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Abstract  
 

Background: Sports nutrition guidelines recommend carbohydrate (CHO) intake be individualized 

to the athlete and modulated according to changes in training load (TL). However, there are 

limited methods to assess CHO utilization during training sessions. 
 

Objectives: To 1) quantify bivariate relationships between both CHO and overall energy 

expenditure (EE) during exercise and commonly-used, non-invasive measures of TL across 

sessions of varying duration and intensity, and 2) build and evaluate prediction models to 

estimate CHO utilization and EE with the same TL measures and easily-quantified individual 

factors. 

 
Methods: This study was undertaken in two parts — a primary study, where participants 

performed four different laboratory-based cycle training sessions, and a validation study where 

different participants performed a single laboratory-based training session using one of three 

exercise modalities (cycling, running, or kayaking). The primary study included 15 cyclists (5 f; 

VdO2max, 52 ± 7 mL.kg-1.min-1), the validation study included 21 cyclists (7 f; VdO2max 53.5 ± 11.0 

mL.kg-1.min-1), 20 runners (6 f; VdO2max  57.5  ±  7.2  mL.kg-1.min-1),  and 17 kayakers (4 f; VdO2max  

46.2  ±  4.1  mL.kg-1.min-1). Training sessions were quantified using six TL metrics: two using heart 

rate, three using power, and one using perceived exertion. CHO use and EE were determined 

separately for aerobic (gas exchange) and anaerobic (net lactate accumulation, body mass, and 

O2 lactate equivalent method) energy systems and summed. Repeated-measures correlations 

were used to examine relationships between TL and both CHO utilization and EE. General 

estimating equations were used to model CHO utilization and EE, using TL alongside measures of 

fitness and sex. Models were built in the primary study and tested in the validation study. Model 

performance is reported as the coefficient of determination (R²) and mean absolute error (MAE), 

with measures of calibration used for model evaluation and for sport-specific model re-

calibration. 

 
Results: Very-large to near-perfect within-subject correlations (r = 0.76–0.96) were evident 

between all TL metrics and both CHO utilization and EE. In the primary study, all models explained 

a large amount of variance (R2 = 0.77–0.96) and displayed good accuracy (MAE; CHO = 16–21 g 

[10–14%], EE = 53–82 kcal [7–11%]). In the validation study the MAE ranged from 17–50 g [15–

45%] for CHO models and 53–178 kcal [9–30%] for EE models. The calibrated MAE ranged from 

8–20 g [7–18%] for CHO models and 36–72 kcal [6–12%] for EE models. 

 
Conclusion: At the individual level, there are strong linear relationships between all measures of 

TL and both CHO utilization and EE during cycling. When combined with other measures of 



fitness, EE and CHO utilization during cycling can be estimated accurately. These models can be 

applied in running and kayaking when used with a calibration adjustment. 

 

Key Points 

Sports nutrition guidelines recommend carbohydrate intake be individualized to the athlete and 

modulated according to changes in training load, but there are limited methods to assess CHO 

utilization during training sessions. 

 

We examined bivariate relationships between both carbohydrate and energy expenditure 

during exercise and commonly used measures of training load, and then built prediction models 

to estimate carbohydrate and energy expenditure during exercise using training load and easily 

obtained measures of fitness. 

 

We observed very-large to near-perfect within-subject correlations between both carbohydrate 

and energy expenditure and all measures of training load. Prediction models displayed good 

accuracy in cycling, and have potential application in running or kayaking when used with a 

calibration adjustment.  



Introduction 

Contemporary sports nutrition guidelines recommend carbohydrate intake be individualized to 

the athlete and their event, and modulated according to changes in exercise volume [1]. 

However, there are limited methods of assessing carbohydrate utilization during a given workout, 

leaving athletes and practitioners unclear as to how much carbohydrate or energy should be 

repleted. Indeed, there have been recent calls for a better understanding of the fuel costs and 

associated carbohydrate requirements of various training sessions commonly undertaken by 

athletes [2]. Based on the close relationship between mechanical work output and metabolic 

energy expenditure [3], it is plausible that readily-available measures of exercise quantification 

(i.e., training load) could be used to model and predict carbohydrate utilization during exercise, 

particularly when combined with other measures obtained from traditional laboratory testing. 

However, historically there have been several challenges in studying this. 

 

Carbohydrate utilization is estimated using indirect calorimetry, but this method is not valid 

during high-intensity intermittent exercise due to shifting acid-base balance and excess (non-

oxidative) CO2 excretion through hyperpnea [4]. Changes in muscle glycogen are often used to 

estimate carbohydrate utilization, but this requires an invasive muscle biopsy with medical 

supervision and does not provide information on whole-body carbohydrate use. Furthermore, 

the level of muscle glycogen depletion is also specific at a subcellular and cellular level [5, 6], and 

therefore may vary with repeated sampling from the same individual, given the observed 

variability in muscle fiber type distribution along a muscle’s length [7]. Another approach is to 

calculate the contribution of the three energy systems (aerobic, anaerobic alactic, and anaerobic 



lactic) during exercise based on measurements of oxygen uptake, the fast component of excess 

post-exercise oxygen uptake, and net changes in blood lactate concentration [8]. This method 

has been used across a range of sports including cycling [8], boxing [9], running [10], and rowing 

[11], resulting in an estimate of kilojoules (kJ) produced by each system. However, this does not 

consider the substrate (i.e., fat or carbohydrate) used for energy production or differences in 

efficiency with each substrate [12]. In combination, the traditional gas exchange measurement 

and the three-system approach to energy contributions could be used to estimate the total 

carbohydrate and energy cost of exercise at any intensity, but to our knowledge this has yet to 

be reported.   

 

In the daily training environment, athletes and coaches routinely capture multiple training load 

indices, which can be measured and classified as either internal and/or external, based on the 

measurable aspects occurring internally or externally to the athlete [13]. Internal load reflects 

the relative physiological strain and disturbance in homeostasis of the metabolic processes in 

response to an external load, which is characterized by objective measures such as distance, 

power, or speed [14]. Due to the wide availability of cycling power meters, total work done during 

exercise (TWD) is a common measure of external training load for cyclists. Furthermore, very 

large correlations (r = 0.96–0.97) have been reported across multiple measures of internal and 

external training load in cyclists during racing and training [15], suggesting other metrics such as 

session rating of perceived exertion (sRPE) [16], Lucia training impulse (LuTRIMP) [17], and 

training stress score (TSS) [18] can also provide relevant information to athletes and coaches. 

However, there is no gold standard measure of training load [13], and measures of external and 



internal load are not always consistent. For example, TSS may overemphasize intensity compared 

with TWD, LuTRIMP, and sRPE [19, 20], but without a standard for comparison it is unclear which 

measure may be over- or under-emphasizing intensity.  

 

Given the strong theoretical and mechanistic links between measures of training load and both 

carbohydrate and total expenditure during exercise, it seems plausible that a strong association 

should exist between these phenomena, to the extent that practitioners may be able to estimate 

expenditure from training load metrics with reasonable precision. To our knowledge, this has yet 

to be explored. Therefore, to investigate the relationship between measures of training load and 

carbohydrate/energy expenditure, we used a novel method to estimate carbohydrate utilization 

from aerobic and anaerobic sources during moderate-intensity steady-state exercise and high-

intensity interval training. The primary aims of our study were twofold. The first was to quantify 

the bivariate relationships between both carbohydrate utilization and overall energy expenditure 

during exercise and commonly-used measures of training load across sessions of varying duration 

and intensity. This answers the question “can training load be used as a proxy measure of 

carbohydrate/energy expenditure to quantify the correlation between an individual’s intake and 

exercise expenditure?”, as we have recently proposed [21].  The second aim was to model and 

predict carbohydrate and energy expenditure during exercise using measures of training load, 

alongside measures of cardiorespiratory fitness, dietary intake, and sex. This answers the 

question “can individuals estimate their carbohydrate/energy expenditure based on commonly 

available, non-invasive measures?”. In addition to using internal cross-validation of the 

prediction models, we also tested a separate set of athletes to quantify how well the model 



predictions would translate to a different set of athletes performing a different type of workout, 

across different exercise modalities (cycling, running, and kayak). Finally, the study design also 

allowed us to examine day-to-day variability in heart rate (HR), rating of perceived exertion (RPE), 

carbohydrate oxidation, and oxygen consumption (VdO2) during low-intensity cycling.   

