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Abstract

We propose a simple stochastic model to evaluate the effect of different complexes’ performance
on the probability of winning a rally. The model uses as input the probabilities of success and
failure in various complexes, which can be extracted from standard match reports. Our model
reproduces well-established results; for example, we found that a team that starts the rally with
a serve is more likely to obtain a point in the phase of complex k2 than in the phases associated
with complexes k0 and k1. Conversely, if a team starts the rally receiving, it is more likely to
win the rally in complex k1. The proposed model also provides a new approach to quantify
a team’s performance in a rally and diagnose performance issues in different complexes. As a
case study, we analyze the performance of a top South American team in the CSV Men’s Tokyo
Volleyball Qualification 2020. Although our model can be applied to various individual actions,
our performance analysis focuses on one pivotal game action: the serve. It is found that only
power jump serves that decrease the attacking efficiency in k1 of the rival team have the potential
to be more effective than jump float serves. The proposed model makes it possible to determine
when one player’s serve is more effective than another’s, not only based on the number of direct
points scored for or against but also on their influence on the probability of winning the rally.
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Rally-Based Performance Model 1 INTRODUCTION

1 Introduction

Statistical analysis of the capabilities of a team and its players is an essential part of the performance
analysis in highly competitive volleyball [1, 2, 3, 4, 5? , 6, 7]. The results of these studies are used by
coaches for the tactical planning of matches and training sessions. Some of the metrics used to evaluate
the performance of a team, a player, or a group of players are efficacy and efficiency [8]. Efficacy, ξ,
is a measure of whether predetermined goals are achieved regardless of cost. It is defined as the
ratio between the positive actions A+ and the total number of actions AT , ξ = A+/AT . In contrast,
efficiency, η, takes into account not only the result obtained from a particular game action but also its
cost. In this case, the ratio explicitly includes the number of negative actions A−, η = (A+−A−)/AT .

To illustrate the difference, consider the case of attack performance. Suppose a player, in a total
of ten actions (spikes), scored four points and made four attack errors (e.g., the ball fails to go over
the net, goes out of bounds, etc.). In the remaining two actions, the rally continues. In this scenario,
we have AT = 10, A+ = 4, and A− = 4, which implies that the player’s efficacy is ξ = 2/5, whereas
their efficiency is zero, η = 0. These two metrics differ; while ξ is always positive, η can be negative.

More elaborate methods divide the outcome of the action (or group of actions) into more than two
categories, depending on the result obtained, assigning a weight to each category. For example, an
action can be categorized as positive, negative, or neutral, with their respective weights c+, c−, and
c=. The values of the weights and the categorization items are arbitrary since they are defined by
the technical team and depend on the action or set of actions considered. If the number of positive,
negative, and neutral results obtained for a given action are A+, A−, and A=, respectively, then the
score, C, of that action is given by

C =
c+A+ + c−A− + c=A=

c+AT

. (1)

Let us assume that in the case of the attack mentioned earlier, the coach assigns c+ = 2, c− = −1,
and c= = 1. In this example, the neutral actions correspond to A= = 2. Thus, the score for the game
action in consideration is C = 3/10. As with efficacy and efficiency, the maximum value that C can
have is 1. Therefore, the higher ξ, η, or C, the better the performance associated with the action.

Any of these methods can be applied to individual actions such as serving, passing, setting, etc., as
well as to a set of actions like those carried out in the different cycles of the rally. However, and more
importantly for the purpose of this paper, another way to evaluate the performance of a given action or
set of actions is through its impact on the probability of winning a rally. For instance, let us consider
the particular case of serving. The result of this specific action can be divided into four categories:
positive when a direct point (ace) is scored, negative when a point is conceded to the opponent (e.g.,
the serve does not go over the net, the ball goes out of bounds), useful when a point is not scored but
the opponent’s attack options are reduced, and neutral when the serve is completely controlled by the
opponent. Depending on their skills and type of serve, a player has a given probability of scoring a
point, conceding a point, or making a useful or neutral serve. Thus, a player’s service performance
can be evaluated based on its effect on the probability that the player’s team wins the rally with the
player serving.

A convenient way to categorize the different actions involved in a rally is through the concept of
a complex. As described in Refs. [9, 10], the different complexes are defined according to the actions
of the game they involve. Each rally begins with one of the two teams serving. This action is called
complex k0. The team that receives the opponent’s serve is in a game situation called complex k1,
which includes the actions of receiving, setting, and attacking. While a team executes complex k1, its
opponent is in a game situation called k2, which includes the actions of blocking, defending, setting,
and counterattacking. Finally, we have complex k3, which includes the same actions as complex k2.
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Rally-Based Performance Model 2 MODEL DESCRIPTION

The complexes k1, k2, and k3 involve more game actions than complex k0. From this point of view,
the simplest complex is k0 since it only involves one action: the serve.

Building upon previous Markovian models that have been used to calculate the winning probability
of a set in a volleyball match [10], the proposed model helps to evaluate the effect of players’ actions
during the different complexes of a rally on the probability of winning the rally. We believe that this
approach is valuable not only for coaches to improve the performance evaluations of their players but
also as a tool to design more efficient game strategies and training routines. The proposed model
is more detailed than those described before, allowing for the diagnosis of performance issues in the
various actions that make up a rally.

