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Abstract

This study explores an approach for analyzing deadlift forms us-
ing biomechanical linkage data and neural networks. Methods such
as personal trainers and manual corrections can be costly and inef-
fective without the right tools, creating significant injury risks. By
using Openpose pose estimation and feed-forward neural networks to
classify deadlift form and deviations from proper form, we developed
a system that has nearly 100% accuracy. Because these results are
often hard to understand, a custom GPT was created to transform
the data to be readable for people to take action and fix their form.
The approach demonstrates the effectiveness of machine learning and
pose estimation working together in strength training and proves how
it can be used in many other applications of exercise.

1 Introduction

1.1 Background on Deadlift and its Importance

The deadlift is a fundamental exercise in strength training that engages mul-
tiple muscle groups, including the hamstrings, glutes, lower back, and core.
It is a critical component of powerlifting and is often included in strength
and conditioning programs due to its effectiveness in building overall body
strength and functional fitness. The deadlift mimics real-life movements such
as lifting heavy objects from the ground, making it not only beneficial for
athletic performance but also for everyday activities. Proper execution of
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the deadlift can enhance muscle development, improve posture, and increase
bone density, which is particularly important for preventing osteoporosis (Es-
camilla et al., 2000; McGuigan & Wilson, 1996).

1.2 Challenges in Correcting Deadlift Form

Despite its benefits, the deadlift poses significant risks if performed using
improper form. Common errors include excessive rounding of the back, im-
proper knee alignment, and incorrect hip positioning, which can lead to se-
rious injuries such as herniated discs and muscle strains. The lumbar spine
is particularly vulnerable, with incorrect form increasing shear and compres-
sion forces on the lumbosacral disc (L5/S1) (Sutthiprapa et al., 2017). Tra-
ditional methods of form correction involve manual intervention by a trained
professional, which can be costly and not always accessible. Furthermore,
self-assessment using mirrors can be unreliable and may not capture all an-
gles necessary for comprehensive form analysis (Dempsey et al., 2014).

1.3 Objectives of the Study

The primary objective of this study is to develop a scalable and accessible
method for analyzing and correcting deadlift forms using advanced technolo-
gies. Specifically, the study aims to:

1. Utilize biomechanical linkage data derived from video recordings to
create a detailed analysis of deadlift form.

2. Develop a feed-forward neural network that can classify proper and
improper deadlift forms based on the biomechanical data.

3. Develop a feed-forward neural network that can tell deviations from
proper form based on the biomechanical data.

4. Integrate a custom GPT model to provide actionable feedback and
recommendations for correcting form issues.

5. Validate the effectiveness of the proposed system in accurately identi-
fying and correcting deadlift form errors.

By using technologies such as OpenPose for pose estimation and neural
networks for data analysis, this study seeks to provide an innovative solution



that can be widely adopted in various settings, from personal training to
rehabilitation clinics. The ultimate goal is to enhance the safety and effec-
tiveness of strength training by reducing the risk of injury associated with
improper deadlift form.

2 Literature Review

2.1 Introduction

The deadlift is a fundamental exercise in strength training, but it poses sig-
nificant risks of injury if performed with improper form. Traditional methods
for analyzing exercise forms involve costly and complex equipment. Recent
advancements in computer vision and machine learning offer new, more ac-
cessible ways to evaluate and improve exercise techniques. This literature
review explores current research on deadlift form analysis, the application of
biomechanical models, and the use of neural networks for posture classifica-
tion.

2.2 Deadlift Form Analysis

Proper deadlift form is crucial to prevent injuries, particularly to the lower
back. Incorrect form can lead to increased shear and compression forces on
the lumbar spine, increasing the risk of herniated discs (Sutthiprapa et al.,
2017). Studies have shown that common errors include excessive rounding
of the back and improper knee alignment, which increase the stress on the
lumbar region (Escamilla et al., 2000; McGuigan & Wilson, 1996).