 

Methods 

This study was undertaken in two parts — a primary study in cycling where participants 

performed four different laboratory-based training sessions, and a validation study where 

participants performed a single laboratory-based training session using one of three exercise 

modalities (cycling, running, or kayak). Conceptually, this study includes a cross-sectional 

observational study (primary study) as well as a prediction model development and validation 

study (primary and validation studies). Accordingly, we adhered to the STROBE [22] and 

TRIPOD+AI [23] reporting guidelines where applicable. 

 

Participants. The primary study included 15 participants (10 male, 5 female), the validation study 

included 58 participants (41 male, 17 female). Sample size calculations are described in detail 

under Statistical Analysis. Participant characteristics are shown in Table 1. The study was open 

to all healthy males or females aged 18-55 regularly performing ≥ 3 h per week of training in the 

modality used for testing (cycle, run, or kayak). All interested participants that met the criteria 

were enrolled, and everyone enrolled completed all sessions. Study protocols and materials were 

approved by the Auckland University of Technology Ethics Committee (23/143 and 23/258).   

 



Table 1. Participant characteristics  

Characteristic Cycle - primary  
N = 151 

Cycle - validation  
N = 211 

Kayak - validation  
N = 171 

Run - validation  
N = 201 

Sex     

    F 5 (33%) 7 (33%) 4 (24%) 6 (30%) 
    M 10 (67%) 14 (67%) 13 (76%) 14 (70%) 
Age 34.2 (9.7) 31.6 (10.7) 29.0 (11.3) 28.0 (7.6) 
Mass (kg) 74.8 (9.8) 73.7 (11.3) 77.9 (10.1) 70.0 (13.3) 
BMI 23.2 (1.8) 23.2 (2.3) 24.2 (1.9) 22.0 (2.2) 
Training h/week 8.8 (3.1) 10.7 (6.6) 13.2 (4.1) 9.6 (5.1) 
VEO2max (ml/kg/min) 51.9 (7.2) 53.5 (11.0) 46.2 (4.1) 57.5 (7.2) 
PPO (W) 355 (54) 341 (76) 167 (34) 351 (68) 
VT1 (W) 167 (35) 175 (48) 80 (19) 249 (43) 
VT2 (W) 246 (42) 240 (58) 112 (22) 289 (52) 
Dietary CHO (g/kg) 3.7 (0.9) 4.1 (1.8) 3.6 (1.1) 4.5 (1.8) 
Dietary fat (g/kg) 1.5 (0.4) 1.3 (0.5) 1.3 (0.3) 1.5 (0.8) 
Dietary protein (g/kg) 1.8 (0.5) 1.6 (0.6) 1.8 (0.4) 2.1 (1.0) 
Dietary kcal (per kg) 35.7 (7.6) 34.1 (11.6) 33.4 (6.6) 40.9 (14.2) 
Dietary intake represents mean values from four days for each participant for the primary study and one day for 
each participant in the validation study. CHO = carbohydrate, PPO = Peak Power Output, VT = Ventilatory 
Threshold. 
1n (%); Mean (SD) 

  

 

Primary study 

Participants reported to the laboratory on five occasions, with 1–7 days between sessions and 

without performing high-intensity sessions on consecutive days. Participants refrained from 

intense exercise and alcohol 24 h before each visit and avoided caffeine 16 h before each visit. 

Exercise was permitted the day before each session, with the duration and sRPE recorded using 

the Borg CR100® scale [24]. No exercise was allowed on the day of any laboratory visit. 

Participants were asked to maintain their normal dietary habits and recorded their intake for one 

day prior to each of visits 2–4 using a smartphone-based application which features foods from 



Australia and New Zealand (Easy Diet Diary, https://xyris.com.au/products/easy-diet-diary). All 

trials were conducted under standard laboratory conditions (18–20°C, 40–65% relative 

humidity), with participants fan-cooled during exercise.  

 

Visit 1. Participants reported to the laboratory in an overnight-fasted state. After obtaining 

written informed consent and completing a health screening, a graded exercise test was 

performed to determine ventilatory thresholds and maximal oxygen consumption (VdO2max). 

Participants cycled on an electronically-braked cycle ergometer (Excalibur Sport, Lode BV, 

Groningen, The Netherlands), with expired gas collected and analyzed using a computerized 

metabolic system with mixing chamber (TrueOne2400, ParvoMedics, Sandy, UT, USA). The test 

began at 95 W, and power output increased by 35 W every 3 min until identification of the second 

ventilatory threshold (VT2), where the ventilatory equivalent for oxygen (VdE.VdO2-1) and carbon 

dioxide (VdE.VdCO2-1) increased alongside a reduction in PetCO2 [17]. Participants then cycled for 

10 min at 100 W, followed by a step test starting at 150 W and increasing 30 W per minute to 

task failure to obtain VdO2max. Thirty seconds following the test a 0.3 μL blood sample was 

collected from the left index fingertip and analyzed immediately using a portable blood lactate 

analyzer (Lactate Pro 2, Carlton, Australia). The first ventilatory threshold (VT1) was identified as 

the work rate at which VdE.VdO2-1 began to increase in the absence of changes in VdE.VdCO2-1. Peak 

power (Wmax) was determined by the workload in the last completed stage plus the workload 

relative to the time spent in the last incomplete stage [power of completed stage + (30*(seconds 

at uncompleted stage/60)], and VdO2max and peak fat oxidation (PFO) were recorded as the highest 

15-s value from a moving average, calculated from a 1-s interpolation of breath-by-breath data. 



 

Visits 2-5. In a randomized and counter-balanced order, participants completed four different 

training sessions as follows: 1) 90 min continuous cycling at 90% of VT1 power (low-intensity 

training (LIT) long), 2) 30 min continuous cycling at 90% of VT1 power (LIT-short), 3) 15 min 

continuous cycling at 90% of VT1 power, followed by two sets of 5 x 3 min intervals with 2 min 

recovery between intervals (RBI) and 8 min recovery between sets (RBS, high-intensity interval 

training long, HIIT-long), and 4) 15 min continuous cycling at 90% of VT1 power, followed by two 

sets of 10 x 30-s intervals with 30-s RBI and 8 min RBS (HIIT-short). All sessions were performed 

on the Lode cycle ergometer, with intervals performed using the cadence-dependent linear mode 

set to produce a workload of 110% VT2 power at their preferred cadence. Participants were 

instructed to produce their maximal power output across intervals. All recovery intervals were 

active recovery at 30% Wmax. A standardized snack (Frooze balls, 27 g CHO, 8 g protein, 19 g fat, 

Revive foods, New Zealand) was provided for participants to consume 45 min prior to starting 

exercise, and ad libitum water intake was allowed before and during the training session. 

 

Music was played during all sessions except the graded exercise test. This was because many 

cyclists listen to music while training, particularly during extended duration indoor training 

sessions. Each participant selected their own playlist from a commercial streaming platform, 

which was repeated for each subsequent visit. Music was standardized based on individual 

preferences rather than playing the same music for all participants because of the influence of 

preferred vs. non-preferred music on RPE during exercise [25]. An sRPE value was recorded 10–



15 min following exercise using the Borg CR100® scale, which offers additional precision 

compared with the CR10 scale [26]. Participants were familiarized with the CR100 scale in 

advance of the trials and given the scale for use at home two weeks prior to the first testing 

session.  

