝜙0𝑗[𝑖],𝑘[𝑖],𝑙[𝑖] ) + 𝛽𝜙1Condition𝑖𝑐 Vector of predictors

𝑏𝜙0𝑗 ∼ 𝒩(0, 𝜎𝑏𝜙0𝑗
), for location j = 1, ..., J Variation in intercepts for location in student 𝑡 model model

𝑏𝜙0𝑘 ∼ 𝒩(0, 𝜎𝑏𝜙0𝑘
), for member k = 1, ..., K Variation in intercepts for member in student 𝑡 model model

𝑏𝜙0𝑙 ∼ 𝒩(0, 𝜎𝑏𝜙0𝑙
), for machine l = 1, ..., L Variation in intercepts for machine in student 𝑡 model model

(4)

Weakly regularising priors were employed for prior sample dataset. These were the default pri-
ors in the ordbetareg package for all intercept terms which are scaled to the expected response
value when all predictors are at their means and use a student 𝑡 distribution with degrees of
freedom 𝜈 = 3, and variance terms similarly scaled with 𝜇 = 0. We left the flat prior on the
fixed effect for condition given we were primarily interested in letting the prior dataset speak
for itself in generating a posterior distribution to use as prior in the experimental data model.
As noted, the prior sample model only included the random effects for location. The priors
were as follows:

Priors (prior sample data model)

𝛽0 ∼ Student 𝑡(3, 0.6, 2.5) Prior for intercept of mean parameter i.e., Assisted condition

𝛽𝜙0 ∼ Student 𝑡(3, 0, 2.5) Prior for intercept of precision parameter i.e., Assisted condition

𝛽1, 𝛽𝜙1 ∼ Uniform(lb = −∞, 𝑢 = ∞) Prior for Condition effects in both location and precision parameters i.e., Core minus Assisted condition

𝜎𝑏0𝑗
, 𝜎𝑏𝜙0𝑗

∼ Student 𝑡(3, 0, 2.5, lb = 0) Prior for location variability parameters

𝑘1, 𝑘2 ∼ Induced dirichlet(1, 1, 1) Prior for cutpoint probabilities

(5)

We then took posterior parameter estimates from the prior sample model and used these to
generate informative priors for the experimental data model which were as follows:
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Priors (experimental sample data model)

𝛽0 ∼ Student 𝑡(3, 0.35, 0.05) Prior for intercept of mean parameter i.e., Assisted condition

𝛽𝜙0 ∼ Student 𝑡(3, 2.01, 0.07) Prior for intercept of precision parameter i.e., Assisted condition

𝛽1 ∼ Student 𝑡(3, −0.24, 0.04) Prior for Condition effects in mean parameter i.e., Core minus Assisted condition

𝛽𝜙1 ∼ Student 𝑡(3, −0.48, 0.06) Prior for Condition effects in precision parameter i.e., Core minus Assisted condition

𝜎𝑏0𝑗
∼ Student 𝑡(3, 0.19, 0.04, lb = 0) Prior for location variability parameters

𝜎𝑏𝜙0𝑗
∼ Student 𝑡(3, 0.26, 0.05, lb = 0) Prior for all other variability parameters

𝜎𝑏0𝑘
, 𝜎𝑏0𝑙

, 𝜎𝑏𝜙0𝑘
, 𝜎𝑏𝜙0𝑙

∼ Student 𝑡(3, 0, 2.5, lb = 0) Prior for all variability parameters

𝑘1, 𝑘2 ∼ Induced dirichlet(1, 1, 1) Prior for cutpoint probabilities

(6)

We did not have prior sample data for RPD and so for this outcome we used the same model
as above for the RPE outcomes but with wholly default weakly regularising priors.

Results

In the experimental dataset we ended up with 135 observations for each outcome across for
each of the two conditions. Our prior sample for TUL after filtering to the same sample of
machines came from 1751 members (Core = 849, Assisted = 902) from 27 locations encom-
passing 11541 observations. The distributions of raw data from both the prior sample and
experimental datasets can be seen in Figure 1.

Time Under Load

In our prior sample model there was little difference between Core and Assisted sessions in
terms of both mean TUL and the probability of stopping at 120 seconds. The estimated TUL for
Core sessions was 122.76 [95%QI: 120.25, 125.2] seconds, for Assisted sessions was 122.65
[95%QI: 120.17, 125.12] seconds, and the between condition contrast (Core minus Assisted)
was 0.08 [95%QI: -1.02, 1.19] seconds. The probability of stopping at 120 seconds for Core
sessions was 4% [95%QI: 3%, 5%], for Assisted sessions was 5% [95%QI: 4%, 6%], and
the between condition contrast (Core minus Assisted) was -1% [95%QI: -2%, 0%].

