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Abstract  48 

Aim: To evaluate alterations of the non-linear short-term scaling exponent alpha1 of 49 

detrended fluctuation analysis (DFAa1) of heart rate (HR) variability (HRV) as a sensitive 50 

marker for assessing global physiological demands during prolonged running intervals. 51 

Furthermore, agreement of ECG-derived respiratory frequency (EDR) compared to gas 52 

exchange-derived respiratory frequency (RF) was evaluated with the same chest belt device. 53 

Methods: Fifteen trained female and male long-distance runners completed four running bouts 54 

over five minutes on a treadmill at marathon pace. During the last three minutes of each bout 55 

gas exchange data and a single-channel ECG for the determination of HR, DFAa1 of HRV, 56 

EDR and RF were analyzed. Additionally, blood lactate concentration (BLC) was determined 57 

and rating of perceived exertion (RPE) was requested.  58 

Results: DFAa1, oxygen consumption, BLC, and RPE showed stable behaviors comparing the 59 

running intervals. Only HR (p<0.001, d=0.17) and RF (p=0.012, d=0.20) indicated slight 60 

increases with small effect sizes. Additionally, results point towards remarkable inter-61 

individual differences in all internal load metrics. The comparison of EDR with RF during 62 

running revealed high correlations (r=0.80, p<0.001, ICC3,1=0.87) and low mean differences 63 

(1.8±4.4 breaths/min), but rather large limits of agreement with 10.4 to -6.8 breaths/min.  64 

Conclusions: Results show the necessity of EDR methodology improvement before being 65 

used in a wide range of individuals and sports applications. Relationship of DFAa1 to other 66 

internal load metrics, including RF, in quasi-steady-state conditions bears the potential for 67 

further evaluation of exercise prescription and may enlighten decoupling mechanisms in 68 

exercise bouts of different type and duration. 69 

 70 

Key words: HRV, DFAa1, autonomic nervous system, running economy, exercise prescription 71 
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Introduction 72 

Analyses of the non-linear characteristics of heart rate (HR) variability (HRV) indicate that 73 

the short-term scaling exponent alpha1 of detrended fluctuation analysis (DFAa1) may be a 74 

sensitive marker for assessing global physiological demands during endurance exercise 75 

(Gronwald & Hoos, 2020; Gronwald et al., 2020; Rogers & Gronwald, 2022). DFAa1 76 

quantifies the fractal scale and correlation properties of HR time series in cardiac beat-to-beat 77 

intervals and represents a rather qualitative marker of autonomic nervous system (ANS) 78 

regulation. Given these properties, and considering the corresponding signal-theory 79 

background, this metric may be used as a biomarker for exercise intensity domain delineation 80 

(Gronwald et al., 2020). For this purpose, it could be shown, that discrete numerical values of 81 

DFAa1 may demarcate the transition from moderate to heavy exercise intensity and from 82 

heavy to severe exercise intensity (3-zone-model), and may correspond to traditional 83 

threshold markers based on different physiological subsystem measures like blood lactate 84 

concentration (BLC) or gas exchange data with potential limitations and deviations on an 85 

individual level (Rogers et al., 2021a,b; Mateo-March et al., 2023, van Hooren et al., 2023b, 86 

Schaffarczyk et al., 2023; Sempere-Ruiz et al., 2024). Further, DFAa1 has been shown to be 87 

useful as a marker of acute fatigue in terms of systemic perturbation patterns in HR time 88 

series (Rogers et al., 2021c; Schaffarczyk et al., 2022; van Hooren et al., 2023a,b) or as a 89 

measure of fatigue resistance in studies with prolonged exercise (Gronwald et al., 2018, 2019, 90 

2021a). Therefore, expanding these findings to future approaches of real-time monitoring of 91 

prolonged exercise seems to be promising, as the DFAa1 marker might bear the potential to 92 

mirror decoupling mechanisms as alterations of external-to-internal-load relationships 93 

(Maunder et al., 2021; Smyth et al., 2022). In this context, respiratory frequency (RF) was 94 

recently endorsed as a promising internal load marker for intensity monitoring during 95 

endurance exercise as well, with new possibilities for wearable analyses in research and 96 

practical settings (Nicolo et al., 2017; Tipton et al., 2017; Nicolo et al., 2020; Passfield et al., 97 