 

Expired gas was measured during the last six of every 15 min period during LIT sessions, and from 

minute 9 onwards during the HIIT sessions, with the exception of a 2-min break during minutes 

6-7 of the recovery period between the two sets of intervals. Blood lactate concentration was 

measured 30-s before and 30-s after each interval set during the HIIT sessions. A schematic 

overview of the sessions for the primary and validation arms is shown in Figure 1. 

 



Figure 1. Schematic overview of the testing sessions. GXT: Graded exercise test, HIIT: High 

intensity interval training, LIT: Low intensity training, RBS: Rest between sets, VT1: first 

ventilatory threshold 

 

Validation study 

To validate the prediction equations established in the primary study and to assess their 

generalizability to other exercise modalities, 58 additional participants were recruited to perform 

a graded exercise test and a single exercise session using either a cycling ergometer, motorized 

treadmill (h/p/cosmos, Nussdorf, Germany), or kayak ergometer (Dansprint, Hvidovre, 

Denmark). The graded exercise test was performed for cyclists as described above, whereas 

running tests began at 10 km/h and increased in 1 km/h increments, and kayaking tests began at 

40 W (females) and 60 W (males) and increased in 15 W (females) and 20 W (males) increments. 

Participants returned to the laboratory 2–7 days later to perform a mixed-intensity exercise 

session consisting of 30 min continuous exercise at 95% of VT1 power, followed by 5 min recovery 

(5 min active recovery at 100 W for cyclists, or 3 min passive recovery followed by 2 min walking 

at 4 km/h for runners or 20 W on the kayak ergometer), and 6 x 3 min intervals with 2 min rest 

between intervals where participants were encouraged to give their best effort across the six 

intervals (Figure 1). The cycling intervals were performed as described for the initial HIIT sessions, 

using the cadence-dependent linear mode. Treadmill intervals were set at 107% VT2 speed based 

on pilot testing. The intensity for kayak intervals was dictated by the participant. Recovery 

between intervals was set at 30% PPO for cycling, 4 km/h for running, and 20% PPO for kayak 

sessions. 

 



 The validation session was designed to be similar to a typical training session, but different from 

the sessions in the initial arm of the study. sRPE was collected 10–15 min following exercise. 

Expired gas was measured during the last six of every 15 min period during the 30-min continuous 

cycling, and for the remainder of the session. Lactate was measured 30-s before and 30-s after 

the interval set. A Stryd power meter (Stryd, Boulder, CO, USA) was used to collect running power 

data [27], and stroke-by-stroke power was collected from the kayak ergometer. To increase 

generalizability, validation sessions could be performed at any time of day, but subjects refrained 

from eating in the 4-h pre-exercise window, with the exception of the same standardized snack 

consumed 45 min prior to exercise. 

 

Data analysis 

Carbohydrate utilization and energy expenditure during exercise were determined separately for 

aerobic and anaerobic energy systems. For each exercise session, breath-by-breath gas exchange 

data were interpolated into second-by-second values using the whippr R package [28]. To 

determine the contribution from aerobic energy production, VdO2 values were converted to 

energy equivalents based on respiratory exchange ratio (RER) values using the conversion tables 

of Elia and Livesey [12]. This allows RER-specific energy conversions to be used.  For example, the 

energy equivalent of 1 L O2 is 4.687 kcal at an RER of 0.71, and 5.048 kcal at an RER of 1.0 [12]. 

This approach also allows the calculation of energy equivalents for RER values > 1.0 as CO2 is not 

needed for calculations [12]. To account for excess (non-oxidative) CO2 excretion, we considered 

5.048 kcal/L as the maximum energy equivalent for the aerobic contribution if RER values were 



> 1.0. Energy equivalents were calculated on a second-by-second basis for the entire session (step 

1). The RER value was then used to estimate the percentage of carbohydrate and fat oxidation 

using the conversions of Elia and Livesey [12]. The percentage carbohydrate contribution was 

multiplied by the energy equivalent to calculate energy from carbohydrate sources (step 2).  

 

To convert from energy (kcal) to mass (g) of carbohydrate, consideration of exercise intensity is 

required. This is  because the energy yield from carbohydrate varies depending on the source, 

ranging from 3.719 kcal per gram of glucose to 4.187 kcal per gram of glycogen [29]. The 

equations of Jeukendrup and Wallis [4] vary based on exercise intensity, assuming 50% of the 

carbohydrate oxidation is derived from plasma glucose and 50% from muscle glycogen during 

low intensity exercise (40–50% VdO2max), and 20% from glucose and 80% from muscle glycogen at 

moderate to high intensity exercise (50–75% VdO2max). This results in carbohydrate oxidation 

yielding 3.95 kcal per gram of carbohydrate during low intensity exercise, and 4.07 kcal per gram 

of carbohydrate during moderate to high intensity exercise [4]. It has also been recommended 

that resting analyses should assume 100% glucose oxidation [4]. With this in mind, we used a 

scaled approach whereby the percent contribution from glycogen was assumed to be equal to 

the exercise intensity as a percentage of VdO2max, allowing a second-by-second adjustment 

according to exercise intensity (step 3). The energy yield from glucose and glycogen-derived 

carbohydrate oxidation was then calculated and summed to get an intensity-adjusted energy 

yield from carbohydrate (step 4).  The value for energy (kcal) from carbohydrate sources was 

divided by the adjusted energy yield to get a value of carbohydrate in grams for each second 



(step 5), with these values summed to yield a session total for grams of carbohydrate utilized 

through the aerobic energy pathways.  

 

A step-by-step example is shown in Box 1 for a VdO2 of 2.9 L/min and an RER of 0.93, for someone 

with a VdO2max of 3.8 L/min. 

 

Box 1. Example calculation of aerobic energy production 

Step 1: Calculate energy expenditure per second. 

RER of 0.93 yields 4.961 kcal per L O2 per minute   

2.9 L * 4.961 kcal per L = 14.39 kcal per minute/ 60 = 0.240 kcal per second 

 

Step 2: Calculate energy expenditure from carbohydrate sources. 

RER of 0.93 corresponds to a contribution from carbohydrate of 77.19% 

0.240 kcal per second * .7719 = 0.185 kcal per second from carbohydrate  

 

Step 3: Calculate percent contribution from glucose and glycogen sources, assuming percentage 

of glycogen is equivalent to percentage of VdO2max. 

2.9 L / 3.8 L = 76.3% from glycogen 

1 – 76.3% = 23.7% from glucose sources 

 

Step 4: Calculate energy yield from glucose- and glycogen-derived carbohydrate oxidation, 

summed for a total intensity-adjusted energy yield. 



23.7% * 3.719 = 0.881 kcal/g from glucose 

76.3% * 4.187 = 3.195 kcal/g from glycogen 

0.881 + 3.195 = 4.076 kcal/g carbohydrate 

 

Step 5: Calculate carbohydrate in grams per second. 

0.185 kcal from carbohydrate per second (from step 2) / 4.076 kcal per g (from step 4) = 0.045 g 

carbohydrate per second 

 

Step 6: Calculate the sum of the second-by-second values to get a session total. Expired gas was 

recorded for the last six minutes of each 15-min block during low intensity cycling, with the first 

minute of each collection period discarded. Therefore, values for the 5-min periods were 

multiplied by 3. 

[End of Box 1] 

 

Energy produced from anaerobic lactate metabolism was determined using the net lactate 

accumulation, body mass, and O2 lactate equivalent method [3, 8], with example calculations 

shown in Box 2. Lactate was measured before and after the interval sets during the HIIT trials, 

with the change in lactate (post – pre) multiplied by 3 mL O2.kg–1.mmol.L–1 to create an oxygen 

equivalent [3], which was then multiplied by 21.1 kJ.L-1 [8], and divided by 4.184 to convert from 

kJ to kcal (step 1). 