2.3 Biomechanics in Exercise Training

Biomechanical analysis provides detailed insights into the movements and
forces involved in exercises. Traditional methods such as motion capture sys-
tems and force plates offer high precision but are expensive and impractical
for widespread use (Dempsey et al., 2014). Recent advancements in technol-
ogy, such as the Microsoft Kinect, enable more accessible motion analysis.
For example, Sutthiprapa et al. (2017) utilized Kinect for real-time detection
of deadlift form, calculating compression and shear forces on the lumbosacral
disc using Chaffin’s biomechanical model.



2.4 Neural Networks in Form Assessment

Neural networks, particularly feed-forward neural networks, have been in-
creasingly applied to exercise form analysis. Unlike convolutional neural
networks typically used for image recognition, feed-forward neural networks
can effectively process biomechanical linkage data derived from videos. Our
project leverages this approach by extracting 18 key points on the body every
five frames from deadlift videos and feeding this data into the neural network
to classify form accuracy. This method has proven effective in distinguishing
between proper and improper form (Kim et al., 2020).

2.5 Applications and Comparisons

The use of OpenPose for real-time human pose estimation has been instru-
mental in our project. Cao et al. (2017) demonstrated the capability of
OpenPose to accurately detect human body key points, which we adapted
for deadlift analysis. Additionally, research by Taborri et al. (2021) high-
lights the integration of biomechanical data with machine learning algorithms
to improve posture classification accuracy.

2.6 Gaps and Future Directions

Despite the advancements, there remain gaps in the current research. Most
studies focus on static analysis and do not account for dynamic variations
in form throughout the exercise. Furthermore, scalable solutions for real-
world implementation are limited. Our project addresses these gaps by using
biomechanical linkage data and a feed-forward neural network, providing a
scalable solution for deadlift form analysis.

The integration of biomechanics and neural networks offers a promising
approach to improving exercise form analysis. Our project builds on exist-
ing research by developing a novel method for analyzing deadlift form using
biomechanical linkage data, contributing to the advancement of exercise sci-
ence and injury prevention.



3 Methodology

3.1 Data Collection

To train a model on proper deadlift form, a large video dataset of dead-
lifts was needed, including both good-form and bad-form deadlifts. Video
data was collected from three angles starting with facing the deadlift, mov-
ing clockwise: 0 degrees, 30-60 degrees, and 90 degrees to ensure that the
model understood all patterns of good and bad form which might not be
in a different angle. Multiple rounds of data collection were necessary to
provide a large enough dataset for a well-performing neural network. An
initial round of deadlift form data was collected from online sources. These
include datasets from Kaggle as well as fitness training videos on YouTube.
As part of the training and evaluation set, Razin Farooqi was filmed per-
forming deadlifts with both good and bad form. The data was used to train
and evaluate the network after preprocessing. All video data was converted
to the proper .MP4 format in H.264 encoding to ensure consistent results.
Each deadlift video was labeled corresponding to its form(good or bad) and
the angle at which the video was taken.

3.2 Linkage Code Development

As models trained on video can be inconsistent due to many factors such
as background noise, different body types, and significant amounts of un-
necessary information, the videos used were preprocessed before training or
evaluating the neural network. The way that this was done was by using
biomechanical linkage diagrams or “pose estimation” to connect joints and
body features that can be identified in the video. This approach allowed the
model to classify the quality of a lift accurately, as a good lift is defined by
the proper alignment and load distribution across the joints.

The linkage script identified 18 key points on the body for every fifth
frame of the video. To ensure the accuracy of these key points, the script
uses a smoothing window that averages the data across five frames, reducing
noise and providing a smoother estimation of the points throughout the video.
Without this averaging, the pose estimation will not be consistent and there
would not be a pattern that the neural network can learn from.

The output of this script is a JSON file that contains the coordinates
of each of these key points for each frame calculated, as well as a video



of the skeleton connecting the key points from the JSON file to visually
see the results of the pose estimation. This video allows us to verify and
select sufficiently accurate pose estimations, as the smoothing process and
calculations do not always produce perfect results.