2022; Nicolo & Sacchetti, 2023). Currently, there is large interest in exercise science and 98 

sports practice to analyse RF via wearable technology and remote devices (Vitazkova et al., 99 

2024). Data of DFAa1 and estimated RF derived from an electrocardiogram (ECG-derived 100 

RF; EDR; Rogers et al., 2022a,b) bear the potential of a more comprehensive internal load 101 

assessment during endurance exercise with real-time applications recorded with a chest belt 102 

form factor complementary to established internal load indicators like HR and rating of 103 

perceived exertion (RPE). However, data of DFAa1 and estimated RF via EDR during steady-104 

state exercise bouts are scarce and the true significance for exercise prescription remains to be 105 

elucidated. This applies especially for data during running exercise given the high risk of 106 

movement artefacts and signal distortion in ECG-waveform and HRV analysis. Therefore, the 107 

aim of the present report was to evaluate alterations of DFAa1 and EDR compared to further 108 

respiratory and metabolic measures, including actual measured RF via gas exchange, during 109 

multiple bouts of prolonged running at marathon race pace in a group of trained female and 110 

male long-distance runners. 111 

 112 

Methods 113 

 114 

Participants 115 

Fifteen trained marathon (5m, 3w) and half-marathon (3m, 4w) runners (age: 32.6±5.4 years, 116 

body height: 174.6±7.6 cm, body weight: 64.5±7.8 kg) were recruited from the German 117 

athletics federation, Hamburg athletics federation and from local clubs through personal 118 

contacts during September and December 2023. Inclusion criteria were race performance in 119 

the marathon and half-marathon corresponding to 400 points in the World Athletics “Scoring 120 

Table of Athletics” (Spiriev, 2022), age between 18 and 65 years, and absence of injuries > 3 121 

months before measurements. Ethical approval for the present study was given by the local 122 
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ethics committee of the MSH Medical School Hamburg (reference no.: MSH-2023/233). All 123 

participants gave written informed consent and all testing and measurements were conducted 124 

in accordance with the principles of the recent revision of the Declaration of Helsinki.  125 

 126 

Study design 127 

The cross-sectional assessment was part of a larger study that aimed to investigate running 128 

economy and habituation with advanced footwear technology (Fohrmann et al., 2024; 129 

Schwalm et al., 2024). Based on the initial study setting, with a single laboratory session, 130 

participants completed four to six running bouts over five minutes at submaximal velocity 131 

based on individual running speed in marathon or half-marathon. Running speed was defined 132 

as the pace of the marathon season best (SB) or converting the SB race performance in the 133 

half-marathon into an estimated marathon time and corresponding race speed (multiplied by 134 

the factor of 2.11). The first four running bouts were used for the present study analysis. 135 

 136 

Data recording 137 

Body height and body weight of the participants were assessed using an analysis scale (655-138 

US, seca GmbH & Co. KG., Hamburg, Deutschland). In addition, participants were asked for 139 

their maximum HR (HRMAX) from a recent treadmill performance test or competition. In case 140 

of unknown maximum HR calculation according to Tanaka's formula was applied: 208 - 0.7 x 141 

age (Tanaka et al., 2001). Afterwards, a general warm-up over ten minutes was conducted at 142 

preferred running speed prior to the running bouts at submaximal velocity on a motorized 143 

treadmill over five minutes (FDM-T, h/p/cosmos, Nussdorf-Traunstein, Germany); the first 144 

bout was designated as a specific warm-up at race speed (see Figure 1). Immediately after the 145 

running bouts BLC (in mmol/l) from the capillary blood of the earlobe (20 µl) with the Biosen 146 

C-Line Clinic analyzer (EKF-diagnostic GmbH, Barleben, Germany) was determined and 147 

RPE was requested using the Borg scale (6-20; Borg, 1982). A passive break of five minutes 148 

was introduced in between the running bouts. Recordings of a single-channel ECG for the 149 

determination of HR (in beats per minute, bpm), RR-intervals (in ms) and EDR (in breaths per 150 

minute, breaths/min) were taken continuously with the Movesense Medical sensor (firmware 151 

version 2.1.2) implemented in a chest belt (Movesense, Vantaa, Finland) and the Movesense 152 