In particular, we focus on the impact of service performance on a team’s probability of winning a
rally given that a particular player is serving. However, it is important to note that our model can
diagnose possible performance issues in other actions, such as receiving, blocking, and attacking. The
proposed model takes into account different sets of actions involved in a rally and classifies service
actions as positive, negative, neutral, or useful. Unlike previous modeling work, our model not only
evaluates an action or set of actions but also quantifies its effect on the rest of the actions required
to win a rally. Moreover, our model is not purely descriptive; it also quantifies how an improvement
in one or more actions would change the probability of winning a rally. In this approach, a server’s
performance is better than another’s if, under the same conditions, it increases the probability of
winning a rally.

Finally, our focus on serve performance is not arbitrary. The serve is a crucial game action because,
to score n consecutive points, it is necessary to win n − 1 rallies while serving. In addition, to win a
set, it is necessary to have at least a two-point lead. Another important aspect is that, in volleyball,
it is more likely to score a point if you start the rally receiving than serving. In this way, the serving
team is disadvantaged and must use the serve to reduce the rival’s chances of success. The current
data suggests that men tend to prefer the power jump serve in volleyball, though this preference might
differ among women [11]. This type of serve is commonly used in high-level volleyball [12] and is
thought to have a negative impact on reception performance, which in turn affects the setting zone
[13]. Volleyball coaches often emphasize the application of pressure with the serve, even though this
increases the risk of making errors. Since the benefit of applying pressure may not always outweigh
the increased risk of service errors, one of the key applications of our model is to help volleyball teams
determine when this risk is worth it, based on the overall impact of the players’ serve on rally success.

The rest of the paper is divided as follows. In Sec. 2, we describe our model and present the typical
values of the input probabilities reported in the literature. In Sec. 3, the model is used to reproduce
well-known results, such as the probability of winning a rally given that the team starts serving or
receiving. Then, we discuss some theoretical implications of the model, including the importance of
the serves that do not score a direct point but decrease the attack variants of the rival. Furthermore,
we use our model to analyze the performance of a top South American team and show how the model
can be used to diagnose performance issues in actions other than serving. Our analysis includes some
specific recommendations to improve the team’s performance significantly. Finally, in Sec. 4, we
provide some final remarks.

2 Model Description

Sports like volleyball, tennis, and racquetball are sequential and cyclical in the following sense. A set
is divided into independent rallies. Each rally involves the repetition of several game actions until
one of the two teams scores and the rally ends. The team that won the previous rally starts the next
rally serving. This characteristic facilitates the mathematical modeling of these sports since it allows
them to be described, as a first approximation, by means of Markov chains [14, 15? , 16, 10, 17, 18,
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19, 20, 21, 22, 23]. Like ours, however, these models are sport-specific. The application of Markovian
methods to one sport cannot be straightforwardly extrapolated to the analysis of another, not even
between beach and indoor volleyball.

As explained in the previous section, the complexes are defined according to the game actions they
involve. Each complex has a particular objective. Complex k1 seeks to neutralize the rival’s serve and
set up an attack to win the rally or, if this is not possible, to decrease the rival team’s probability
of success in complex k2. Complexes k2 and k3 are intended to contain the rival team’s attack and
organize a counterattack. Complex k0, in turn, seeks to score a direct point while serving or, at least,
to reduce the opponent’s attacking options in complex k1. Thus, each complex can be characterized
by the following probabilities:

• qki (rki) the probability that team A (B) scores a point when executing the ki complex.

• q′ki (r
′
ki
) the probability that team A (B) loss the point when executing the ki complex.

For simplicity, we make two assumptions. First, we assume that complex k3 is equivalent to k2,
which is reasonable because those complexes involve essentially the same game actions. Second, we
consider that the probabilities qki , q

′
ki
, rki , and r′ki do not change throughout the rally. Therefore,

we do not take into account that long rallies favor the team with the best physical preparation and
neglect psychological factors [24, 25]. Since only three types of complexes are considered, we have
that i = 0, 1, 2. For example, according to the previous definitions, qk0 is the probability of scoring
a direct serve point, and q′k0 is the probability of making an error while serving (e.g., the serve fails
to go over the net, goes out of bounds, the server commits a foot violation, etc.). Additionally, by
definition, Qki = 1− qki − q′ki (Rki = 1− rki − r′ki) is the probability that, once team A (B) executes
complex ki, the rally continues. The probability that given that the rally continues, the ball remains
in possession of the team that executed the complex is s, while the probability that the opposing team
takes possession of the ball is c. An example of the former situation occurs when the attack of a team
in k1 or k2 impacts the rival block in such a way that the attacking team is back in possession of
the ball (which occurs with probability s). In this situation, the team that initially attacked can set
up a new attack. However, if after the initial attack, the ball is in possession of the defending team
(which occurs with probability c), this team can counterattack. In high-performance volleyball, c is
about four times larger than s, so we assume that c = 0.8 and s = 0.2 are reasonable values for these
probabilities.

In order to estimate the probabilities defined above, the model needs data for the different complexes
that are taken into account. In the case of k0, three different types of serves are considered: power
jump serve (JS), jump float serve (JFS), and static floating serve (FS). Table 1 shows the statistics for
the three types of serves reported in Ref. [26]. The data were taken from 4552 serves in 28 matches
during the 2008-2009 regular season of the Italian volleyball male Top League and differentiate four
different results:

• Error: point for the opposing team.

• Neutral: the serve is controlled by the opposing team in such a way that its reception allows it
to set the ball to all possible attackers.

• Useful: the serve is controlled with difficulty by the opposing team in such a way that its reception
does not allow all possible attack variants.

• Positive: direct point for the team that serves.
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Table 1: Evaluation of serve outcomes [26].

Serve Type Negative Neutral Useful Positive Total
JS 690 2007 253 231 3181
JFS 80 1063 55 25 1223
FS 2 142 4 0 148

Table 2: Probabilities associated with complex k0. The probability Qk0 includes useful and neutral
actions.