 



To convert from energy (kcal) to mass (g) of carbohydrate, consideration of the ATP yields from 

anaerobic glycolysis and aerobic oxidation of carbohydrate is required. The net yield of anaerobic 

glycolysis is 2.9 ATP when starting from glycogen (assuming 90% α-1,4 glycosidic bonds) and 2 

ATP when starting from glucose [30]. The complete oxidation of glycogen yields 34.35 ATP, and 

complete oxidation of glucose yields 33.45 ATP [30]. During high-intensity exercise, we assume 

the substrate for anaerobic glycolysis is glycogen, implying it would require 11.845 times more 

carbohydrate (because 34.35 / 2.9 = 11.845) to produce the same amount of ATP via anaerobic, 

compared with aerobic, metabolism. Based on the aerobic yield of 4.187 kcal per gram of 

glycogen [12], we calculated grams of carbohydrate from anaerobic sources as kcal from step 1 

divided by 4.187, multiplied by 11.845 to account for the inefficiency of ATP production from 

anaerobic glycolysis (step 2). This process was repeated for both interval sets. Total carbohydrate 

expenditure was calculated by summing the contributions from the aerobic and anaerobic 

systems. A step-by-step example of anaerobic energy calculation is shown in Box 2.  

 

Box 2. Example calculation of anaerobic energy production 

Step 1: Calculate kcal from anaerobic energy production. 

 

Delta lactate = 9.3 mmol.L-1 (post) – 1.5 mmol.L-1 (pre) = 7.8 mmol.L-1 

Oxygen equivalent = 3 * 7.8 * 70 kg body mass = 1638 ml O2 = 1.638 L O2 

1.638 L * 21.1 kJ per L = 34.56 kJ  

34.56 kJ/ 4.184 = 8.26 kcal via anaerobic energy production 

 



Step 2: Convert from kcal to grams of carbohydrate while accounting for the inefficiency of 

anaerobic energy production. 

8.26 kcal / 4.187 * 11.845 = 23.4 g carbohydrate 

[End of Box 2] 

 

A visual overview of the pathways involved in energy production and rationale for this approach 

is provided in Figure 2.  

 

 

Figure 2. Overview of primary energy producing pathways in skeletal muscle. During glycolysis 

from glucose, 1 ATP is consumed at hexokinase and 1 ATP is consumed at phosphofructokinase 

to yield 2 trioses, each of which generates 1 ATP at phosphoglycerate kinase and 1 ATP at 

pyruvate kinase, for a net yield of 2 ATP/glucose. When starting from glycogen, less ATP is 

needed for the initial activation at hexokinase (~0.1 ATP), resulting in a greater net yield of 2.9 

ATP [30]. An additional 31.45 ATP is produced from oxidative reactions, bringing the maximum 

total yield to 34.35 ATP from glycogen and 33.45 ATP from glucose. Glucose enters the cell via 

glucose transporters (GLUT)1 and 4. Lactate can be removed from the cell via monocarboxylate 

transporters (MCT). Fatty acids can enter the cell via fat transport proteins including cluster of 



differentiation 36 (CD36). Differences in efficiency are highlighted by a comparison of ATP 

production; to produce 100 ATP requires 34.5 glycogen molecules via anaerobic energy 

production or 2.9 glycogen molecules via aerobic energy production 

 

 

In addition to the strong theoretical and mechanistic rationale for this approach, we also tested 

our method using data from previously published studies which included metabolic tracers 

and/or muscle glycogen measurements. Calculations are provided in Supplementary File 1, 

showing good agreement (e.g., estimations of total carbohydrate utilization within ~1–4 g) when 

comparing our method with estimates using invasive techniques. 

 

For each exercise session, six measures of training load were calculated as shown in Table 2. 

Table 2. Measures of Training Load and their calculations. 

Total Work Done (TWD-kJ) A measure of total mechanical energy spent (kJ), collected from the ergometer 
(cycling and kayak) or Stryd power meter (running). 

Session Rating of Perceived 
Exertion- Training Load (sRPE-
TL) 

Session RPE * Duration (min) [16]. This value was divided by 10 to account for the 
100-pt scale, allowing easier comparisons to other research using the 10-pt scale. 

Lucia training impulse (TRIMP) 

(Duration (min) in zone 1 * 1) + (Duration in zone 2 * 2) + (Duration in zone 3 * 3). 
Zones were calculated using power (LuTRIMPW) and HR (LuTRIMPHR), with zone 1 

below VT1, zone 2 between VT1 and VT2, and zone 3 above VT2  
[17]. 

Training Stress Score (TSS) 

[(seconds × NP × IF)/(FTP × 3600)] × 100 [18]. Power at VT2 was used as an 
estimate of functional threshold power (FTP), as has been done by others [31]. 

Normalized power (NP) is calculated by creating rolling 30-s averages and raising 
each value to the fourth power, then taking the fourth root of the average of the 

fourth powers. Intensity factor (IF) is calculated as NP/ FTP. 

Heart rate TSS (TSShr) Calculated the same as TSS, substituting HR for power and using VT2 HR as a 
measure of functional threshold HR. 

 

 



Statistical Analysis 

Primary study 

To estimate differences in training load across the four sessions for each metric, a series of linear 

mixed models were fitted using the lme4 R package with training load as the dependent variable, 

session as a fixed factor, and participant ID as a random intercept. Model-estimated means were 

calculated using the emmeans R package and contrasts between each session (within each 

training load metric) were estimated using the Holm correction for multiple comparisons. To 

examine the bivariate relationship between training load measures and the total carbohydrate 

and kcal cost of exercise, repeated-measures correlation was used, which allows analysis of 

repeated-measures data without violating independence assumptions [32]. To examine day-to-

day variation all four trials began with the same 15-min period of cycling at 90% VT1 power, 

allowing us to compute the Typical Error of Measurement (TEM) for VO2, HR, carbohydrate 

oxidation, and RPE according to the approach of Hopkins [33]. 

 

To predict carbohydrate utilization and energy expenditure based on training load and other 

commonly measured variables known to influence substrate selection such as VdO2max, sex, and 

dietary intake [34], multivariable models were created for each of the six training load measures 

predicting each of the two dependent variables (energy expenditure and carbohydrate 

utilization) using generalized estimating equations (GEE). GEE models provide population-

averaged (e.g., marginal), rather than subject-specific models while accounting for repeated 

measurements within participants [35]. Quasi Information Criterion (QIC) was used for selecting 

an independence correlation structure as the working correlation matrix [36]. The following 



variables were considered for the full models: training load, training load2, session duration (min), 

session duration2, prior-day sRPE-TL,  type of session (continuous or interval training), prior day 

dietary carbohydrate and fat intake (g/kg), VdO2 at VT2 (L/min and % VdO2max), VdO2max (mL/kg/min 

and L/min), blood lactate at the end of the VdO2max test, PFO (g/min), and sex. The following pre-

specified interactions were also considered in the full model: prior-day sRPE-TL x prior day 

carbohydrate intake, session duration x training load, type of session x training load, type of 

session x VdO2max, and type of session x VdO2 at VT2.  

 

The top candidate models were identified using the glmulti R package [37], which performs a 

genetic search across possible models specified by a given set of predictors and selects the top 

models according to corrected Akaike Information Criterion (AICc). From the reduced pool of 

models, we performed participant-level leave-one-out cross-validation which fits a series of 

models on all but one of the participants, whose four sessions are used as a hold-out testing set 

[38], selecting the model with the lowest mean absolute error (MAE) as the final model for each 

measure of training load. The fit of each model was checked by visualizing the Q–Q and other 

residual plots to ensure approximate residual normality and homoscedasticity using the 

performance R package. Model performance is reported as the coefficient of determination (R²), 

which represents the proportion of variance explained by the model, and the MAE, which 

quantifies the average absolute discrepancy between the observed and predicted values. These 

metrics were calculated using both in-sample data (i.e., the same data used to train the model 

and evaluate performance) and cross-validation, which offers a more realistic and unbiased (or 

least biased) estimate of model performance in the population in which the model is intended 



[39]. Performance metrics for cross-validation are reported as mean [95% confidence intervals]. 