Showcase app via smartphone (sampling rate: 256 Hz; iOS: version 1.1.0; Rogers et al., 153 

2022b, see Figure 1). Breath-by-breath pulmonary gas exchange data were recorded using a 154 

metabolic card (Quark CPET, module A-670-100-005, COSMED Deutschland GmbH, 155 

Fridolfing, Germany; Omnia version 2.2). Expired gas fractions were continuously measured 156 

to determine oxygen consumption (VO2, in ml/min/kg), and RF (in breaths per minute, 157 

breaths/min). Physiological measures were determined during the last three minutes of each 158 

running bout. Resting values were taken prior to the general warm-up period over two 159 

minutes. 160 

 161 

HRV and EDR analysis  162 

To analyze HR, RR-intervals and EDR data were exported from the Movesense Showcase app 163 

via .csv file and processed in Kubios HRV Premium (version 3.5.0, Biosignal Analysis and 164 

Medical Imaging Group, Department of Physics, University of Kuopio, Kuopio, Finland). 165 

Preprocessing settings were set to the default values, including the RR detrending method, 166 

which was kept at “smoothness priors” (Lambda = 500). The RR-interval series were then 167 

corrected using the Kubios HRV “automatic correction” method (Lipponen & Tarvainen, 168 

2019). HR and DFAa1 were determined during the last three minutes of each running bout. To 169 

calculate DFAa1, the root mean square fluctuations of the integrated and detrended RR-170 

intervals were analyzed in observation windows of different sizes and then further processed 171 

as the slope between the root mean square fluctuation data in relation to the different window 172 

sizes on a log-log scale (Peng et al., 1995). Window size was set to 4 ≤ n ≤ 16 beats in the 173 
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software preferences. For EDR assessment Kubios HRV software RF estimation algorithm 174 

was used (Lipponen & Tarvainen, 2021). The algorithm combines the cyclic cardiac beat-to-175 

beat time domain changes in RR-intervals associated with respiratory sinus arrhythmia and 176 

the single-channel ECG-associated R wave amplitude changes seen during the respiratory 177 

cycle. For EDR calculation, the window width was set to 30 s with a recalculation grid 178 

interval of 1 s based on recommendations from Lipponen and Tarvainen (2021). During the 179 

last three minutes of each running bout, maximum EDR was noted. Data sets with >5% 180 

artifacts were excluded from RR-interval and EDR analysis. Data were also scanned visually 181 

for artifacts and ECG tracing quality by an expert with experience in HRV-data analysis and 182 

removed manually if necessary. 183 

 184 

 185 

Figure 1. Course of an example of a single-channel ECG tracing and corresponding RR-186 

intervals and HR of the running session with four running bouts over five minutes at 187 

submaximal velocity corresponding to individual running speed in marathon of one 188 

participant. The red shaded area indicates the analysis interval over 3 minutes of the first 189 

running bout designated as a specific warm-up at race speed; the blue shaded areas indicate 190 

the analysis intervals of the second, third and fourth running bout. Screenshot modified from 191 

Kubios HRV Premium (version 3.5.0). 192 

 193 

Efficiency factor 194 

For the analysis of internal-to-external-load relationship and a possible decoupling 195 

mechanism in comparison of the running bouts an efficiency factor (EF) was defined. This 196 

internal-to-external workload ratio was calculated using the ratio of the internal load 197 

indicators (VO2, RF, BLC, RPE, HR, %HRMAX, DFAa1, and EDR) and running pace (in 198 

km/h). The difference of the EF between the second and the fourth running bout was 199 

calculated and divided by the EF from the second running bout multiplied by 100 to get a 200 

percentage of alteration (%). Thus, a value of 10% indicates that internal-to-external ratio was 201 

10% greater during the fourth running bout compared to that observed in the second running 202 

bout (Maunder et al., 2021; Smyth et al., 2022). 203 

 204 

Statistical methods  205 

The statistical analysis was performed using SPSS 27.0 (IBM Statistics, USA) for Windows 206 