Serve qk0 q′k0 Qk0

JS 0.07 0.22 0.71
JFS 0.02 0.07 0.91
FS 0.00 0.01 0.98

It is important to bear in mind that the classification of serve types proposed in Ref. [26] is
arbitrary. Other characterizations are possible. However, the four-level description presented is the
simplest one that allows us to describe the most relevant serve outcomes. In addition, more detailed
characterizations require larger data sets to determine the probabilities of each category.

From these data, it is possible to calculate the probabilities associated with complex k0: qk0 , q
′
k0
,

and Qk0 , which are shown in Table 2. According to these data, in elite volleyball, the probability of
making a direct serve point, regardless of the type of serve, is approximately 0.06, while the probability
associated with giving the point to the opponent by a serve error is close to 0.17 [26]. Therefore, if the
type of serve is not discriminated, qk0 ≈ 0.06 and q′k0 ≈ 0.17. However, it is important to emphasize
that these probabilities strongly depend on the type of serve. For the JS, the probability of error is
greater than 0.21, while for the JFS and FS, the associated probabilities are approximately 0.06 and
0.01, respectively. In addition, the probability of making a direct serve point is close to 0.07 for the JS,
0.02 for the JFS, and close to zero for the FS. The probability that the rally continues after the serve
is given by the sum of the neutral and useful serves reported in Table 1. For the JS, JFS, and FS, we
have that Qk0 is approximately 0.71, 0.91, and 0.98, respectively. The values of the probabilities used
as input in the model for complex k0 are summarized in Table 2.

On the other hand, following the results obtained in Ref. [27], the probability that a team scores
a point while attacking in complex k1 is close to qk1 ≈ 0.5, and the probability of committing an
error in that complex is q′k1 ≈ 0.16. For complex k2, the analogous probabilities are qk2 ≈ 0.42 and
q′k2 ≈ 0.18. These values do not take into account that the values of qk1 and q′k1 for useful serves are
usually different from those for neutral serves.

Based on Fig. 1, the probability P s
A that team A wins a rally given that it starts serving can be

determined in terms of the input probabilities of the model. To calculate P s
A, it is important to note

that once complex k1 is executed by team B, one of the two teams will execute complex k2. If the ball
does not pass to the opposite side of the court (e.g., due to a successful block), team B will execute
complex k2; otherwise, team A will execute it. As mentioned above, the probabilities that the ball will
pass to the opposite side or not are c and s, respectively. In Fig. 1, the circles represent situations
where team A is in possession of the ball, while the squares represent situations where team B is in

Table 3: Probabilities associated with complexes k1 and k2.

qk1 q′k1 Qk1 q′k2 q′k2 Qk2

0.50 0.16 0.34 0.42 0.18 0.40
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possession. The score at the beginning of the rally is (n,m), where n is the number of points scored
by team A, which is serving, and m is the number of points scored by team B. In this way, the rally
will evolve through one of the trajectories shown in Fig. 1. As seen in this figure, in this model, the
rally is divided into three phases, each corresponding to a specific complex: the serve phase (k0), the
attack phase (k1), and the counterattack phase (k2).
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Figure 1: Transition diagram for the probability that team A wins a rally given that it starts serving.
The score at the beginning of the rally is (n,m), with n being the points scored by A and m those
scored by B. The crosses indicate the states where the rally ends.

States 2, 3, 5, and 6 are absorbing states, meaning that when one of these states is reached, the
rally ends. States 1 and 4, on the other hand, represent situations in which the rally continues, with
team A and team B executing complex k2, respectively. To further illustrate the diagram in Fig. 1,
consider the trajectory highlighted in red. In this example, team A serves, while team B receives the
ball and sets it to the attacker in k1. The attack is neutralized by team A, which returns the ball in
complex k2 to team B. Team B’s counterattack is then neutralized by team A, leaving the ball on
team B’s side, allowing them to attack for a second time in a row. In this final action, team B wins
the rally. The probability P s

A is the sum of the probabilities of all possible paths that end with team
A scoring a point, i.e., with a score of (n + 1,m). Following the procedure described in Appendix A,
we obtain

P s
A = qk0 +Qk0r

′
k1
+

Qk0Rk1

Gk2

(cFk2 + sHk2) , (2)

where
Fk2 = s qk2Rk2 − qk2 − cQk2r

′
k2
, (3)

with
Hk2 = −c qk2Rk2 + r′k2(sQk2 − 1), (4)

and
Gk2 = c2Qk2Rk2 + s (Qk2 +Rk2 − sQk2Rk2)− 1. (5)
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The first term of Eq. (2) corresponds to the probability of winning the rally with a serve that
directly results in a point (ace). As mentioned above, this value has been documented and is found in
Table 2. The second term represents the probability of obtaining the point due to the opposing team
making an error while executing complex k1 (e.g., technical fault, attack error). The last two terms
represent the probability of winning the rally during phase k2.

The probability P r
A that team A wins the rally given that it starts receiving is defined in a similar

way. For this, we take into account that P r
A = 1 − P s

B, and that P s
B can be calculated using Eq. (2)

under the transformations qki ⇌ r′ki and q′ki ⇌ rki , thus obtaining

P r
A = r′k0 + qk1Rk0 +

Qk1Rk0

Gk2

(cLk2 + sMk2) , (6)

where it has been defined
Lk2 = 1 + c q′k2Rk2 − sQk2rk2 + rk2 , (7)

and
Mk2 = 1 + cQk2rk2 − s q′k2Rk2 + q′k2. (8)

The first term represents the probability of winning the rally due to a serve error by the opposing
team, while the second term is the probability of winning during the k1 phase. As before, the last two
terms represent the probability of winning the rally during the k2 phase.