There were no missing data for models in the primary study. 

 

Validation study 

Data from the validation sessions were analyzed in the same manner as the primary study, with 

each session analyzed as only the 30-min low-intensity portion, and as the full session (30-min 

low intensity and the high-intensity intervals). Values of total carbohydrate utilization and energy 

expenditure for each session were predicted from the previously fit models for each measure of 

training load. Model performance was assessed using measures of overall fit R2 (proportion of 

variance in explained in the external validation dataset, calculated using the traditional definition 

with sum of squares rather than the correlation between predicted and actual values) and MAE, 

and assessed for calibration which was quantified as calibration-in-the-large (the difference 

between mean observed and mean predicted outcome values, with 0 being ideal) and calibration 

slope (the agreement between predicted and observed values across the range of predicted 

values, with a slope of 1 being ideal) [39]. Finally, models were recalibrated using the intercept 

and slope of a linear model regressing the actual values on the predicted values [40], with 

measures of R2 and MAE reported on the calibrated data. Due to technical issues, data for the 

low-intensity portion of one kayak trial and the total work done for one running trial were 

missing. Rather than using imputation, these data points were omitted from the predictions. One 

other kayak trial consisted of only three intervals due to equipment malfunction but data from 

the first 45 min of the session was included for analysis. 

 



Based on Riley et al. [41], a minimum sample size of 15 was calculated for the primary study. This 

calculation used an estimated adjusted R2 value of 0.89 and considered a model with up to 6 

predictors. The choice of 6 predictors was derived from Riley et al. [42], to ensure a shrinkage 

factor of at least 0.9 and maintain a difference between adjusted and apparent R2 values below 

0.05. However, our sample size is below the minimum size of 240 (using the rule of 234 + number 

of predictors) needed for precise estimates of the residual standard deviation [41]. This means 

there will still be some uncertainty in the parameter estimates that can only be solved with very 

large sample sizes that extend beyond the capacity of this project. The approach of Archer et al. 

[43] was used to calculate the minimum sample sizes needed in the validation dataset to obtain 

precise estimates of R2, calibration in the large, and calibration slope, assuming  90% confidence 

intervals with target widths of 0.2 for R2 and 0.2 for calibration slope. Calculations were made 

separately for each model, resulting in a minimum requirement of 7–11 participants (kcal) and 

13–19 participants (carbohydrate) in each validation arm depending on the model (Supplemental 

Table 1, supplemental R code). For the kayak arm of the validation study we were only able to 

recruit 17 athletes, which is sufficient for all energy expenditure models and four of the six 

carbohydrate models, but just below the target sample size of 18 for LuTRIMPW and 19 for sRPE-

TL. 

 

To determine the minimum sample size for detecting differences in training load across the four 

sessions in the primary study, we calculated the means and standard deviations for each session, 

estimated the pooled standard deviation, and determined the effect size (Cohen's f). Using these 

values, we performed a power analysis which indicated that a sample size of 6 participants per 



group was required to achieve 95% power at a 5% significance level. All analyses were carried 

out with R version 4.3.1 (The R foundation for Statistical Computing, Vienna, Austria). Descriptive 

statistics are provided as mean ± SD, statistical significance was accepted at p < 0.05. 



Results 

Participant characteristics and self-selected dietary intake are shown in Table 1. The TEM of day-

to-day variation during low intensity cycling was 2.9 b/min for HR, 0.08 L/min for VdO2, 0.21 g/min 

for carbohydrate oxidation, and 4.0 arbitrary units (0–100 AU scale) for RPE. Training load, energy 

expenditure, and carbohydrate utilization for each training session are shown in Figure 3. All 

measures of training load were significantly different for each training session, except total 

carbohydrate utilization and TSS, which were not different between LIT-long and HIIT-short, and 

TWD-kJ, which was not different between HIIT-long and LIT-long. Repeated-measures correlation 

analysis indicated very large to near perfect correlations (0.71–0.98) between all training load 

metrics and both outcomes (Fig. 4). 

 

 

Figure 3. Training load and kcal and carbohydrate (CHO) use for each training session in the 

primary study. Solid black lines indicate no significant difference between sessions (p > 0.05). 

HIIT: High-intensity training sessions, LIT: Low intensity training sessions, sRPE-TL: Session RPE-

training load, TSS: Training Stress Score, TSS-HR: TSS calculated with heart rate, TWD-kJ: Total 

Work Done (kJ).  

 



 

Figure 4. Repeated measures correlation values with 95% Confidence Intervals between training 

load measures and carbohydrate (CHO, top) and kcal use (bottom) from the primary study. sRPE-

TL: Session RPE-training load, TSS: Training Stress Score, TSS-HR: TSS calculated with heart rate, 

TWD-kJ: Total Work Done (kJ)  

 

 

Multivariable regression models were created for each of the six training load measures 

predicting the two dependent variables (energy expenditure and carbohydrate utilization – 



resulting in 12 unique models), with additional variables that can be easily obtained from routine 

exercise physiology testing. Model coefficients for the included variables are shown in Table 3, 

along with model performance metrics R2 and MAE using both in-sample data and leave-one-

participant out cross-validation. All models explained a large amount of variance (R2 values of 

0.77–0.96) and displayed good accuracy (MAE of 16–21 g [10–14%] carbohydrate and 53–82 kcal 

[7–11%] 

 

Table 3. Model performance measures and coefficients.  

 

  



	 R2	 cv-R2	 MAE	 cv-
MAE	

Intercept	 Type- 
Continuous	

Sex-f	 TL	 TL2	 Duration 
(min)	

VT2 
VO2 (L)	

VT2 
(%max)	

VO2max 
(L)	

VO2max 
(ml/kg/min)	

Prior-
day 

sRPE-TL	
CHO	
TSS-HR	 0.93	 0.84 

[0.74, 
0.94]	

16.0	 17.6 
[14.4, 
20.8]	

-22.77 
(18.23)	

-42.77 
(5.85)	

-28.83 
(6.43)	

1.585 
(0.086)	

	 	 	 	 23.62 
(3.65)	

	 -0.039 
(0.007)	

TSS	 0.92	 0.82 
[0.71, 
0.93]	

16.1	 18.2 
[14.3, 
22.1]	

-28.01 
(23.51)	

-38.39 (7)	 -21.69 
(7.48)	

	 0.007 
(0.001)	

1.43 
(0.12)	

32.51 
(6.51)	

	 	 	 -0.062 
(0.012)	

TWD-kJ	 0.92	 0.85 
[0.77, 
0.93]	

16.5	 17.9 
[13.8, 

22]	
76.52 
(9.3)	

-49.93 
(6.26)	

-22.37 
(4.92)	

0.201 
(0.009)	

	 	 	 	 	 	 -0.06 
(0.011)	

Lucia 
TRIMP 
power	

0.89	 0.77 
[0.62, 
0.91]	

18.2	 20.1 
[15.8, 
24.4]	

-69.16 
(16.76)	

-50.39 
(7.23)	

	 	 0.003 
(0.001)	

1.39 
(0.14)	

46.83 
(4.56)	

	 	 	 -0.058 
(0.015)	

Lucia 
TRIMP 
HR	

0.90	 0.79 
[0.68, 
0.89]	

18.4	 21.2 
[17.6, 
24.9]	

-21.36 
(31.21)	

-61.47 
(7.22)	

-16.26 
(9.38)	

	 0.002 
(0.001)	

1.4 (0.2)	 35.24 
(8.85)	

	 	 	 -0.046 
(0.009)	

sRPE-TL	 0.88	 0.77 
[0.66, 
0.88]	

19.1	 21.2 
[16.8, 
25.6]	

-75.89 
(16.46)	

-54.53 
(8.67)	

	 	 1e-04 
(4e-05)	

1.8 (0.13)	 46.45 
(4.75)	