During pre-processing, the pose estimation sometimes generates null val-
ues in frames where there is not enough information to identify a key point.
These null values are then replaced with the placeholder [-1,-1], ensuring
that they will not negatively impact the neural network during training or
produce errors due to null values.

Through this processing, the data is stripped of all other unnecessary
extra information in the videos and ensured through the ability to see the
linkage output that the video will be reliable data to train off of. This
increases not only the effectiveness of the model but also the efficiency as the
data is tailored to only the model.

3.3 Neural Network Training

This project uses two different neural networks: one for the classification of
form as either “good” or “bad”, and another, the deviation model, which
provides feedback on how much the key points/nodes from the pose estima-
tion deviate from what the model can predict as a proper form, excluding
the [-1, -1] placeholder values to not influence the rest of the predictions by
these low and unknown values. For the neural network to train, the input
data must be preprocessed once more, flattening the 2D coordinates (x and
y coordinates from the JSON pose estimation) of each frame into a 1D array.
The network still understands that these values represent specific points on
the body, preserving the relationships the coordinates have. This allows the
model to recognize the patterns for “good” form deadlifts, making it possible
to generalize to new data with accurate analysis and classification.

The classification model is a sequential neural network with three layers,
comprising 128, 64, and 32 neurons respectively. Each layer uses batch nor-
malization to improve the stability of the training process and a 50% dropout
rate to prevent overfitting on the training data.

The activation function used for all the layers in both models is leakyReLLU
with an alpha of 0.01. This function creates a small(due to the alpha of 0.01),
non-zero gradient even when the neuron is not active, which has a specific
use in this scenario, as it helps the network train around the placeholder
values of [-1,-1] without "killing” the neuron. By keeping the neuron active,
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the weights can be updated, generalizing the training set possible, even with
the placeholders. For the output layer, a sigmoid function is used to classify
the input as good or bad form and to provide a confidence level for each
prediction. The sigmoid function is used because it has a range of [0,1], and
only approaches these values, perfect for giving a confidence level and classi-
fication as the model can never be 100% confident. The binary cross entropy
loss function is used for the classification model which is standard for binary
classification outputs such as this.

We experimented with multiple architectures for the deviation model be-
fore settling on a 2D convolutional model followed by dense layers. The
other architectures included: a simple dense model, a 2D to 1D convolu-
tional model, an LSTM model, an Attention model, a Transformer Model,
and a 3D model; All of these models were not able to accurately identify
deviations in the evaluation set and gave similar deviations for good and
bad form data. These would not have been accurate models, giving poor re-
sults, but the 2D convolutional model was. The final architecture consisted
of seven layers, with 2D convolutional layers progressing from 64, 128, 256,
to 512 filters, followed by dense layers with 512, 216, and 128 neurons. This
model structure, trained with a batch size of 32 over 750 epochs, was chosen
for its ability to perform well against the evaluation set while the others did
not. This architecture allows the model to understand the temporal relation-
ships in the data through the dense layers, as these layers process the data
as a whole, while better predicting the deviation of the pose through the 2D
convolutional layers as the pose was rendered in 2D, making it possible to
recognize the patterns in a 2D space.

In the deviation model, L2 regularization was used in each layer, with a
penalty of 0.01, as well as a 50% dropout rate, similar to the classification
model. Both of these changes between layers minimized the risk of overfitting
and allowed for more accurate generalization. A custom loss function was
used for the deviation model, which excluded the placeholder values from
the loss function in the training to avoid skewing the model’s predictions.
This is important because trying to predict values that were never there in
the first place can lead to other values being inaccurate due to the fact the
model trains as a whole, frame by frame, not point by point. After masking
the placeholder values, the loss function computed the Euclidean distance
per point, focusing the model’s learning on the true deviations in the form
data.

The deviation model was only trained on data representing good form.
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This was done based on initial experiments where training on both good
and bad form data led to less distinguishable between the 2 results on the
evaluation set. By focusing only on good-form data, the model was better
able to identify and quantify deviations where bad form deviated more than
predicted from good-form data.

Both models used a step decay learning rate reducer. This decreased the
learning rate by 20% every 25 epochs and allowed the models to converge
effectively by creating smaller and more concentrated updates as training
progressed through the epochs.

