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Abstract

Dankel and Loenneke [1] recently presented a new approach to identifying subgroups in parallel group study
designs. Here, we briefly discuss our statistical concerns with proposed approach. We reveal that the error rates of
the Danke-Loenneke approach are much higher than the claimed 5%, and that these error rates are dependent on
numerous factors, including sample size, effect variance, and random error. The Dankel-Loenneke method has poor
statistical properties; as such, we suggest that the method not be used and the manuscript constitutes an “honest
error” per the Committee on Publication Ethics (COPE) guidelines.

1 Introduction

We read with great interest the Current Opinion by Dankel
and Loenneke [1]—a paper that introduces an analyti-
cal approach (herein, the Dankel-Loenneke (DL) method)
to classifying “differential responders” in exercise science
studies. We applaud the authors’ encouragement of exer-
cise scientists to include a control in addition to an exper-
imental group (i.e., parallel groups design). However, the
DL method itself has unintended, undesirable statistical
properties. Long-standing critiques of differential respon-
der analyses aside [2, 3], the focus of the current letter is on
the error rates of the DL method. Here, we demonstrate
how the DL method performs poorly, including error rates
far above 5%.

2 Simulations

Dankel and Loenneke [1] describe a trichotomous dis-
cretization of continuous responses to bin participants into
groups (i.e., “low,” “average,” and “high” responders),
with the purpose of using these groups for subsequent
analyses. For categorizing participants into these groups,
Dankel and Loenneke [1] assert that, by using their ap-
proach, “approximately 5% of the total sample [. . . ] will
be incorrectly classified as differential responders,” but they
provided neither proofs nor simulations to support this as-
sertion. We systematically evaluated this assertion via sim-
ulation and mathematical derivation. We simulated studies
that closely resemble the properties of the example stud-
ies that Dankel and Loenneke [1] present, with constant
Gaussian random error that is orthogonal to true effect

magnitude and variance. Our simulations show that the
DL method is not robust to random error and does not
have constant error rates as the authors describe (Figure
1). What is more, the accuracy of the DL method is de-
pendent upon sample size and the relationship between
true effect variance and random error. Even in the best of
circumstances—in which sample sizes are large and error is
homogeneous, independent of effect magnitude, and equal
on the individual and aggregate levels—the DL method
is capable of miscategorizing at a rate greater than the
claimed 5%. Our mathematical evaluation of the error
rates is in agreement with these simulation results, and
further, they provide a mathematical rationale as to why
the DL approach fails to maintain the claimed error rates
(see DL TypeI Error Rate Math.pdf).

Next, we employed a widely published model for indi-
rect calorimetry minute ventilation (VE), which incorpo-
rates the nonlinear differential measurement error inherent
in many electronic measuring devices used in exercise sci-
ence/sports medicine, to assess the performance of the DL
method [4, 5, 6, 7]. The code used to create this simulation
is available (see Differror VE LoennekeMethod.pdf) and
results can be seen in Figure 2. Even when there is no
heterogeneous effect of the intervention, the method may
have a statistically significant Levene’s test and incorrectly
categorize participants as differential responders. Because
there is no true response heterogeneity, the product of the
rate of misclassification and Levene’s test power (Figure
2, top and middle, respectively) can be used to obtain the
total probability of misclassification (Figure 2, bottom).

∗Corresponding Author: Andrew Vigotsky (avigotsky@gmail.com)
This is a preprint and all authors have approved the current version.
Tenan M, Vigotsky AD, Caldwell AR (2019). On the Statistical Properties of the Dankel-Loenneke Method. doi:10.31236/osf.io/8ndhg
Twitter: @TenanATC, @avigotsky, and @ExPhysStudent
Details of our math and simulations can be found on OSF: https://osf.io/2r5ev/

1

https://osf.io/ab683/
https://osf.io/6esbv/
https://osf.io/2r5ev/


Statistical Properties of the Dankel-Loenneke Method doi:10.31236/osf.io/8ndhg

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

● ●
● ● ● ● ●

● ● ●
● ●

●
●

●
●

● ●

●

● ●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ●● ●

●

●

●
● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
● ● ● ●

● ● ●
● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ●●

Pr(Misclassified | + Levene's) Pr(+ Levene's) Pr(Misclassified)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.00

0.05

0.10

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

Ratio of random error variability to total observed variability

P
ro

ba
bi

lit
y Sample size

●

●

●

10

25

50

Figure 1: Probability of classifying an “average responder” as a “differential responder” using the Dankel-Loenneke (DL)
method under constant Gaussian error.
100,000 simulations were run for groups with n = {10, 25, 50} for a range of variance ratios (σ2