(Microsoft, USA) and Microsoft Excel (Microsoft Corp, Redmond, USA). The Shapiro-Wilk 207 

test was applied to verify the Gaussian distribution of the data. The degree of variance 208 

homogeneity was verified by Levene test. Subsequently, a one-way ANOVA for repeated 209 

measurements was used to evaluate physiological changes over time (for data of second, third, 210 

and fourth running bout). Paired t-tests were applied to analyze differences between the 211 
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second and the fourth running bout. In addition, Cohen’s d was calculated for effect size 212 

estimation (difference between mean values divided by the pooled standard deviation) with no 213 

effect (d<0.2), small effect size (d<0.5), moderate effect size (d≥0.5) and large effect size 214 

(d>0.8) (Cohen, 1988). Further, interrelations and agreement between RF and EDR of all 215 

available data pairs of the rest condition, and all running bouts were evaluated using linear 216 

regression, Pearson’s correlation coefficient (r), coefficient of determination (R2), Intraclass 217 

Correlation Coefficient (ICC3,1), and Bland-Altman plot with limits of agreement (LoA) 218 

(Bland & Altman, 1999). In addition, the mean absolute error (MAE) was calculated as the 219 

sum of absolute errors divided by the number of available data pairs of the rest condition, and 220 

all running bouts to add a quantification of the mean random scattering around the systematic 221 

bias (mean difference) and to account for different directions of this difference. If proportional 222 

bias was detected (change in the bias over the RF range), a regression-based calculation of 223 

mean differences was performed (Ludbrook, 2010). The size of Pearson’s r correlation 224 

coefficient was evaluated as follows; low: 0.3 ≤ r < 0.5; moderate: 0.6 ≤ r < 0.8, high: r ≥ 0.8 225 

(Chan, 2003). Bland-Altman mean differences for data comparisons were expressed as 226 

absolute bias. The paired t-test was used for comparison of RF vs. EDR. Statistical tests were 227 

deemed to be significant at p≤0.05. All results are reported as means ± standard deviation 228 

(SD). 229 

 230 

Results 231 

The SB times corresponded to 795.7±246.0 points of the World Athletics “Scoring Table of 232 

Athletics” (Spiriev, 2022), related to mean marathon times of 2:41:20 h:min:s and mean half-233 

marathon times of 1:26:40 h:min:s. Consequently, mean running speed for the four 234 

submaximal running bouts was 15.3±2.4 km/h (MIN: 11.7 km/h, MAX: 19.5 km/h). One-way 235 

ANOVA revealed significant main effects of time for RF, HR, and %HRMAX (VO2: F=0.224, 236 

p=0.801, eta2=0.016; RF: F=6.818, p=0.004, eta2=0.327; BLC: F=0.279, p=0.759, eta2=0.020; 237 

RPE: F=0.596, p=0.506, eta2=0.041; HR: F=12.522, p<0.001, eta2=0.472; %HRMAX: 238 

F=12.707, p<0.001, eta2=0.476; DFAa1: F=0.267, p=0.768, eta2=0.024; EDR: F=0.309, 239 

p=0.738, eta2=0.033). In comparison of the second and fourth running bout both RF and HR 240 

showed statistically significant increases with small effect sizes. Furthermore, EF revealed 241 

values <5% for all internal load indicators (see Table 1). 242 

 243 

Table 1. Physiological measures during resting state before and during the four running bouts: 244 

mean±SD (Range: MIN-MAX). VO2: oxygen consumption, RF: respiratory frequency, BLC: 245 

blood lactate concentration, RPE: rating of perceived exertion, HR: heart rate, %HRMAX: 246 

percentage of maximum heart rate, DFAa1: short-term scaling exponent alpha1 of detrended 247 

fluctuation analysis, EDR: ECG-derived estimated respiratory frequency, EF: Efficiency 248 

factor 249 

Measure Rest First bout 

(specific) 

Warm-up 

Second bout Third bout Fourth bout Statistics* 

VO2 [ml/min/kg], 

n=15 

5.38±0.92 

(3.16-6.70) 

49.34±6.30 

(39.30-61.87) 

50.19±6.53 

(39.20-63.47) 

50.04±6.16 

(40.10-64.51) 

50.21±6.59 

(39.20-65.85) 

p=0.939, d=0.00, 

EF=0.1% 

RF 

[breaths/min], 

n=15 

14.1±3.7 

(9.4-19.6) 

41.5±6.3 

(33.3-56.1) 