4 Implementation

4.1 Tools and Packages Used

For the pose estimation, the script uses the OpenCV package to load the
OpenPose model. By loading the pose_deploy_linevec.prototxt file, the neu-
ral network architecture was processed including the layer connections and
the overall model structure, then the pose_iter_440000.caffemodel was loaded
which included the weights to this neural network. This combination made it
possible for the detection of key points through the OpenPose packages. Ad-
ditionally, OpenCV was used to complete this pose estimation using a GPU,
outputting more accurate and efficient results with fewer mistakes than a
CPU would produce.

For the neural network, TensorFlow and Keras were used to build the
sequential models and all of their features. These packages also allowed for
the models to be tested and saved efficiently for further use.

OpenAl was then used to create a custom GPT, Deadlift Keypoint Anal-
ysis, which takes in the output of the deviation model suggestions and ex-
plains, in words, suggestions to better deadlift form based on each keypoint
deviation in order of importance.

4.2 Detailed Steps

Data is first collected through online sources with already labeled data to
not make mistakes when labeling. These sources can include datasets found
on Kaggle and similar websites as well as searching social media platforms
including fitness influencers who show both proper and improper form. Then



data can be collected in the gym who are trained and experienced in the
deadlift and can give good and bad form data. It is also recommended to
get about two times the amount of data that one accounts for as the pose
estimation could not work well for a large portion of data.

Then these videos all are converted to the same codec, in this case, it is
.mp4/H.264 and preprocessed through the pose estimation. Each of these
videos then needs to be manually checked if the pose estimation worked and
if no noise/points are moving where they do not belong.

Once the videos with acceptable pose estimations are identified, the corre-
sponding JSON files containing the key points for each frame are fed into the
classification neural network and then the deviation neural network. After
the training is finished, the models are evaluated on the unseen dataset. If the
results are not as expected, tune the hyperparameters or the model structure
and retrain. Then repeat this process until the results are as expected.

Then use the results from the deviation and classification model and input
them into the custom GPT, Deadlift Keypoint Analysis, to get personalized
advice that will improve the deadlift.

Through our model and dataset, this process was achieved with very
favorable results.

5 Results

5.1 Model Accuracy and Performance

To capture the accuracy of the classifier network, the binary cross entropy
loss function converged, with some spikes about every 100 epochs, to very
close to 0 giving a 100% classification accuracy on the last epoch on the
test data set as well as converging to very close to 100% accuracy which
was measured frame by frame not by each video. This was also apparent in
the evaluation set as this network was able to accurately identify all of the
unseen data as good or bad form throughout or only in certain parts of the
movement, which is consistent with what we identified in the videos. Figure
[1} the Loss and Accuracy graphs are shown below.

For the deviation model, after experimenting with multiple different net-
works that did not have consistent and well-performing results, we landed
on the 2d convolutional network which was able to produce consistent and
accurate results. Because the deviation model was predicting points, the
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Figure 1: Loss and accuracy graphs for the classification model.

model used an Euclidean loss function as well as a Mean Absolute Error to
understand how well the model performs on the test set. These metrics also
converged showing that the model was able to well predict and understand
the points needed for a good form deadlift, and this was also apparent as
there were consistently higher deviations in the evaluation dataset for bad
form than good form. Figure [ the Loss and Error graphs are shown below.
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Figure 2: Loss and error graphs for the deviation model.

Not only was it important to have a well-rounded architecture for these
models to perform well, but the reduced step learning rate was essential to

This was also especially important for the

deviation model as the reduced learning rate allowed it to pick up on small
patterns in the good form data not in the bad form, making the model more



accurate. Shown below in Figure |3 are 3 different snippets of examples of
this output which are all verified to be accurate.