Our experimental sample model showed far greater difference between Core and Assisted ses-
sions in terms of both mean TUL and the probability of stopping at 120 seconds, in addition
to the posterior estimates differing considerably from the prior sample estimates in terms of
between condition contrasts for TUL and probability of stopping at 120 seconds, Assisted con-
dition TUL, and both conditions probability of stopping at 120 seconds. The estimated TUL for
Core sessions was 125.12 [95%QI: 113.7, 131.9] seconds, for Assisted sessions was 147.35
[95%QI: 134.29, 154.81] seconds, and the between condition contrast (Core minus Assisted)
was -22.1 [95%QI: -26.59, -17.61] seconds. The probability of stopping at 120 seconds for
Core sessions was 15% [95%QI: 10%, 24%], for Assisted sessions was 1% [95%QI: 1%, 3%],
and the between condition contrast (Core minus Assisted) was 14% [95%QI: 8%, 23%].

All marginal predictions (i.e., global grand means) for predictions and contrasts can be seen
in Figure 2.
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Figure 1: The top two panels show the distributions as histograms of both time under load and session rating of perceived effort in the
prior sample of data, and the bottom three panels show the paired responses for time under load in addition to the paired responses
and histograms for the rating of perceived effort and discomfort in the current experimental data (note, the prescribed target time
under load range of 90-120 seconds is indicated by the vertical dashed lines in the top left panel and horizontal dashed lines in the
bottom left panel).
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Figure 2: The top two panels show the prior (i.e., generated from the prior sample) and posterior (i.e., the updated distributions after
observing the current experimental data) distributions with median (point) and 95% quantile intervals (error bar) of time under load
(note, the prescribed target time under load range of 90-120 seconds is indicated by the vertical dashed lines in the top left panel)
and the bottom panels show the probabilities of stopping at 120 seconds.
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Rating of Perceived Effort and Discomfort

In our prior sample model there was a small difference between Core and Assisted sessions in
RPE. The estimated RPE as a percentage for Core sessions was 53% [95%QI: 51%, 55%], for
Assisted sessions 59% [95%QI: 57%, 61%], and the between condition contrast (Core minus
Assisted) was -6% [95%QI: -8%, -4%]. The 𝜙 parameter for precision of the beta distribution
was higher in the Assisted condition suggesting that RPE reported was more clustered around
the estimated RPE values as compared to in the Core condition. The 𝜙 parameter for Core
sessions was 1.53 [95%QI: 1.4, 1.67], for Assisted sessions 2.01 [95%QI: 1.87, 2.15], and
the between condition contrast (Core minus Assisted) was -0.48 [95%QI: -0.6, -0.35].

Our experimental sample model showed a similar magnitude of difference between Core and
Assisted sessions in RPE, though the posterior estimates for RPEs were considerably greater
compared with the prior sample estimates. The estimated RPE as a percentage for Core ses-
sions was 81% [95%QI: 75%, 86%], for Assisted sessions 87% [95%QI: 83%, 91%], and the
between condition contrast (Core minus Assisted) was -6% [95%QI: -10%, -4%]. Similarly
to the prior data, the 𝜙 parameter for precision of the beta distribution in our experimental
sample was higher in the Assisted condition suggesting that RPE reported was more clustered
around the estimated RPE values as compared to in the Core condition. The 𝜙 parameter for
Core sessions was 2.89 [95%QI: 2.35, 3.36], for Assisted sessions 3.34 [95%QI: 2.78, 3.81],
and the between condition contrast (Core minus Assisted) was -0.46 [95%QI: -0.61, -0.22].

The RPD results showed a similar pattern to the RPE albeit with a slightly larger magnitude of
difference between conditions. The estimated RPD as a percentage for Core sessions was 6.3
[95%QI: 5.1, 7.3], for Assisted sessions 7.5 [95%QI: 6.5, 8.3], and the between condition
contrast (Core minus Assisted) was -1.2 [95%QI: -1.6, -0.9]. The 𝜙 parameter for precision
of the beta distribution was higher in the Core condition suggesting that RPD reported was
more clustered around the estimated RPD values as compared to in the Assisted condition,
though the contrast for this was less precise than in the RPE models. The 𝜙 parameter for
Core sessions was 3.52 [95%QI: 2.56, 5.02], for Assisted sessions 2.91 [95%QI: 1.98, 3.55],
and the between condition contrast (Core minus Assisted) was 0.59 [95%QI: -0.25, 2.36].

All marginal predictions (i.e., global grand means) for predictions and contrasts can be seen
in Figure 3.

