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MANUSCRIPT 
A major objective of sport medicine research is to assess causes of injuries. Studying 

causes of subsequent injuries, including the effects of rehabilitation programs, presents 
unique challenges to provide appropriate guidance for treatment. In this commentary, we 
highlight the issue of “collider stratification bias”.  

At the 2015 First World Congress in Sports Physical Therapy, Witvrouw1 presented 
preliminary findings suggesting that following a 1st injury, strong hamstrings are associated 
with an increased risk of a 2nd hamstring injury. These results might discourage a clinician from 
recommending strengthening exercises to a patient as part of their rehabilitation. In actuality, 
this analysis is subject to “collider stratification bias”, leading to a non-causal association 
between hamstring strength and subsequent injury. The reason for the bias is analogous to 
the obesity paradox bias whereby obesity (analogous to weakness after 1st injury) causes heart 
failure (analogous to subsequent injury), but obesity (weakness) appears protective when 
studies are restricted to only people with heart failure (1st injury).2 3 

Figure 1 is a simplified causal directed acyclic graph (DAG) for such a study. Variables at 
the base of the solid arrows are assumed to cause variables at the arrowheads. Consider a 
surveillance study on risk factors for subsequent injury that follows all athletes from the 
beginning of the season. To enter the study, participants must have had a previous hamstring 
injury (box around 1st Hamstring Injury=Yes). We assume that a hamstring injury will cause 
hamstring weakness post-injury, and will increase the risk of a 2nd hamstring injury through 
restricted range of motion, etc. We also assume that baseline hamstring weakness is a cause of 
the 1st hamstring injury. Participants who are stronger at baseline are also assumed to be 
stronger post-injury. Finally, other causes of the 1st injury aside from weakness (Other Baseline 
Frailty), are also causes of the 2nd hamstring injury.  
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Figure 1: A simplified causal directed acyclic graph (causal DAG) for a study 
examining time to 2nd injury among participants who had a 1st injury. The box 
around Hamstring Injury=Yes indicates that we are restricting our study 
population to those with a hamstring injury. Solid arrows indicate a causal effect 
between variables. The dashed line indicates that Baseline Hamstring Weakness 
and Other Baseline Frailties become non-causally associated when one controls 
for or restricts the population to those with “Hamstring Injury = Yes”. Hamstring 
Injury = Yes is called a collider because it has two arrows point towards it.  If this 
were the true causal DAG, the bias due to the non-causal association could be 
“blocked” by including accurate measures of either Baseline Hamstring 
Weakness or Other Baseline Frailty in the regression model,5 6 or with more 
advanced methods.5 
 
In this causal DAG, the arrows from Baseline Hamstring Weakness and Other Baseline 

Frailty “collide” (arrowheads meet) on Hamstring Injury = Yes. When we restrict the population 
based on a collider, or “control” for the collider in a regression analysis, we create a non-causal 
association between the various causes of the collider (Baseline Hamstring Weakness and 
Other Baseline Frailty; dashed line in Figure 1). Why? 

Consider a simpler example where both rain and automatically timed sprinklers cause 
grass to be wet.4 Wet grass is a collider in this situation. An association exists between 
variables if knowing the value of one variable (rain) provides information about the value of 
another variable (sprinklers). If you do not know if the grass is wet, there is no association 
because knowing whether it rained or not does not provide information about the sprinklers. 
However, if one knew the grass was wet, knowing it did not rain would make it very likely that 
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the sprinklers were on. It is a non-causal association because rain has no effect on 
automatically timed sprinklers. 

From a traditional epidemiology perspective, causal inference requires 
“exchangeability”; comparison groups must have the same prognosis for the outcome except 
for the exposure of interest.5 Participants with strong hamstrings who suffer a hamstring injury 
must have had another cause for their injury. For instance, they may play positions requiring 
excessive sprinting (e.g a striker) compared to participants who do not have to sprint (goalies), 
or have other differences such as an aggressive style of play. Because the participants being 
compared are not exchangeable, an association between strength after rehabilitation and 
subsequent injury cannot be interpreted causally.  

Once we control/restrict based on Hamstring Injury = Yes, we have the following 
associations: (1) causal association between Baseline Hamstring Weakness and Hamstring 
Weakness post injury, (2) non-causal association between Baseline Hamstring Weakness and 
Other Baseline Frailty, and (3) causal association between Other Baseline Frailty and 2nd 
Hamstring Injury. This chain of associations (known as back-door path in causal inference) 
leads to the non-causal (biased) association between Hamstring Weakness post injury and 2nd 
Hamstring Injury. 

Can we estimate the causal effect using traditional regression-based analyses? If the 
causal DAG in figure 1 is correct, all we need to do is include either Baseline Hamstring 
Strength or Other Baseline Frailty as a covariate in our regression model. Including either 
variable blocks the “backdoor path” responsible for the association. The regression model is 
then estimating the only remaining association between Hamstring Weakness post injury and 
2nd Hamstring Injury, which is the causal association directly linking the two variables.  

Collider stratification bias is a major concern whenever we restrict populations based 
on colliders. Yet, restriction of populations is a common strategy in surveillance programs 
studying subsequent injuries using surveillance programs. Although we could obtain an 
unbiased estimate using regression in our example, other contexts may require more 
advanced methods.5 We strongly encourage investigators to seek out the appropriate 
statistical expertise when conducting analyses on subsequent injuries. 
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