5.2 Custom GPT Analysis

Even though our model provides accurate numerical data for various actions,
more than this data needs to be interpreted. To fix this issue, we created a
tool to translate this numerical information into words in a way that anyone
with a basic understanding of the body can understand

Large language models, such as GPTs, are not only useful for generat-
ing text but also can be an intermediate step between different systems or
protocols as they can understand both as similar tokens giving a result that
is what the model means, translating the data. Recognizing this potential,
we developed a custom GPT from OpenAl to interpret our model’s output
based on the inputs of what each key point aligns to. This GPT can under-
stand and provide clear, user-friendly feedback on any adjustments that are
needed, giving the most important ones(highest deviations) first.

The custom GPT analyzes the numerical data generated by our deviation
model’s predictions, correlates key points to the given specific body parts,
and assesses how these key points should be adjusted for correct alignment.
It then generates straightforward recommendations, indicating what changes
they should make to ensure that all key points are accurate to make a proper
deadlift.

Because the model does not give a direction of the key point deviation,
the GPT could give an inaccurate result, but based on many trials, it will
correct itself by looking at the rest of the deviations, not just one point.

This approach of using GPTs as a translation tool is relatively new and
not very widespread but has proven to be highly effective. By transforming
complex numerical data into clear, helpful improvements, our method makes
it possible for people to not only know where their deadlift is wrong, but how
to improve on it.

Figure 4] illustrates how the GPT provides feedback on necessary changes.
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6 Discussion

6.1 Interpretation of Results

The success of the frame-by-frame system of analyzing deadlift form allows
this model to understand both where and when the deadlifter has errors
in their form. Repeated rounds of training eventually refined the model’s
ability to analyze deadlift form and give feedback at multiple frames during
the deadlift. It is important to give specific recommendations at all nec-
essary stages of the compound lift in order to best assist weightlifters in
improving lifting form. The overall model created in this project successfully
determined accurate deadlift form from inputted data. Refining the neural
network resulted in final tests outputting nearly 100% accuracy by the last
epoch of the test data, highlighting the significance of the model’s perfor-
mance. Additionally, measuring frame-by-frame deadlift form data showed
a near-100% accuracy by the last epoch of test data, further illustrating the
model’s accuracy in determining proper form throughout the video.

The integration and coaction of neural networks, linkage diagram conver-
sion, and an analysis GPT model allowed for the compression and expan-
sion of data to create an accurate model with human language inputs and
outputs. Changes in code and model inputs were needed to accommodate
multiple types of data files throughout the model, especially when bridging
data between model components. Multiple rounds of testing and refinement
during the research process aided in the cohesion and unity of the model’s
components. This was a critical step in creating an accurate model that
retains necessary data throughout and thus allowed for smooth transitions
with corresponding file inputs and outputs.

Cohesion between the model’s components was especially important when
developing the custom GPT function. After multiple rounds of testing and
data training, the custom GPT proved successful in translating numerical
data point adjustments into human language, highlighting the overall model’s
potential to streamline user interaction with the model. Despite a lack of pre-
vious implementations of ChatGPT as a translation tool, building a custom
GPT was an appropriate method of translation from computer-generated
numbers to human feedback. Utilization of accurate Al models in an in-
creasingly Al-driven society is beneficial when implemented correctly, such
as for translation in small-scale models. The success of the custom GPT di-
rectly satisfied the need to output suggestions in a human language format,
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thus allowing the overall model to expand future implications to public use
of the model.

6.2 Implications for Exercise Training

The capability to analyze deadlift form from a user video input provides
weightlifters with a simple way to receive feedback on lifting form, thus mak-
ing this model a useful tool for athletes, weightlifters, and other fitness in-
dividuals. As stated earlier, the high accuracy rate of this model justifies
the benefit of the model in exercise training. The model has the potential to
refine smaller aspects of the form of experienced weightlifters.

Furthermore, the accuracy of a step-by-step model may even notice what
weightlifting coaches would not. Small form adjustments can have large
impacts on muscle strain when deadlifting, and thus the model’s precision and
accuracy can advise minor changes in form that a weightlifting coach has not
corrected. In addition, this model can assess individuals that weightlifting
coaches do not, such as individuals without access to coaches or those who
workout at home. A model like this expands access to high-quality training
and thus can help promote fitness and form consistency for long-term gains.