Discussion

Our study is a first to offer insights into the role of supervision (i.e., Core vs Assisted ses-
sions) during RT both in situ in an ecologically valid real world setting in addition to during
an experimental study. Under standardised training protocol prescription (i.e., single sets of
RT using resistance machines to momentary failure using a fixed repetition duration using a
load that should permit momentary failure in a target TUL range of 90-120 seconds) we ex-
amined exercise performance as the TUL, in addition to RPE and RPD. Our key findings were
that under real world settings in our prior sample there did not appear to be a difference in
TUL between Core and Assisted sessions nor the probability of whether members targeted the
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Figure 3: The top two panels show the prior (i.e., generated from the prior sample) and posterior (i.e., the updated distributions
after observing the current experimental data) distributions with median (point) and 95% quantile intervals (error bar) of rating of
perceived effort on the percentage scale, and the bottom panels show posterior disributions only for rating of perceived discomfort
transformed back to the arbitrary unit scale (0,10).
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upper bound of the prescribed TUL range (i.e., 120s), yet in our experimental study there was
a clear benefit to TUL performance when under supervision and reduction in the probability of
targeting the upper prescribed TUL range. There was a small difference in RPE reported with
and without supervision under both real world and experimental conditions with members re-
porting higher RPE in Assisted training conditions, though RPE on the percentage points scale
was notably higher during the experimental study compared with the prior sample for both
Core and Assisted sessions. Lastly, RPD was also higher in the experimental study under su-
pervised Assisted sessions compared to Core sessions. These results in general support prior
work highlighting the importance of supervision during RT (Carlson et al., 2024; Fisher et al.,
2022, 2023) and that under unsupervised, and perhaps more so during real world conditions,
trainees likely train with suboptimal effort.

We will first discuss the findings from the prior sample of Core and Assisted members. In this
in situ dataset we find for both Core and Assisted members there is clear evidence of targeting
a specific TUL based on the prescribed TUL range of 90-120 seconds. For Core members this
is perhaps unsurprising given that, in repetition count based RT prescription, when given the
opportunity to self-select repetition number people tend to target ~10 repetitions regardless
of the load they self-select and that also most RT prescriptions tend to emphasise that par-
ticular target repetition number (Steele et al., 2022). Thus, that members are also shooting
for targets under this TUL focused RT protocol suggests that this might be characteristic of
most people training under real world unsupervised conditions. It is however surprising that
this is also the case for Assisted members and that TUL differs very little between Core and
Assisted sessions. However, the lack of difference in TUL itself is not necessarily indicative
of suboptimal training effort, and we did observe slightly higher reported RPE during Assisted
training sessions compared to Core sessions. Thus it might be that during Assisted sessions
trainees might be more likely to use loads more appropriate for the prescribed TUL range and
thus train with closer proximity to failure as compared to under Core sessions in addition to
greater clustering of RPE around higher values (indicated by the 𝜙 parameter in the ordered
beta regression). This may be due to load progression protocols being more closely followed
by supervising exercise scientists as compared to those training unsupervised where, unless
using initially heavy loads or in previously well trained persons, most unsupervised trainees do
not progress load sufficiently (Fisher et al., 2022; Steele et al., 2022). In future work we plan
to explore more thoroughly the causal effects of supervision in both load progression and also
isometric strength outcomes collected between Core and Assisted members; but, an initial
descriptive examination of load progression using linear-logarithmic growth models known to
theoretically describe strength progression with time from RT well (Gschneidner et al., 2024;
Latella et al., 2024; Steele et al., 2023) suggests that load progressions are typically simi-
lar between membership types (see https://osf.io/wcv6g)5. In fact, despite the greater RPE
reported under Assisted sessions, in percentage points RPE under both Core and Assisted ses-
sions was considerably lower in our prior sample (Core = 53% [95%QI: 51%, 55%], Assisted
= 59% [95%QI: 57%, 61%]) compared with our experimental study (Core = 81% [95%QI:

5Similarly to the other prior historical samples used, we took a sample of 1000 Core and 1000 Assisted members
fitting a linear-logarithmic model of time in weeks interacting with membership type (Core vs Assisted) with random
intercepts for location, machine, and participant id, and random slopes for log time for each level. The model was fit
using Restricted Maximum Likelihood estimation with the lme4 package (Bates et al., 2015).
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75%, 86%], Assisted = 87% [95%QI: 83%, 91%]) suggesting that members in these real
world conditions may not be training with sufficient effort whether being supervised or not and
many perhaps just “going through the motions” (Steele, Fisher, Skivington, et al., 2017).