ε/
(
σ2
ε + τ2

)
, where σ2

ε is
the variance of random error, τ2 is the variance of the treatment effect, and their sum is the observed variance in the
experimental group). A variance ratio of 0 indicates no random error (pure treatment heterogeneity), while a variance
ratio of 1 indicates pure random error (no treatment heterogeneity). Each participant’s true score (not including random
error) and observed score (including random error) were compared to the thresholds for classification as determined by
the DL method. A misclassification was noted for any “average responder” whose observed score fell into “low” or “high”
responder categories—this difference is strictly due to random error, including constant Gaussian biological variability
and measurement error. (Left Panel) The probability of misclassifying an average responder as a differential responder,
given a positive Levene’s test. When Levene’s test is positive, the DL fails to maintain a 5% misclassification rate for
responder classification. Because Levene’s test is serving as a filter, smaller sample sizes perform more poorly because
they are noisier. (Center Panel) The probability of a positive Levene’s test. As the ratio approaches 0, the variance
of the treatment effect dominates the variance of random error, increasing the probability of a positive Levene’s test.
(Right Panel) Total probability of being misclassified. This is the product of the left and center panels and thus takes
into account Levene’s test. Even when using Levene’s test as a filter, the misclassification rate is unstable and is a
function of sample size—greater error rates with more data—and the magnitudes of the treatment and error variances.
Dashed grey lines indicate P = 0.05.
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Figure 2: Error probabilities associated with nonlinear error structure from simulations using minute ventilation.
(First Row) Within each simulation condition, the proportion of participants that were categorized as differential respon-
ders when a statistically significant Levene’s test was calculated. (Second Row) The probability of a positive Levene’s
test. (Third Row) The total probability of misclassification, taking into account both the error of Levene’s test and the
error rate when Levene’s test is positive. Note that this is the product of the first and second rows. These simulations
are based on the Crouter and Tenan model for nonlinear differential measurement error of day-to-day variability in VE
[5, 7]; this model is used to draw a participant’s measured VE on Trial 1 and Trial 2 of a simulated study with a control
arm and an experimental arm. The benefit of this model is that enables us to easily simulate what VE a participant
may have when no change occurs or when some magnitude of change occurs as a result of the intervention (i.e., there are
no true “differential responders;” all participants have the exact same factual response to the intervention with simply
the noise added for the nonlinear differential measurement error across days). Various sample sizes, equal and unequal,
and intervention response magnitudes were simulated 1,000 times with initial “true VE” measures randomly sampled
between 50–70 L/min to obtain the above results. There is no stable pattern for the inaccuracies in their method with
the slight exception that, in the case of VE, an increase in the effect of the intervention increases the probability of
falsely identifying these “differential responders.” Dashed grey lines indicate P = 0.05.
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3 Discussion

We have presented evidence that the DL method is prone
to error rates well beyond the claimed 5% and is exacer-
bated when measurement error is not constant. In addition
to our statistical concerns about the DL method, we wish
to note that more general concerns about differential re-
sponder analyses are discussed extensively in the applied
statistics literature [8, 2, 9], and more generally, their use-
fulness and philosophical grounding have been called into
question [3].

Our simulations clearly demonstrate that this method
fails in its goal to categorize response magnitude, and in
doing so, has unacceptably high error rates. The inter-
ested reader is strongly encouraged to explore the estab-
lished statistics literature when designing studies where a
“responder analysis” is desired [8, 2, 10]. In such cases,
researchers should focus on the subject-by-treatment in-
teraction, and as Dankel and Loenneke [1] suggest, this
may not always be possible to calculate without a crossover
replicate design [9]. If subsequent analyses are of interest,
we suggest that continuous errors-in-variables models are
more efficient and have been properly vetted [11]. Finally,
as a general practice, we, like others [2, 3], advocate for re-
searchers to avoid “classifying” participants as responders
or non-responders, and instead, identify theoretical justifi-
cations for heterogeneous response magnitudes.

Unless Dankel & Loenneke provide clear and unambigu-
ous mathematical proofs and reproducible data simulations
substantiating their claimed error rates, the incorrectly
claimed error rates constitute an “honest error” where we
have provided “clear evidence that the findings are unreli-
able,” as per the Committee on Publication Ethics (COPE)
guidelines [12]. However, based on our proofs and simula-
tions, this seems impossible. Our field should no longer
accept statistically sounding rationale for “novel statistical
methods” when mathematical proofs are the gold standard
in statistics journals.
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