44.2±6.5 

(35.9-61.5) 

44.5±7.4 

(34.2-63.0) 

45.6±7.4 

(36.6-63.2) 

p=0.012, d=0.20, 

EF=3.1% 

BLC [mmol/l], 

n=15 

1.27±0.21 

(1.02-1.76) 

2.12±0.78 

(1.11-3.69) 

2.09±0.72 

(1.29-3.82) 

2.05±0.85 

(1.16-4.00) 

2.11±0.90 

(1.26-4.07) 

p=0.862, d=0.02, 

EF=-0.1% 

RPE [6-20], n=15 - 
12.8±0.8 

(11.0-14.0) 

13.1±0.9 

(12.0-15.0) 

12.8±1.0 

(11.0-14.0) 

13.0±1.3 

(11.0-15.0) 

p=0.719, d=-0.15, 

EF=-0.7% 

HR [bpm], n=15 
64.5±9.7 

(49.7-85.5) 

163.0±12.7 

(145.5-190.5) 

167.2±12.5 

(149.2-193.0) 

168.4±12.7 

(151.0-195.5) 

169.4±13.0 

(151.4-198.5) 

p<0.001, d=0.17, 

EF=1.3% 
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%HRMAX, n=15 
34.2±5.1 

(25.8-43.2) 

86.5±6.8 

(77.4-97.0) 

88.8±6.5 

(79.9-98.9) 

89.4±6.8 

(79.0-99.5) 

89.9±6.7 

(79.3-99.9) 

p<0.001, d=0.18, 

EF=1.3% 

DFAa1, n=11-14 
1.03±0.16 

(0.70-1.21) 

0.54±0.26 

(0.25-0.99) 

0.54±0.27 

(0.26-0.93) 

0.53±0.25 

(0.25-0.90) 

0.51±0.23 

(0.18-0.87) 

p=0.585, d=-0.14, 

EF=2.1% 

EDR 

[breaths/min], 

n=10-12 

15.0±4.1 

(9.8-19.7) 

39.0±7.6 

(23.6-55.8 

42.3±7.0 

(32.0-55.7) 

42.6±5.6 

(33.6-56.3) 

42.6±4.0 

(39.1-52.5) 

p=0.443, d=0.04, 

EF=1.7% 

*Comparison of the second and the fourth running bout. 250 

 251 

Regarding the comparison of RF vs. EDR, 59 of 75 (79%) of all data pairs (resting condition, 252 

all four running exercise bouts) could be used. A strong linear relationship could be seen 253 

between the two measurement principles, with a high Pearson’s r coefficient for the resting 254 

condition (r=0.81, R2=0.66, p<0.001) and exercise bouts (r=0.80, R2=0.64, p<0.001), and an 255 

intraclass correlation coefficient ICC3,1 of 0.90 for the resting condition and 0.87 for the 256 

exercise bouts. The comparison of RF vs. EDR revealed no significant difference for resting 257 

data (p=0.435, d=-0.13) but significant difference for the exercise data (p=0.008, d=0.27). 258 

Bland-Altman analysis showed a mean difference of 1.3±4.1 breaths/min (resting values: -259 

0.5±2.4; exercise values: 1.8±4.4) with limits of agreement of 9.3 to -6.8 breaths/min (resting 260 

values: 4.2 to -5.2; exercise values: 10.4 to -6.8), respectively (see Figure 2). The MAE 261 

indicated a value of 2.7±3.3 breaths/min (resting values: 1.6±1.8; exercise values: 3.1±3.6). 262 

 263 

 264 

Figure 2. Regression plot for all data pairs of the exercise bouts of RF vs. EDR values (left). 265 

Bland-Altman plot for all data pairs of the exercise bouts of RF vs. EDR values (right); center 266 

line in red represents the mean difference between each paired value (dotted line: with 267 

regression-based calculation of mean differences), the top and bottom lines in grey display 268 

±1.96 standard deviations from the mean difference. R2: coefficient of determination. 269 

 270 

Discussion 271 

The aim of the present report was to evaluate alterations of DFAa1 and further respiratory and 272 

metabolic measures during multiple bouts of prolonged running at marathon pace in a group 273 

of trained female and male long-distance runners. Furthermore, agreement of EDR compared 274 

to gas exchange derived RF was evaluated during resting condition and the running bouts. 275 