Since the model analyzes the movement of specific joint linkage points,
the model is able to detect subtle deviations from proper lifting form and thus
can detect small improvements in lifting form. The model has the potential
to analyze deadlift form and analyze changes in a person’s lifting form over
a period of time. Improvements and further suggestions can be given to
the weightlifter, which illustrates the ability to adapt to the weightlifter and
personalize goals based on needed form improvements.

6.3 Potential for Other Exercises/Action

Our approach in creating this model, which produced very strong results for
the deadlift, can be used for multiple other actions involving joint movement.
There are four steps of development to follow when creating a model for an
alternative action. Firstly, an action involving joint movement must be iden-
tified, and data must be available either through research or data creation
and collection. Collect data on proper and improper form, as well as from
multiple video angles for various perspectives on the targeted joint move-
ment. Secondly, create a pose estimation model that identifies the targeted
joint movements and pulls only that data to generate a linkage diagram.
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Identifying key movements using a linkage diagram not only allows a model
to analyze proper form better, but it also compresses large video data files
that carry unnecessary information and takes up excessive storage in many
applications. Once a pose estimation model is complete, two neural networks
will be developed, one for the classification of proper and improper form and
another for the deviation of improper form. Develop these neural networks
by feeding in training data, rewriting code, and restructuring the architec-
ture until the model reaches a very high level of accuracy. Lastly, a Large
Language Model such as a custom GPT should be developed to understand
the model’s numerical output. The GPT should output analysis in a human-
readable format, allowing users to understand the results and suggestions
made by the model. The model’s components must be streamlined with one
another, as this will allow for the retention of critical data and provide the
most accurate result of form analysis. This step-by-step development process
resulted in an accurate model that fulfilled an intended purpose to a high
degree, and thus may likely prove sufficient when designing other similar
models.

Our model, having been trained off of pose estimation data, can be gener-
alized to other actions, allowing it to be applied to various physical activities.
Gym exercises including squats and bench presses would be the early stages
of expanding this model, and a more advanced version of this model could
be used to analyze different sports movements. With the right amount of
training and high-quality data, this skeleton can evaluate tennis strokes, bas-
ketball shooting techniques, and other dynamic actions with high accuracy,
as we found with the complex example of the deadlift. This versatility makes
this approach applicable to various movements, allowing for improving ath-
letic performance in many sports.

Figure [5 shows the steps to create our deadlift model and how it can be
generalized to any other movement.

6.4 Challenges Faced

The most apparent challenge during this process is the pose estimation/linkage
data. OpenPose is an open-source platform that is not built for exercises
which has more complications than most pose estimation needs. For exam-
ple, it would be important to be able to track the person as well as the bar in
the movement as there could be signs of improper form in the bar movement
such as swaying and tilting. Because of these reasons, the OpenPose was
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not able to work properly every time and this led to losing about 30-40% of
the data, so to make a better and more accurate model that could be used
for all data, the most important step would be to make a specialized pose
estimation model for the exercise. This would also eliminate the need for
placeholders which would make the model even more accurate.

Another issue on top of losing data due to bad pose estimation was not
finding enough reliable data. For a good model to work that would apply
to all types of body types in people and filming angles, a significant amount
of more data would need to be found or collected to create a more general
model that would perform better on all types of people.

With this extra and better-suited data, a more complex model would be
needed as well as higher-performing GPUs to ensure that the training process
can function smoothly and without mistakes.

If these challenges are all able to be overcome an incredibly-performing
model can be created that can be used by everyone and can be commercialized
to help many people not have injuries and increase the progress of their fitness
journey.

7 Future Work

7.1 Expanding to an Application

A future application of this project would be to implement this functionality
of classifying and improving deadlift form into a smartphone app. This can
include user-friendly interfaces and step-by-step guides to improve deadlifts
which can help fulfill the role of fitness coaches as they are not always fully
necessary or affordable when implemented into an app for everyday lifters.
The app would combine a linkage diagram generator, the neural network
algorithm, and a large language model such as ChatGPT to process deadlift
videos and provide the user with human language instructions on improving
deadlift form at individual points in time.