	 	 	 -0.058 
(0.014)	

kcal	
TWD-kJ	 0.96	 0.93 

[0.89, 
0.97]	

52.6	 58.5 
[38, 

78.9]	
135.04 
(34.97)	

-95.68 
(15.56)	

-41.79 
(23.86)	

1.18 
(0.036)	

	 	 	 	 	 	 	

TSS	 0.96	 0.92 
[0.89, 
0.96]	

55.1	 59.6 
[48, 

71.1]	
-709.07 
(42.34)	 	 	 5.3 

(0.288)	 	 7.56 
(0.43)	

225.35 
(13.96)	 	 	 	 	

TSS-HR	 0.94	 0.90 
[0.85, 
0.95]	

61.7	 72.2 
[54.3, 
90.1]	

-772.78 
(198.04)	

-116.84 
(23.67)	

-37.65 
(24.65)	

5.12 
(0.807)	 	 5.23 (1.2)	 	 3.23 

(1.615)	
164.73 
(21.65)	 	 	



	 R2	 cv-R2	 MAE	 cv-
MAE	

Intercept	 Type- 
Continuous	

Sex-f	 TL	 TL2	 Duration 
(min)	

VT2 
VO2 (L)	

VT2 
(%max)	

VO2max 
(L)	

VO2max 
(ml/kg/min)	

Prior-
day 

sRPE-TL	
Lucia 
TRIMP 
HR	

0.93	 0.88 
[0.82, 
0.93]	

69.1	 79.4 
[62.3, 
96.6]	

-830.95 
(261.22)	

-177.24 
(25.05)	

	 	 0.006 
(0.002)	

9.7 (0.77)	 	 4.376 
(2.359)	

172.96 
(19.11)	

	 	

Lucia 
TRIMP 
power	

0.93	 0.88 
[0.83, 
0.93]	

72.0	 78.6 
[63.6, 
93.7]	

-786.48 
(71.93)	

	 	 10.5 
(1.619)	

-0.03 
(0.007)	

4.05 
(1.07)	

222.81 
(20.51)	

	 	 	 	

sRPE-TL	 0.93	 0.88 
[0.83, 
0.92]	

73.1	 81.7 
[63.8, 
99.6]	

-615.45 
(60.89)	

-132.4 
(40.94)	

	 0.2576 
(0.138)	

	 10.69 
(0.68)	

208.62 
(29.05)	

	 	 1.453 (1.163)	 	

Model coefficients are shown with (std error). CHO = carbohydrate, MAE = Mean Absolute Error, cv-MAE = MAE from cross-validation, cv-R2 = R2 from cross-
validation, TL = Training load, TL2 = Training load ^2, VT2 (%max) is on 0–100 scale	

	



To test the application and generalizability of the models we performed a validation study using 

a different training session, and three new groups of athletes (cyclists, runners, and kayakers). 

Model-predicted values are shown compared to actual values for carbohydrate utilization (Fig. 

5) and energy expenditure (Fig. 6). Summary values shown in Table 4, including MAE and R2 

(calculated using observed and model-predicted values), calibration-in-the-large (difference 

between the mean observed and the mean predicted outcome values), calibration intercept and 

slope (from regressing the actual values on the predicted values in a linear model), and MAE and 

R2 calculated using the calibration-adjusted predictions and the actual values).  

 

Table 4. Model accuracy from validation study  



 MAE - 
raw 

R2 - 
raw 

CITL Calibration 
intercept 

Calibration 
slope 

MAE - 
calibrated 

R2 - calibrated 

Carbohydrate utilization (g) - cycle 

sRPE-TL 21.9 0.85 -0.8 14.9 0.87 20.3 0.87 

TSS 18.3 0.90 -2.3 8.7 0.91 17.8 0.91 

TSS-HR 23.5 0.84 -11.2 5.8 0.87 19.3 0.89 

TWD-kJ 16.7 0.90 -7.4 3.3 0.92 15.0 0.92 

Lucia TRIMP 
HR 

20.5 0.86 -3.2 12.7 0.87 19.1 0.88 

Lucia TRIMP 
power 

20.7 0.87 -1.5 11.7 0.89 19.6 0.88 

Carbohydrate utilization (g) - kayak 

sRPE-TL 29.3 0.51 -20.9 15.8 0.68 15.0 0.87 

TSS 31.6 0.46 -28.0 8.5 0.70 10.8 0.92 

TSS-HR 28.7 0.58 -26.6 3.5 0.75 8.3 0.95 

TWD-kJ 16.6 0.83 14.6 8.8 1.07 11.8 0.92 

Lucia TRIMP 
HR 

28.2 0.55 -23.6 10.2 0.71 12.6 0.90 

Lucia TRIMP 
power 

29.5 0.51 -23.5 12.6 0.69 14.2 0.89 

Carbohydrate utilization (g) - run 

sRPE-TL 32.0 0.52 -28.4 6.3 0.75 18.6 0.86 

TSS 36.9 0.38 -35.4 2.7 0.74 18.4 0.86 

TSS-HR 29.5 0.62 -25.5 4.4 0.78 15.0 0.90 

TWD-kJ 50.4 0.08 -50.0 -11.1 0.76 15.7 0.90 

Lucia TRIMP 
HR 

29.7 0.58 -25.6 7.5 0.76 16.4 0.88 

Lucia TRIMP 
power 

36.4 0.40 -33.7 6.3 0.73 18.5 0.86 

Energy expenditure (kcal) - cycle 

sRPE-TL 79.9 0.90 8.7 80.2 0.89 70.6 0.92 

TSS 68.1 0.93 2.2 45.0 0.93 65.3 0.94 

TSS-HR 80.3 0.91 -20.7 51.9 0.89 72.4 0.92 

TWD-kJ 53.0 0.95 -18.5 9.4 0.96 48.3 0.96 

Lucia TRIMP 
HR 

75.7 0.91 -3.0 73.9 0.88 69.8 0.92 

Lucia TRIMP 
power 

78.0 0.91 11.1 79.7 0.89 68.6 0.93 

Energy expenditure (kcal) - kayak 

sRPE-TL 102.0 0.77 -45.5 94.3 0.75 58.3 0.91 

TSS 87.1 0.83 -50.3 74.2 0.78 42.8 0.95 

TSS-HR 77.8 0.86 -47.6 64.8 0.80 42.0 0.95 



 MAE - 
raw 

R2 - 
raw 

CITL Calibration 
intercept 

Calibration 
slope 

MAE - 
calibrated 

R2 - calibrated 

TWD-kJ 185.9 0.29 185.9 11.4 1.53 36.4 0.96 

Lucia TRIMP 
HR 

91.9 0.81 -45.5 81.8 0.77 56.9 0.92 

Lucia TRIMP 
power 

110.1 0.72 -90.7 42.4 0.78 56.3 0.92 

Energy expenditure (kcal) - run 

sRPE-TL 91.6 0.83 -48.5 93.6 0.79 58.4 0.92 

TSS 113.0 0.76 -103.2 11.1 0.84 54.1 0.94 

TSS-HR 81.4 0.86 -38.1 90.2 0.81 55.1 0.94 

TWD-kJ 178.3 0.47 -178.3 -28.1 0.81 39.5 0.96 

Lucia TRIMP 
HR 

85.2 0.85 -28.9 107.9 0.79 58.0 0.92 

Lucia TRIMP 
power 

125.9 0.71 -82.6 94.0 0.75 65.9 0.91 

CITL = calibration-in-the-large (difference between the mean observed and the mean predicted outcome values), 
MAE = Mean Absolute Error, MAE-raw = MAE of predicted values, MAE-calibrated = MAE for each model 
following adjustment of each prediction as the calibration intercept + (predicted value * calibration slope). R2 
values represent the coefficient of determination calculated using the traditional definition with sum of squares 
rather than the correlation between predicted and actual values. 