3 Results and Discussion

Since the proposed model depends on several parameters, its validity was assessed by comparing the
model results with those reported in the literature, based on extensive statistical observations. Using
the values given in Tables 1 and 2 in Eqs. (2) and (6), it is found that when the type of serve is not
taken into account, the probabilities of team A scoring a point given that it starts the rally serving
and receiving are close to P s

A ≈ 0.3 and P r
A ≈ 0.7, respectively. This result is in agreement with the

values reported in Refs. [15? , 28], validating the model’s consistency.
From Eq. (2), we calculate the probabilities that team A scores a point in the different phases of

the rally for the three types of serves. Using the data from Table 2 as input for the probabilities of
k0 and those from Table 3 for k1 and k2, and assuming that performance in those complexes is the
same regardless of the type of serve, the results are shown in Table 4. Clearly, for the three types
of serves considered, it is more likely to score the point in phase k2, followed by phase k1, and with
less probability in phase k0. This result is consistent with empirical observations [29, 30, 31], which
may explain why coaches place significant importance on complex k2 during training. This complex is
crucial for retaining the serve in consecutive rallies and is therefore necessary to increase (or reduce)
the point difference in a set.

3.1 Theoretical Implications of the Model: The Importance of Useful
Serves

Given that the most likely outcome is to reach complex k2, in addition to trying to score a direct
point while serving, the serve must fulfill at least one of the following three objectives: minimize the
chances of success for the opposing team in complex k1 (rk1); increase the chances that the opposing
team will make an unforced error in complex k1 (r

′
k1
); or increase the probability of reaching phase k2

to counterattack (Rk1).
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Table 4: Probability of scoring a point in the different phases of the rally given that the team starts
serving, with c = 0.8.

Serve Phase k0 Phase k1 Phase k2 P s
A

JS 0.07 0.11 0.13 0.31
JFS 0.02 0.15 0.17 0.34
FS 0.00 0.16 0.19 0.35

Differentiating by type of serve, but assuming the same performance in complexes k1 and k2, it is
found that for the JS, P s

A ≈ 0.31, while for the JFS and FS, P s
A ≈ 0.35. Note that these probabilities

have similar values, which is not realistic, suggesting that the FS is the most efficient serve technique.
This inconsistency arises mainly because the data used to calculate them do not take into account the
effect of useful serves, i.e., they do not include the effect of the type of serve on rk1 and r′k1 . Let r̃k1 ,

r̃′k1 , and R̃k1 be the probabilities associated with the rival team’s k1 when the serve is useful, whereas
when the serve is neutral, the probabilities are denoted as before: rk1 , r

′
k1
, and Rk1 , and take the values

shown in Table 3. It is reasonable to expect that r̃′k1 > r′k1 and rk1 > r̃k1 , i.e., the receiving team’s
probability of scoring a point in k1 is lower in the case of useful serves than in the case of neutral
serves. The opposite occurs for r′k1 . Therefore, it is possible to conclude that, although the JS leads
to more direct points, it also leads to more serve errors, so that in the end, for the JS, P s

A can be
lower compared to the other types of serves. For the JS to be more efficient than the FS and JFS, it
must be aggressive enough that rk1 decreases and r′k1 increases sufficiently to compensate for the serve
errors. Clearly, the justification for using the JS lies not only in that it leads to a greater number of
direct points but also in its ability to decrease the effectiveness of the rival team’s attack in complex
k1; otherwise, it would be less efficient than the other two types of serves considered.

For the JS, the probability that the rally extends beyond the k0 phase, Qk0 , is close to 0.7, while for
the other two types of serves, it is greater than 0.9. Thus, risking the serve with a JS is recommended
when the opposing team has a high probability of winning the rally by executing k1, which is true in
elite competitive volleyball but not necessarily in lower categories such as 16U and 14U. This should
be considered by coaches when using the serve strategically, as the JFS and even the FS could be
useful against teams with a weak attack, i.e., with low rk1 and/or high r′k1 because, in the first case,
it is easy to counteract the k1 of the opposing team, while in the second, it is advantageous to extend
the rally to the k1 phase, where the rival team has a greater chance of making an unforced error.

So far, the probabilities associated with phases k1 and k2 have been taken from Table 3. The
values reported there do not take into account that they are indirectly affected by the type of serve.
To improve the model, it is necessary to consider the effect of the serve type on the probabilities rk1 ,
r′k1 , and Rk1 . Thus, it is necessary to differentiate useful serves from neutral ones since, typically, the
JS generates more useful serves than the FS and JFS. This differentiation can be implemented in our
model by considering that only a fraction α of the serves decreases the efficiency of the rival team’s
attack (useful serve), while the rest are perfectly controlled (neutral serve) by the opposing receivers.