 276 

Results show that DFAa1 values decreased from ~1.0 at rest to ~0.5 at marathon running pace 277 

with no alterations when comparing the exercise bouts, which indicates a loss of fractal 278 

dynamics and a change towards uncorrelated and random behavior (Peng et al., 1995; Hautala 279 

et al., 2003). This corresponds to data from a study with recreational runners performing a 280 

self-paced marathon road race on an almost flat profile (Gronwald et al., 2021a). DFAa1 as a 281 

dimensionless index of correlation properties of HR time series and complex regulation has 282 
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shown the ability to reflect physiological demands compared to other internal load measures. 283 

It is assumed that the kinetics of DFAa1 during exercise is based on changes in autonomic 284 

modulation due to parasympathetic withdrawal, sympathetic activation, altered non-neural 285 

factors, and the potential loss of interaction between the two branches of the ANS with 286 

increased organismic demands (Persson, 1996; White & Raven, 2014). Interestingly, and 287 

similar to the study of Gronwald et al. (2021a) DFAa1 displayed a rather large inter-individual 288 

dynamic range during the evaluated running bouts, denoting possible fluctuations in internal 289 

load situation at race pace. External load prescription assumes that physiological responses 290 

are rather static (Jamnick et al., 2020; Maunder et al., 2021) and neglect the influence of 291 

internal and external factors leading to heterogeneity in exercise tolerance and physiological 292 

responses over time (e.g., personal or environmental factors, Gronwald et al., 2020; Meyler et 293 

al., 2023). 294 

 295 

Percentage of HRMAX during the exercise bouts reached values corresponding to the transition 296 

of heavy to severe exercise intensity domain in a 3-zone-model of intensity distribution for 297 

moderate, heavy and severe exercise domain (“vigourous”, Garber et al., 2011) with 298 

significant increase but very small effect. The same applies for RF with small effect size and 299 

no change in VO2. These changes are in line with the expectable difference in HR and VO2 300 

kinetics during constant load exercise (e.g., Zuccarelli et al., 2018) leading to the assumption 301 

of a quasi steady-state condition at marathon running pace. RPE showed mean values of ~13 302 

with a range of 11 to 15 and no significant differences in comparison of the running bouts, 303 

showing inter-individual variation across participants. Blood lactate concentration revealed 304 

values around 2 mmol/l with no alterations over time but also considerable inter-individual 305 

differences below the point of what may be considered a maximal lactate steady-state (range: 306 

1 to 4 mmol/l; Perrey et al., 2003). A study by Santos et al. (2006) took blood lactate samples 307 

every 6 km in elite marathon runners during a 30 km race and showed values from 2.4 mmol/l 308 

at 6 km to 3.2 mmol/l at 30 km. In a marathon field study, blood lactate values of 4.0 mmol/l 309 

could be observed immediately after the race (Gronwald et al., 2021a). Overall, the calculated 310 

EF assessing potential decoupling mechanism of internal-to-external load relationship 311 

revealed values under 5% showing almost no alteration in all internal load metrics in 312 

comparison of the running intervals. Therefore, this ratio may bear great potential for 313 

assessing possible decoupling mechanisms during prolonged running exercise bouts in 314 

comparison of different exercise intensity domains (Gronwald et al., 2024). 315 

 316 

The comparison of EDR with gas exchange derived RF revealed high correlation coefficients 317 

with a low mean difference across all paired values including the resting condition and all 318 

running bouts; with higher values for MAE analysis. However, limits of agreement were 319 

relatively wide and the absolute divergences in breaths/min could be still clinically relevant 320 

on an individual level depending on the field of application. These results were also 321 

confirmed in an analysis across the entire intensity spectrum using the same sensor 322 

technology (Rogers et al., 2022a). A possible confounding factor in the EDR detection 323 

especially during running exercise might be the fact that the assessment of spectral estimates 324 

of HRV that are typically involved in RF estimation might be hindered as an overlap with a 325 

stride frequency component in terms of cardio-locomotor-respiratory-coupling (CLRC, 326 