 

 

The predictions for cycling displayed the highest accuracy, and most predictions were higher than 

actual values apart from TWD-kJ for kayak. This is evidenced by negative values for calibration-

in-the-large and calibration slope values less than 1 (Table 4). The MAE ranged from 16.7–50.4 

for carbohydrate utilization models and 53.0–185.9 for energy expenditure models.  

 

After applying the calibration adjustment to each predicted value in the validation study 

(calibration intercept + predicted value * calibration slope), accuracy of all models was improved 

as shown in Figure 7 (carbohydrate utilization) and Figure 8 (energy expenditure). The calibrated 

MAE ranged from 8.3–20.3 for carbohydrate utilization models and 36.4–72.4 for energy 

expenditure models (Table 4).  



 

 

Figure 5.  Predicted vs. measured values of carbohydrate utilization during validation sessions, 

separated by exercise mode  

 



 

Figure 6.  Predicted vs. measured values of energy expenditure during validation sessions, 

separated by exercise mode 

 

  



 

 

 

Figure 7. Predicted vs. measured values for calibrated carbohydrate models, with shapes 

denoting each sport and colors depicting the raw/uncalibrated values (blue) and calibrated 

values (violet) 

 
 



 

Figure 8. Predicted vs. measured values for calibrated energy expenditure models, with shapes 

denoting each sport and colors depicting the raw/uncalibrated values (blue) and calibrated 

values (violet) 

 
 

 

  



Discussion 

The main findings of our study were: 1) common measures of training load display very large to 

near-perfect associations (r = 0.71–0.98) with both carbohydrate utilization and energy 

expenditure during exercise, 2) TSS was the only measure of training load to accurately reflect 

similar total carbohydrate utilization between the longer-duration low intensity session and the 

shorter-duration high-intensity session, 3) carbohydrate utilization and energy expenditure 

during cycling could be predicted with a high degree of accuracy (MAE 17–24 g carbohydrate, 

53–80 kcal) using measures of training load along with easily-obtainable laboratory measures, 

and 4) these models can be applied in running and kayaking when used with a calibration 

adjustment. 

 

A key aim of the study was to quantify the bivariate relationships between both carbohydrate 

utilization and overall energy expenditure during exercise and commonly-used measures of 

training load across sessions of varying duration and intensity. This investigated the question “can 

training load be used as a proxy measure of carbohydrate/kcal expenditure to quantify the 

correlation between an athlete’s intake and exercise expenditure?”, as we have recently 

proposed [21]. Repeated-measures correlations showed very large to near perfect relationships 

between each of the training load measures and both carbohydrate utilization and energy 

expenditure, supporting the use of any of the training load measures by athletes looking for a 

way to match their carbohydrate or energy intake with their exercise. The weakest relationships 

were observed for sRPE-TL, but the correlation values 0.71–0.83 would still be considered very 

large and sRPE-TL is a more pragmatic option for many athletes and practitioners.  



 

Despite the ubiquity of training load quantification and variety of methods for measuring load, 

there is no consensus on which methods best represent the true load of a training session [13, 

31, 44]. This is context-dependent and relies heavily on the nature of the exercise stimulus (e.g., 

the sport or mode of training). Some suggest TSS is influenced more by intensity than other 

training load metrics such as TWD, LuTRIMP, and sRPE-TL, meaning TSS will be different for 

sessions where the same amount of energy is expended either at low or high intensity [19, 20]. 

This is related to the quadratic relationship between TSS and exercise intensity, whereas most 

other measures of training load have linear or exponential relationships  [20]. The rationale for 

this quadratic relationship has been questioned based on the lack of quadratic relationship 

between exercise intensity and measures of internal load such as RPE, VdO2, HR, blood lactate, as 

well as biochemical and hormonal responses [20]. However, the close relationship we observed 

between TSS and total carbohydrate use during exercise (Fig. 4), along with the observation that 

only TSS could accurately differentiate the carbohydrate needs of the various sessions (Fig. 3), 

suggests the quadratic relationship between TSS and exercise intensity may be a “feature”, rather 

than a “bug”. The inefficiency of the anaerobic energy pathways [30] offers a mechanism for why 

TSS might most accurately reflect total carbohydrate use during exercise of varying intensities. 

There has also been concern of a misestimation of the physiological impact of a long, easy 

endurance ride compared with a short high-intensity ride when expending the same amount of 

energy [20]. This concern is reflected in our study by the higher values of sRPE-TL for the HIIT-

short compared with LIT-long sessions, despite TWD being higher for the LIT-long session, and 

TSS being the same between the two sessions (Fig. 3).  



 

Although it has been suggested that studies comparing different training intensities should 

equalize sessions in terms of energy expenditure or work [45], TSS could be considered as a viable 

alternative for matching training load between groups. When combined with the known 

influence of post-exercise muscle glycogen concentrations on the molecular adaptations to 

exercise [46, 47], our findings can help explain the advantage of high-intensity, compared with 

moderate-intensity training, commonly observed when total work is matched between groups 

[48-51]. Retrospective analyses of training studies comparing moderate and high-intensity 

training using TSS could further explore this hypothesis.   

 

This study used a novel method of estimating carbohydrate utilization and energy expenditure 

during exercise, extending methodological approaches from adjacent fields of biochemistry, 

physiology, and nutrition. Several challenges had to be overcome including energy conversions 

that are dependent on the relative contributions of fat and carbohydrate, the contributions of 

glucose and glycogen, differences in aerobic and anaerobic metabolism, the non-validity of gas 

exchange measures during high-intensity exercise, and the computational challenges associated 

with large data sets. 

 

Carbohydrate oxidation is often calculated using measures of VdO2 and VdCO2, but this method 

assumes a stable bicarbonate pool and is thus unreliable at intensities above ~75% VdO2max due to 

shifting acid-base balance and excess (non-oxidative) CO2 being excreted through hyperpnea [4]. 

Our approach, using the VdO2-based calculations of Elia and Livesey [12], allows aerobic energy 



expenditure to be calculated during higher intensities, and comparison of the two calculation 

methods during low intensity exercise revealed near-perfect correlation values of 0.97–0.99 

(data not shown). Although lactate is produced during steady-state exercise, a major portion is 

eliminated through oxidation and so the rate of oxygen consumption effectively accounts for and 

reflects the energy generated via aerobic glycolysis [52].  

 

Data were analyzed on a second-by-second basis, which allowed continuous adjustment of the 

energy yield of O2 based on substrate utilization, and the intensity-dependent changes in the 

relative contribution of glucose and glycogen for carbohydrate oxidation. For the latter, we chose 

a scaled approach whereby the percent contribution from glycogen was assumed to be equal to 

the exercise intensity as a percentage of VdO2max. This assumption was made based on the 

recommendations of Jeukendrup and Wallis [4] that resting analyses should assume 100% 

glucose oxidation, exercise around 40–50% VdO2max can assume 50% of carbohydrate oxidation is 

derived from plasma glucose and 50% from muscle glycogen, and exercise up to ~75% VdO2max can 

assume 20% from glucose and 80% from muscle glycogen. A limitation of this approach is that 

the estimations assume normal glycogen concentrations, yet the balance between glucose and 

glycogen-derived energy production is likely to change as the exercise duration extends and 

glycogen is depleted [53, 54]. However, the practical difference this would make to the 

carbohydrate calculation would be quite small as the substrate shifts more towards plasma 

glucose and away from muscle glycogen. We also adjusted the energy yield of O2 based on 

substrate utilization. This is in contrast with many prior studies using a single value (e.g., 20.9 kJ/L 

O2), an approach which has been criticized [55]. 



 

To account for differences in efficiency of anaerobic and aerobic energy production, a conversion 

factor was used based on work showing the complete oxidation of glycogen yields 34.35 ATP and 

the net yield of anaerobic glycolysis is 2.9 ATP [30]. Assuming the primary substrate during high-

intensity exercise is muscle glycogen, this implies 11.845 times more carbohydrate would be 

required to produce the same amount of ATP via anaerobic, compared with aerobic, metabolism 

(Fig. 2). This inefficiency explains the observations of extremely high rates of muscle glycogen 

breakdown (~85–111 mmol/kg/dry mass) following a single 30-s bout of maximal cycling [56, 57]. 