According to Table 1, for the JS, JFS, and FS, we have α ≈ 0.11, α ≈ 0.05, and α ≈ 0.03,
respectively. Following a method similar to that used to derive Eq. (2), if neutral and useful serves
are distinguished, the probability of winning a rally given that the team starts serving is given by

P s
A = qk0 + (1− α)

(
Qk0r

′
k1
+

Qk0Rk1

Gk2

(cFk2 + sHk2)

)
+ α

(
Qk0 r̃

′
k1
+

Qk0R̃k1

Gk2

(cFk2 + sHk2)

)
, (9)
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where r̃′k1 , r̃k1 , and R̃k1 are the analogous probabilities of r
′
k1
, rk1 , and Rk1 for the cases where the serve

is useful. Note that in the case of α = 0 (no useful serves), Eq. (9) reduces to Eq. (2), as expected.
In the absence of experimental data, we explore below some ways in which the JS could affect

the opposing team’s chances of a successful attack. For example, consider r̃k1 = rk1(1 − ϵ) and
r̃′k1 = r′k1 + ϵ rk1 , i.e., the JS decreases the probability that the opposing team scores a point in k1
by an amount ϵ rk1 and increases by the same amount the probability that the team makes an error
in this complex. Hereafter, this scenario will be called Case 1. In Case 1, the probability that the
rally reaches phase k2 remains unchanged, R̃k1 = Rk1 . We can also consider cases in which the JS
decreases the efficiency of the attack in k1, according to r̃k1 = rk1(1− ϵ), but this time increasing the
probability that the rally continues, R̃k1 = Rk1 + rk1ϵ, with r̃′k1 = r′k1 (Case 2). Alternatively, it can
also be proposed that the JS increases the probability that the opponent makes an error in complex
k1, r̃

′
k1

= r′k1 + R̃k1ϵ, with R̃k1 = Rk1(1 − ϵ) and r̃k1 = rk1 (Case 3). In all cases, the parameter ϵ
satisfies 0 ≤ ϵ ≤ 1.

In Fig. 2, the results found with Eq. (9) for P s
A as a function of ϵ and α are shown for the three

cases mentioned above. The white region represents the set of values of α and ϵ where P s
A < 0.35,

i.e., where the JS is less efficient than JFS and FS. Note that Case 1 is more advantageous for team
A than the other cases because the region where P s

A > 0.35 is larger. That is, it is more favorable
for the JS to increase the opponent’s error probability and decrease their effectiveness in k1 than in
the other scenarios considered (Cases 2 and 3). For example, in Case 1, with α = 0.2, ϵ > 0.45 is
required to achieve P s

A > 0.35, i.e., it is necessary to decrease the opponent’s rk1 by 45%. Similarly,
for Case 2 and the same value of α, ϵ = 0.8 is required, while for Case 3, it is impossible for the JS to
be more efficient than the other types of serves considered. In all cases, the smaller the value of α, the
larger the value of ϵ required to satisfy the condition P s

A > 0.35. As mentioned above, although the JS
should aim to score more direct serve points compared to the JFS and FS, it is even more important
to reduce the opponent’s attacking options by decreasing their chance of success in k1, as exemplified
in Case 1. In the proposed model, this effect is represented by the parameters ϵ and α. The challenge
here is that the more aggressive the serve, the more likely it is to result in a serve error.
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Figure 2: Effect of the JS on the probability of winning the rally, with c = 0.8.

Our model can be applied regardless of whether the team starts the set serving or receiving. Table
5 shows the probability of scoring a point at each phase of the rally given that the team starts the rally
receiving. The probabilities were calculated using Eq. (6) and the values reported in Tables 2 and 3.
Therefore, the results reported in Table 5 do not include the effect of the type of serve on the rival’s
performance in k1. For all three types of serves, it is more likely to score in the k1 phase, where the
probability is approximately three times higher than that of phase k2. As a result, if a team starts a
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Table 5: Probability of scoring a point in the different phases of the rally given that the team starts
receiving, with c = 0.8.

Serve Phase k0 Phase k1 Phase k2 P r
A

JS 0.22 0.36 0.10 0.68
JFS 0.07 0.46 0.13 0.66
FS 0.01 0.50 0.14 0.65

rally performing complex k1, it is very important to strengthen the serve receive formation to prevent
the opposing team from decreasing the efficiency of the team in this complex since, on average, the
probability of scoring a point is highest in this phase.

3.2 Practical Implications of the Model: Analysis of the Performance
of a Top South American Team in the CSV Men’s Tokyo Volleyball
Qualification 2020

Below, we illustrate how our model can be used to analyze the performance of a given team. For this
purpose, we consider a top South American volleyball team participating in the CSV Men’s Tokyo
Volleyball Qualification 2020 in Santiago de Chile. Four teams entered the qualifying stage, with each
team playing three games. The data presented below were collected from the team’s official statistic
data scouting using DataVolley 4, which was then double-coded by an independent observer. There
was a high level of intercoder agreement. For more information, see Appendix B and the supplementary
material. As shown in the supplementary material (SM), the convention used to collect the results of
the serve is based on the six items described below:

• Error (=): The ball fails to go over the net, goes out of bounds, or the server is called for a foot
fault or time violation.

• Negative (−): The opposing team receives the ball and can attack in any possible way.

• Exclamation (!): The opposing team receives with difficulty, such that the setter has only one
attack variant available.

• Positive (+): The opposing team receives the ball such that the setter can choose more than one
attack variant, but not all attack options are available.

• Very positive (/): The opposing team’s reception is poor, and the ball is sent directly to the
other side of the court or cannot be attacked.

• Direct point (#): The opposing team cannot receive the ball, or the serve determines the end of
the rally (ace).

Table 6 shows the statistics of the team under study when executing complex k0.

Table 6: Serve performance of the analyzed team.

Results = / − ! + # Total
Service 45 10 132 32 47 8 274

It is important to note that in the cases of = and #, the rally ends; in the first case, with a point for
the team that receives, and in the second case, with a point for the team that serves. In the remaining
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cases, the rally continues. Furthermore, in this convention, the case − corresponds to the neutral
actions mentioned in the previous section, while +, !, and / correspond to useful serves. Note that
although the FIVB report uses six categories, we map the results onto the four categories discussed
in Sec. 2. Table 6 shows the results for the serves of the team under study. From this data, we can
estimate the probabilities associated with complex k0: Qk0 = (10+132+32+47)/274 = 221/274 ≈ 0.81,
qk0 = 8/274 ≈ 0.03, and q′k0 = 45/274 ≈ 0.16.