Since all video data was converted to linkage diagrams, file sizes have
been condensed, and thus minimal storage space would be needed for this
application which would improve the efficiency of the program as well. The
use of multiple video angles within the training data can allow users to film
video from multiple angles while still getting accurate results from the neural
network. This eliminates the need for specific setup guidelines when video-
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ing, and thus further promotes a more user-friendly experience. Additionally,
video data from users could be used to generate linkage diagrams for further
training data into the neural network. This would further increase the accu-
racy of the model, as a larger dataset is likely to increase the performance of
the pose estimation algorithm and the suggested neural network. The devel-
opment of a smartphone application using this model would prove beneficial
to many lifters, athletes, and fitness enthusiasts who require supplemental
coaching to improve weightlifting performance. Multiple rounds of testing
and data input show increasing accuracy of this model, and thus the model
is likely to perform well when used by the general population.

7.2 Extending the Model to Other Exercises

While the deadlift is widely considered to be one of the most prominent types
of exercises in weightlifting, other compound lifts, including bench presses
and squats, target other muscle groups that are necessary for proper balance
of muscle training. Hence, another future development of this project could
focus on generating similar models for other compound lifts. These lifts
may include the bench press, squat, pull-up, shoulder press, and other major
lifting exercises. Future models could target exercises with the highest risk
of improper form such as this does with the deadlift, as these exercises likely
require more in-depth coaching for newer and common weightlifters to master
the lift without injuring themselves.

When collecting data for alternative exercises, a similar data-collection
method would be implemented, including collecting data from multiple angles
of the lift. Multiple rounds of data collection would be required, especially
for exercises with multiple moving joint elements and high stress on these
joints. Additionally, smartphone applications targeting accurate forms for
these alternative lifts can make this model more accessible to users. The
accuracy of the deadlift form model in the project proves the ability to de-
velop other models that can accurately determine the proper form in other
exercises and movements. An expansion of this project to other lifts would
allow more users to analyze more lifts when lifting coaches may not be easily
available.
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8 Conclusion

This study of analyzing deadlift form using biomechanical linkage data and
neural networks is a new and scalable approach that can evolve into a ben-
eficial product for people who exercise. Demonstrated by the high degree of
accuracy in our models through the extracted key points and the custom GPT
to understand the results, using machine learning techniques and Openpose
can be an effective way to assess exercises. The nearly 100% classification
accuracy and high deviation accuracy of these models show their potential in
weightlifting form detection and correction. Also, for a tool such as this one
accessibility is crucial because it allows individuals to monitor and improve
their lifting techniques without costly interventions like personal trainers.

Looking ahead, the methodology used in this model can be extended to
other exercises such as other lifting movements and sports training. Our
approach indicates that, with sufficient training data, it could be adapted
to a wide variety of sports and fitness activities, provide real-time, accurate
feedback on movement patterns, and reduce training-related injuries.

Overall, this project represents a significant advancement in biomechanics
and machine learning; a solution to a critical problem in strength training
and rehabilitation.
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Figure 3: Comparison of model outputs illustrating three different scenarios:
(1) correct deadlift form, (2) incorrect form, and (3) mixed form with both
correct and incorrect elements.
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« Keypoint 0 (Head/Neck): Off
« Issue: Improper head positioning.

* Improvement: Maintain a neutral head position, looking slightly ahead without craning
the neck.

+ Keypoint 1& 2 (Shoulders):
« Issue: Shoulders rounding forward or misaligned over the bar.

* Improvement: Retract shoulders and position them slightly ahead of the bar at the start.
Engage the lats.

* Keypoint 3 (Upper Back):

* Issue: Upper back rounding.

* Improvement: Focus on thoracic extension. Keep the chest up and shoulders back.

Figure 4: Example of feedback provided by the custom GPT model.

ACTION NN TRAIN ACTION
\ MODEL

LINKAGE ANALYSIS

Figure 5: Diagram of the general model for other movements.
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