In contrast to the prior sample, our experimental study clearly showed a benefit to TUL per-
formance with supervision suggesting that it might enhance trainee effort. Further, given we
recruited existing Core members and had them use their current training loads, it also rein-
forces that members may be typically selecting loads that are too light and also training with
considerable distance from momentary failure. Though the prescribed protocol in situ in the
Kieser Australia clinics is for trainees to perform each exercise to momentary failure, despite
the average TUL under Core conditions being similar between prior sample and experimental
sample (see Figure 2), we can see in Figure 1 that many were capable of achieving very long
TUL before reaching momentary failure in both the Core and Assisted sessions. Interestingly
whilst the probability of targeting the 120 second threshold was similar in the prior sample
between session types, in the experimental study this was far greater in the Core session
condition. We speculate that it might be a result of many members, whom were typically not
achieving the 120 second TUL upper threshold in their prior sessions, interpreting our explicit
instructions in the study to continue to momentary failure as being to ensure that they con-
tinue to this upper TUL range target. Whereas the wide range of TULs, and particularly some of
the very high ones, might suggest that others more literally interpreted the instruction to con-
tinue to momentary failure. In addition to greater average RPE in both conditions, there was
also greater clustering of RPE reported under the Assisted condition suggesting that members
might have achieved closer proximity to failure whilst supervised. It was also the case that
ratings of perceived discomfort were higher under supervision which, as previous evidence has
suggested increases with greater proximity to failure (Refalo et al., 2022, 2023, 2025), also
supports that members trained with greater effort whilst supervised.

Of interest is the considerable difference between the in situ prior historical sample and the
experimental study. That under the explicit experimental study instructions to train to mo-
mentary failure members were likely to train with a greater effort under both unsupervised
and supervised conditions, as evidenced by the TUL results, is reinforced by the greater RPE
in percentage points compared to that reported in the prior sample. Indeed, this may reflect
some degree of the so called “Hawthorne Effect” in both members and the exercise scientists
supervising sessions wherein both were more likely to train/supervise training to a higher de-
gree of effort and thus performance whilst under the auspice of the explicit experimental study
instructions and observation6. Whilst this so called effect is not particularly well understood in
its specifics there is general agreement that both participants and researchers react differently
under observational settings such as research (McCambridge et al., 2014; Paradis & Sutkin,
2017) as seems to be observed here.

The limitations of the present results and conclusions should be noted. Firstly, the lack of dif-
ference in our prior sample of members regarding TUL does not necessarily indicate that even
during Assisted training sessions members are training sub-optimally as this is a comparison

6At Kieser Australia the exercise scientists undertake an “exam” / “assessment” after 3-months of being employed
and anecdotally we have noted from staff conducting these observations that those exercise scientists will change
how they run a session when they are being watched as part of this process.
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unadjusted for other factors possibly causal of the TUL during training (member characteristics,
load used and load progression). However, the session RPE data does perhaps corroborate the
inference that, whilst training with slightly greater effort during Assisted training, members in
situ may still be training with suboptimal effort compared to what occurs under experimental
study conditions when explicitly the instruction to train to momentary failure is reinforced. But,
a further issue with this is that two separate tools/protocols for capturing RPE were used in
the prior sample (session RPE with an adapted Borg 6-20 scale) vs the experimental study
(scales taken from Steele et al. (2017)). Session RPE is historically captured using the Borg
Category Ratio Scale (Foster, 1998) but for reasons unclear a choice was made when originally
implementing this data capture to use the 6-20 scale. The adaptation to the 6-20 scale in par-
ticular involved changes to verbal anchors and it was noticed in the raw distribution of data
(see Figure 1) that there was an abundance of values of 13 reported. Whether or not the ten-
dency for lower RPE in percentage points in the prior sample is necessarily caused by reporting
behaviours due to scale construction or due to members actually training with lower effort in
situ is not clear. It is planned that for future member data collection Kieser Australia will move
towards an exercise by exercise approach using adaptations of the Steele et al. (2017) scales.
The similar degree of contrast between Core and Assisted conditions in both prior sample and
experimental study data though does reinforce the role of supervision in influencing trainee
effort, or at least reported perception of effort. Lastly, despite the impact of supervision on
trainee effort, it is still relatively unclear the extent to which it influences adaptation to training.
As noted, Robinson et al. (2024) suggest that higher effort through load and/or proximity to
failure is important for outcomes and Fisher et al. (2022) reported a moderate standardised
mean effect in favour of supervision for strength adaptation (0.40 [95%CI: 0.06, 0.74]) but
estimates of these effects are still relatively imprecise. Kieser Australia also collect isometric
strength test data from their members and so in future work we intend to explore this lon-
gitudinally and generate causal estimates regarding the role of supervision during RT among
other variables from a large sample of members.

Conclusions

To our knowledge this study is the first examine the role of supervision during RT both in situ
in an ecologically valid real world setting in addition to during an experimental study. Under
real world settings there was little difference in exercise performance, yet in our experimental
study there was a clear benefit to performance when under supervision. There was a small
difference in RPE reported with and without supervision under both real world and experimental
conditions suggesting that under supervision trainees train with greater proximity to failure,
which was also supported by greater RPD under supervision. These results in general support
prior work highlighting the importance of supervision during RT and that under unsupervised,
and perhaps more so during real world conditions, trainees likely train with suboptimal effort.
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