Similarly, the performance evaluation in complex k1 is also based on a six-item system as follows:

• Error (=): The ball fails to go over the net, goes out of bounds, or a player is called for a
technical violation (e.g., the attacker is called for a net or center line violation during the attack
attempt).

• Blocked attack (/): The opposing team blocks the ball, scoring a point.

• Poor (−): The ball is easily controlled by the opposing team, allowing them to counterattack.

• Positive (+): The opposing team defends with difficulty, allowing the team that originally at-
tacked to play the ball again.

• Cover (!): The attack is blocked back onto the attacker’s side, but a member of the same team
digs the ball and the rally continues.

• Direct point (#): The team wins the rally.

The data collected for complex k1 of the analyzed team is shown in Table 7.

Table 7: Performance of the team under study in complex k1.

Result = / − ! + # Total
k1 14 12 42 13 11 105 197

Therefore, the probability Qk1 associated with complex k1 is Qk1 = (42+11+13)/197 = 66/197 ≈
0.34. The rally ends with a point for the receiving team at qk1 = 105/197 ≈ 0.53 and at q′k1 =
(14 + 12)/197 ≈ 0.13. In cases where the rally continues (“−”, “+”, and “!”), the ball changes
possession 80% of the time. In this way, c ≈ 0.8 and s ≈ 0.2, as stated before.

The performance of opposing teams in k1 is presented in Table 8. The numerical data imply
Rk1 = (39 + 11 + 9)/204 ≈ 0.29, rk1 = 104/204 ≈ 0.51, and r′k1 = (22 + 19)/204 ≈ 0.20. It is worth
noting that from this data set, it is obtained c ≈ 0.81 and s ≈ 0.19, which reasonably suggests that c
and s are independent of the team executing k1. By comparing the values of qk1 with rk1 , we can also
conclude that the performance of the analyzed team in k1 is similar to that of its opponents.

Table 8: Performance of the opposing team in complex k1.

Result = / − ! + # Total
k1 22 19 39 11 9 104 204

Analogously, for complex k2, considering the actions where the attack in k2 leads to a direct
point, it is found that qk2 ≈ 0.46. On the other hand, attack errors and blocked attacks lead to
q′k2 ≈ 0.21. Finally, the actions where the attack is totally or partially controlled by the opponent lead
to Qk2 ≈ 0.33. The probabilities of the opposing teams in complex k2 are calculated in the same way,
where we get rk2 ≈ 0.47, r′k2 ≈ 0.23, and Rk2 ≈ 0.30.
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The performance at serve of some of the players from the team under study is shown in Table 9.
This table also includes the performance of the respective rotations in complex k2 and the opposing
team’s performance in complex k1. The fraction of the times in which the service has decreased the
opponent’s attack (α) includes situations (!, +, and /). The five players considered are labeled by the
number used on their jerseys: P1 (opposite), P8 (middle blocker), P16 (middle blocker), P17 (setter),
and P18 (right-side hitter). These players were selected because they performed most of the serves in
the tournament. Note that only P1 executes JS; the other players use FJS.

Table 9 shows that player P1 has the most aggressive serve not only because more than 50% of the
serves are useful, but also because these serves have a non-zero probability of scoring a direct point. In
fact, the smallest probability for the opposing team to score a point in k1 is found when P1 is serving.
However, this is the player who commits the most serve errors, and, because of this, as shown below,
this rotation does not have the highest winning probability at serve. In contrast, P16 has the least
aggressive serve, with around 20% of the serves being useful and a negligible probability of scoring
a direct point; nevertheless, this is one of the most efficient rotations of the analyzed team. Finally,
for the rotation where P17 is serving, the opposing team has the highest probability of scoring in k1
(rk1 = 0.63), although a good percentage of their serves are useful.

From Table 8, the average error percentage (=) of the opponents when executing complex k1 is
11%, while the probability of losing the rally due to the team’s block (/) is 9%. In total, the team
under study has a 20% chance of winning a rally when it starts serving, given that the opponent
executes an attack in k1. However, from Table 9, the player who scores the most aces while serving,
P1, only has a probability of 8% of making an ace and a probability of 29% of making a serve error,
giving the point to the opposing team. It is then more likely to win the rally by blocking the rival or
by an opponent’s unforced error in k1 than by scoring an ace.

Clearly, the performance of the rotations in which these players are serving is not homogeneous.
However, the useful serves of P8 and P16 decrease the opposing team’s success probabilities from
(rk1) 0.62 and 0.61 to (r̃′k1) 0.15 and 0.14, respectively. This represents a decrease of nearly 75% in
the rival’s performance in k1. It is worth highlighting that, unlike the case of player P1, these players
decrease the efficiency of the opposing team with a serve error probability of around 10%, well below
the error percentage of P1, which is close to 30%.

Table 9: Probabilistic description at serve of some representative players from the analyzed team and
their respective rotations.