Niizeki et al., 1993) and corresponding aliasing and signal distortion effects are hardly 327 

avoidable (Bailon et al., 2013). As the intensity of CLRC might be individual in different 328 

marathon runners (Hottenrott et al., 2020) this might contribute to the observed individual 329 

differences in the accuracy of RF estimation approaches based on ECG and/or RR-interval 330 

data. 331 

 332 
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Further questions need to be clarified about suitability of different subsystem parameters of 333 

internal load and an “optimal” and feasible real-time monitoring approach for the control of 334 

exercise intensity (e.g., HR drift and the potential underestimation of RPE; Cartón-Llorente et 335 

al., 2022). Here, a dimensionless, global, and systemic internal load indicator like DFAa1, in 336 

addition to RPE and RF as indicators of acute performance decrement (Passfield et al., 2022), 337 

also to detect ongoing compensatory mechanismus and  “homeodynamic” regulation pattern 338 

could provide the potential for exercise prescription and further investigation in prolonged 339 

running exercise of different intensities (Rogers & Gronwald, 2022; Gronwald et al., 2024).  340 

 341 

Interpreting the results of our study, a few limitations should be taken into account. Our study 342 

included a small sample size of 15 participants. The number of running intervals was limited 343 

and therefore transfer of the applied exercise prescription for typical durations of running 344 

training (e.g., >30 min) may not be appropriate, as these longer durations may show further 345 

decoupling in internal-to-external load relationships. However, data of the present report show 346 

the relationship of DFAa1 with other internal load indicators at a fixed external load of 347 

marathon running pace and its stabilization as quasi-steady-state conditions with regard to 348 

traditionally used objective and subjective time-varying and instant data for exercise 349 

prescription and real-time internal load feedback (e.g., HR, BLC, RPE). 350 

 351 

For EDR assessment Kubios HRV Premium software estimation algorithm was used based on 352 

the combination of the cyclic cardiac beat-to-beat time domain changes in RR-intervals 353 

associated with respiratory sinus arrhythmia and the single-channel ECG-associated R wave 354 

amplitude changes seen during the respiratory cycle (Lipponen & Tarvainen, 2021). One 355 

aspect that definitely affects the results of this estimation algorithm is the design to 356 

accommodate a wide range of applications, from short resting measurements to long-term 357 

recordings and sports applications (e.g., not specifically to signal quality aspects of running 358 

exercise). Therefore, adapation of this algorithm specialized to endurance sports applications 359 

with different tyopes of exercise would potentially enhance validity within the estimation of 360 

RF via EDR and narrow the range of upper and lower limits of agreement. In addition, 361 

approximately 25% (see Table 1) of data had to be excluded for non-linear HRV and EDR 362 

analysis due to data quality and artifact rate which can still affect the use in sport-specific 363 

field conditions. As mentioned before, the CLRC in running (Niizeki et al., 1993) and 364 

corresponding aliasing and signal distortion effects (Bailon et al., 2013) might be specific 365 

challenges that need to be refined in  future advances in sensor technology and HRV signal 366 

analysis to further improve signal integrity and reliability. In that regard, EDR analysis 367 

together with the assessment of DFAa1 bears the potential of a more comprehensive internal 368 

load assessment in post-exercise and real-time analysis based on simple low-cost chest belt 369 

recordings (Gronwald et al., 2021b; Gronwald et al., 2024).  370 

 371 

Conclusion 372 

DFAa1 is defined as an indicator of relative internal load and proxy of physiological demands. 373 

It showed no alterations in comparison of multiple intervals of continuous running at 374 

marathon race pace in female and male long-distance runners. The comparison of EDR with 375 

gas exchange derived RF during running revealed high correlations and low mean differences, 376 

but rather large limits of agreement. This shows the necessity of further improvement of the 377 

methodology before being used in a wide range of individuals and different sports 378 

applications. In addition, further research and development of sensor technologies and 379 

analysis algorithms are needed to realize the benefits of the chest strap form factor in sports 380 

practice. The present report showed that a fixed external load based on marathon running pace 381 

implies considerable inter-individual differences in all internal load metrics. In this context, 382 

the relationship of DFAa1 to other traditionally used internal load metrics in quasi-steady-383 
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state conditions bears the potential for further evaluation of exercise prescription in general 384 

and the enlightment of decoupling mechanisms in exercise bouts of different duration and 385 

type. 386 

 387 
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