Probability P1 P8 P16 P17 P18
qk0 0.08 0.00 0.00 0.00 0.00
q′k0 0.29 0.11 0.10 0.04 0.20
qk2 0.33 0.40 0.75 0.13 0.75
q′k2 0.67 0.60 0.25 0.87 0.25
rk1 0.40 0.62 0.61 0.63 0.54
r′k1 0.40 0.24 0.19 0.13 0.29
r̃k1 0.29 0.15 0.14 0.33 0.00
r̃′k1 0.21 0.31 0.57 0.22 0.22
α 0.58 0.38 0.18 0.38 0.24

Serve type JS FJS FJS FJS FJS

The probability of winning a rally when five players from the team under study are serving is
calculated using (9) and Table 9. The results are shown in Table 10. The probability of winning the
rally in phases k0, k1, and k2 is also included. Although almost 40% of the serves of P17 are useful,
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Table 10: Probability of winning a rally given that the analyzed team starts the rally serving for five
different players.

Player P1 P8 P16 P17 P18
P s
A Eq. (9) 0.34 0.34 0.38 0.20 0.41
Phase k0 0.08 0.00 0.00 0.00 0.00
Phase k1 0.18 0.24 0.24 0.16 0.22
Phase k2 0.08 0.10 0.14 0.04 0.19

the worst performance is found for this rotation, with a winning probability of 20%. This is not only
because the serve does not sufficiently decrease the opposing team’s chances in k1 (r̃k1 = 0.33 and
rk1 = 0.63), but also because the team under study has poor performance in k2 in this rotation, with a
success probability of 0.04%, as shown in Table 10. Note that this rotation has the lowest probability
of winning in phases k1 and k2. Clearly, this rotation has a poor performance in blocking and setting a
counterattack. On the other hand, although P1 is the only player who scored direct serve points with
a probability of winning in phase k0 of 0.08, and the only player relying on JS, P s

A for this player is
not the highest in the team under study. This is mainly due to the poor performance of this rotation
in k2, where the probability of winning is only 0.08, but also due to a large number of serving errors.
In this case, the benefit of risking the serve is not compensated, and therefore the rotation has a low
performance. Furthermore, this rotation has a probability of winning the rally in k1 of 0.18, which
is the second lowest of those that we consider. In contrast, rotations where P16 and P18 serve have
the highest P s

A, which can be explained not only by the team’s good performance in k2 but also by
the impact of these players’ useful FJS on the opposing team’s performance in k1. These rotations
have the highest probabilities of winning in the k1 and k2 phases, see Table 10. The first implies
good performance in blocking the rival’s k1 attacks, while the second implies good performance in
counterattack.

As mentioned earlier, an important feature of our model is that it allows us to predict the impact
of a given increase in performance on the probability of winning a rally. For instance, according to Eq.
(9), if P1 reduces the number of serve errors in such a way that q′k0 decreases from 0.29 to 0.15, P s

A

increases from 0.34 to 0.41. Our model suggests that decreasing the serve errors of P1 would increase
the increase the team’s probability of scoring a point in that rotation by 20%. The most problematic
rotation is found when P17 is at serve. However, if this rotation increases its performance in k2 in
such a way that it matches the performance of P16 and P18 (qk2 = 0.75 and q′k2 = 0.25), then P s

A

would be 0.39, which corresponds to an increase of nearly 100
Surprisingly, the rotation where the setter (P17) is at serve and the opposite is at position four

has the worst performance, P s
A ≈ 0.2, which is close to half of the best one. In modern volleyball,

the winning probability for that rotation is expected to have the largest value because it is designed
to have the strongest attack line. Yet, Table 9 shows that when P17 is serving, the performance of
the team in k2 is relatively low. Reviewing the videos of the matches, we confirm that this issue is
mainly due to inefficient blocking. Block performance in k2 is related to service performance since a
serve that decreases the number of attacking variants of the opposing team facilitates the work of the
blockers. In other words, for a given rotation, it is expected that the larger the α, the larger qk1 and
qk2 . This is not the case for the analyzed team, where the largest P s

A is found for the rotation with the
smallest α. Although about 40% of the serves of P17 are useful, the team cannot take advantage of
this due to ineffective blocking. Another reason for the team’s poor performance when P17 is serving
is the limited number of attack variants. The players of the team under study have difficulty scoring
a point when the setter has few attack options in k2 (e.g., when setting the ball to the outside hitter
is the only available option). In contrast, the rotations where P16 and P18 are serving have excellent
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performance in k2 despite having a small α. Finally, it is worth mentioning that P17 is the player who
serves when the analyzed team starts the set serving. According to the results shown in Ref. [10], this
decreases the probability of winning the set because this rotation has the lowest P s

A.

4 Conclusions

Previous work has used Markovian methods to calculate the winning probability of a set in a volleyball
match [10]. The present model advances existing approaches by estimating the effect of individual
player actions during the different game complexes on the probability of winning a rally. Equation (9)
can be used to calculate the chances of winning a rally for particular rotations and players, using as
input the probabilities of success in each complex. These probabilities, in turn, measure the team’s
performance in specific actions such as service, reception, attack, and more. The proposed model
allows for determining when a player serving has a better performance than another, not only by the
number of direct points they score (ξ) and the number of errors they commit (η) but also by the
impact of such actions on the probability of winning the rally. The player who makes the most points
or commits the fewest errors while serving is not always the one with the best service performance,
as shown by P1 in Table 9. Tactical decisions related to the choice of serve technique must consider
the serve’s impact on the performance of the opposing team’s k1 phase to increase the probability of
success in the k2 phase.

Our model provides a way not only to evaluate the team’s performance but also to quantify the
effect of non-scoring actions, such as useful serves, on the probability of winning a rally. In other
models, such as the one given by Eq. (1), the importance of these actions is evaluated subjectively by
assigning an arbitrary weight. The proposed model, however, can predict how much improvement in
the performance of an action or set of actions increases the probability P s

A. Overall, we believe that
this type of model could be used by statisticians of high-performance teams to diagnose failures and
deficiencies during the different complexes. As in the case of the team under study, the results of the
model can be used not only to plan future training sessions but also to correct learning errors in lower
categories. For instance, we found that P1 has the most offensive serve, i.e., the one with the largest
α. However, P1’s service has low efficiency due to the number of serve errors. This issue is reflected
in the probability P s

A. For P1, we found that P s
A = 0.34, while for players P16 and P18, these values

are 0.38 and 0.41, respectively (see Table 10). However, our model predicts that if P1 reduces serve
errors by half, P s

A for that rotation will match the performance of the rotation where P18 is serving.
A reduction in P1’s serve errors will then significantly increase the performance of that rotation.

Admittedly, similar approaches, such as Markovian decision methods, have been used to analyze
related sports like beach volleyball. However, we believe that beach volleyball is more tractable as a
decision problem than indoor volleyball. Since there are only two players on each side, the number
of game combinations is smaller. For example, since only one player blocks, the other must receive.
Once a player receives, only one can set the ball during the second contact while their partner is the
only attack variant available during the third. This makes strategic decisions more prominent in beach
volleyball than in indoor volleyball. Indoor volleyball is primarily a game of power. Heavier indoor
volleyballs move quicker and can be hit harder. Beach volleyballs are softer, lighter, and slightly larger
than indoor balls. The lighter weight allows them to float more in the air, enabling good players to
use the weather to their advantage. When serving, indoor players may have a good idea of which zone
they want to aim for, but there is no guarantee who will receive the ball, as a player can easily step
out of the reception line while another can drop back to receive. In contrast, common wisdom in beach
volleyball dictates serving to the side of the court covered by the weaker, less effective attacker unless
the players’ serve reception efficiency on the other side of the court is significantly disproportionate;
if both players have about the same attack efficiency, players should aim for the weaker setter of the
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two.
Finally, we note again that the data used in this paper were collected from the team’s official statistic

data scouting using DataVolley 4, a widely used tool for professional volleyball statistics analysis. The
data was double-coded by an independent observer through direct video analysis of the matches,
with little disagreement between observers. Since we use a maximum likelihood method for parameter
estimation, our model depends on a relatively large number of observations for each category of events.
In this respect, our modeling approach has been rather conservative since, although all volleyball rallies
involve service actions, not all of them reach k1 or involve attack actions. Although our model can
easily be extended to analyze other game actions, we believe that a model that is reducible to an
exact equation and implementable through standardized data collection tools may be more useful as a
first step for volleyball players, coaches, and other members of the coaching staff. Data collected from
a relatively stable roster of players throughout an entire competition season should, however, meet
the increasing demands of parameter estimation. Similarly, it would be useful to collect data during
training sessions to obtain baseline estimates of players’ performance. From a modeling perspective,
this would allow for the implementation of more complex models that consider the relative influence
of actions such as useful and non-useful attacks. Naturally, the more categories introduced into the
model, the more demanding it will be to collect relevant data that provide stable estimates. However,
we do not see this as an intrinsic limitation of the model.
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Investigaciones at Universidad del Valle (Project ID: CI-71369).

8 Appendix A

By definition, the probability of scoring a direct service point is qk0 , while the probability of scoring
in k1 is the product Qk0r

′
k1
. The evolution of the probability of states 1 to 6 in phase k2 in terms of

the number of cycles, ℓ, is given by
p⃗βℓ = Mℓ · p⃗β0
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where

M =


sQk2 0 0 cRk2 0 0
qk2 1 0 0 0 0
q′k2 0 1 0 0 0
cQk2 0 0 sRk2 0 0
0 0 0 rk2 1 0
0 0 0 r′k2 0 1

 ,

with p⃗β0 being the probability of the initial state and β = A or B. In the case where team A starts
serving, p⃗A0 = (1, 0, 0, 0, 0, 0). Let pβ2 (ℓ) and pβ6 (ℓ) be the second and sixth components of the vector
p⃗β(ℓ). Then, the probability that team A wins the rally is given by

P s
A = qk0 +Qk0r

′
k1
+Qk0Rk1 lim

ℓ→∞

(
cPA(ℓ) + sPB(ℓ)

)
where PA(ℓ) = pA2 (ℓ)+pA6 (ℓ) and PB(ℓ) = pB2 (ℓ)+pB6 (ℓ). Equation (2) is obtained by explicitly taking
the limit ℓ → ∞.

9 Appendix B

Some of the parameters used in our model can be obtained from the anonymized DataVolley data
sheets available in the Supplementary Material (SM). The first twenty-two pages of the SM show
the rally-by-rally report of each match, including information such as the player serving, the setter’s
position, and the action that ends the rally. For example, in the first rally of the final match in the
qualification tournament, the setter of the analyzed team (P17) is serving while the opposing team’s
setter is in position 6. The rally ended with an attacking error by P1. From page 22 onward, the
SM includes the detailed action log of the matches written in standard DataVolley codification. Each
action in the different rallies is described, including the player who performed the action, the result
of the action, and more. We implemented a Python script to extract the relevant information. We
double-checked this data by analyzing the match videos rally by rally. In this way, we used two different
and independent observers: a professional volleyball data analyst who was responsible for the report
presented in the SM, and two of the authors who analyzed the official match videos. The discrepancies
between the two observations were always less than 5%.

One of the quantities not available in the DataVolley reports is the number of useful serves. In this
case, for each player, the value of α was calculated as follows. Let N be the number of serves by a
given player where the reception by the opposing team is outside zone three, reducing their offensive
options. The parameter α is the ratio between N and the total number of serves by the player.
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