For comparison, 120 min of cycling at 65–75% VO2max would result in a similar depletion of muscle 

glycogen [58, 59].  Furthermore, our estimated values for energy contribution from anaerobic 

metabolism are in line with the previously reported range of 15–20 kcal nonoxidative energy 

capacity for a 70 kg human [52, data not shown]. Although this approach would be challenging 

to validate with any single method, it is derived from well-established methods for energy 

systems quantification and displays very close agreement with two different approaches to 

quantification carbohydrate utilization, described in detail in Supplemental File 1. Collectively, 

our approach overcomes the methodological challenges that have previously precluded this type 

of analysis from being performed. We also believe this approach can be extended to other 

exercise modalities and to different types of training sessions. 

 

The second aim of the study was to model and predict carbohydrate utilization and energy 

expenditure during exercise using measures of training load. Models were built in the primary 

study of cyclists performing four laboratory-based training sessions. The best model for each 



training load metric was selected from a pool of models containing commonly used and easily 

obtainable measures such as VdO2max, ventilatory thresholds, dietary intake, sex, and prior-day 

training load. Using internal validation (i.e., testing the model on the same data that was used to 

train the model), R2 values ranged from 0.88–0.96 and MAE values ranged from 16.0–19.1 for 

carbohydrate utilization and from 52.7–73.2 for energy expenditure. This is referred to as 

‘apparent performance’, which, although commonly the only approach used in the field of sports 

science, typically provides overly optimistic values compared with when the model is evaluated 

in new data [39]. Therefore, it is recommended that prediction models should have additional 

internal-external, and external validation [60]. Internal-external validation refers to using a 

portion of the data for training a model and a separate portion of data for testing it. Because 

each participant in the primary study performed four training sessions, we used k-fold cross-

validation splitting the data by participant. This means each participant was left out once for 

assessment of a model fit on all other participants, with the reported metrics based on the pooled 

assessment data [60]. Using this cross-validation approach in the primary study, R2 values ranged 

from 0.77–0.93 and MAE values ranged from 17.6–21.2 g for carbohydrate utilization and 58.5–

81.7 kcal for energy expenditure, representing a reasonable and expected decline in performance 

from the apparent performance (Table 3). From a practical perspective, the model prediction 

errors were lower than the errors from dietary quantification performed by sports nutritionists, 

which have been reported to be ~20–65 g carbohydrate and ~140–369 kcal per day [61]. 

 

External validation was then used to quantify how well the model predictions translated to a 

different set of athletes performing a different type of workout, across different exercise 



modalities. To this end, we recruited 58 additional athletes to perform a single in-laboratory 

training session using one of three exercise modalities (cycling, running, and kayak). Overall, 

predictions for cycling were better than running and kayaking, and the between-sport differences 

were highly consistent (Fig. 5, 6). This implies differences inherent to performing the sport and/or 

the measurement devices used for each sport are responsible for much of the prediction error, 

rather than simply individual variation and/or noise in the data. This idea is further supported by 

the pronounced improvements with model calibration (Table 4, Figures 7, 8), which adjusts the 

predictions using a simple linear model. For example, the greatest overpredictions were the run 

models which used TWD-kJ (shown as the most negative calibration-in-the-large values in Table 

4). Although it is acknowledged that estimating mechanical power for running is considerably 

more complex than it is for cycling, we chose to use the Stryd power meter because it is widely 

available and has demonstrated high repeatability and a consistent relationship with VdO2 [27]. 

However, data from our study, and others [62], suggest the absolute power reported by the 

device may be overestimated compared with cycling power. In contrast, energy expenditure was 

considerably underestimated for kayak when using TWD-kJ, which can be reconciled by the 

differences in gross efficiency across exercise modes. Mean gross efficiency values in our study 

were 20.0% for cycling, 10.1% for kayak, and 26.2% for running (data not shown). As the models 

were trained using cyclists only, these differences in efficiency can explain both the large errors 

in predictions using TWD-kJ and the considerable improvements in prediction accuracy with 

model calibration (Table 4). From a practical perspective, people wishing to apply these models 

with the calibration adjustment can use the model coefficients from Table 3 to get a predicted 

value of carbohydrate or energy expenditure, then solve the equation calibration intercept + 



(predicted value * calibration slope) from Table 4. Taken together, our data supports the use of 

prediction models (with sport-based calibration) to allow individuals to estimate their 

carbohydrate and energy expenditure based on commonly available, non-invasive measures.  

 

In addition to measures of training load, other variables included in the prediction models were 

training load squared, type of training session (continuous or interval-based), sex, session 

duration, VdO2 at VT2, VdO2max, and prior-day sRPE-TL. It is noteworthy that prior-day sRPE-TL 

appeared in all carbohydrate utilization models but none of the energy expenditure models 

(Table 3). Presumably, greater prior-day sRPE-TL values imply lower levels of starting muscle 

glycogen, which is known to shift substrate use away from carbohydrate and towards fat 

oxidation [34]. Practical application of the carbohydrate models may be challenged by people 

who do not use sRPE-TL, however this is among the easiest measures for someone to record, 

with the caveat that a validated scale is used [16]. A less optimal, yet potentially viable option for 

athletes who only use TSS would be to convert prior-day TSS values into estimated sRPE-TL using 

the regression equation -65.4 + (TSS * 5.18). Details of this equation are provided in Supplemental 

file 2, which is based on the strong relationship (r = 0.86) between TSS and sRPE-TL observed in 

our data. 

  

The use of squared training load terms are included in half of the models, allowing non-linear 

relationships to be modelled. The second ventilatory threshold was also relevant in nearly all 

models, either as VdO2 at VT2 or as a percentage of VdO2max which ostensibly provides the same 

information when combined with VdO2max. This could be expected, as VT2 (also called the 



respiratory compensation point) represents the highest VdO2 (and therefore, energy expenditure) 

associated with steady-state lactate concentrations in the blood [63].  

 

A strength of the study is the inclusion of male and female athletes across a range of fitness 

levels. Females typically have a reduced RER during submaximal endurance exercise compared 

males, indicating lower relative carbohydrate and higher relative fat oxidation [64]. This is 

reflected in the model coefficients shown in Table 3. Although resting glycogen concentrations 

may vary in females across the menstrual cycle [65], most studies have found no influence of 

menstrual phase on substrate oxidation during exercise, particularly in the fed state [66]. 

Therefore, despite the mechanistic rationale, we chose not to control for menstrual cycle phase 

in our female participants. For studies that have found an effect of menstrual phase on substrate 

oxidation, this has been observed during lower, but not moderate or higher intensity exercise 

[67]. For athletes taking oral contraceptive pills, it is possible that the active phase may be 

associated with increased fat oxidation during exercise than the inactive phase [68], but again 

most studies have found minimal effects [66] and so we did not control for this.  

 

There are several limitations to this study which should be considered. First, we did not account 

for protein oxidation in our calculations. Measures of substrate oxidation during exercise are 

typically interpreted based on the assumption of negligible protein oxidation, but this assumption 

could be invalidated in the context of protein ingestion before or during exercise due to increased 

gluconeogenesis, which could decrease RER irrespective of any change in fat oxidation rate via 

transfer of the amino group to the urea cycle [4]. However, protein content was low in our 



standardized pre-exercise meal, which is itself a practical limitation of the study. We standardized 

the pre-exercise meal, which means it is likely that carbohydrate use will decrease when training 

in the fasted state, at least during lower-intensity exercise [69], and increase following a higher-

carbohydrate pre-exercise meal [34]. Future studies could test the robustness of these models 

across different types of pre-exercise meals. In addition, these models may not be applicable to 

very short (< 15 min) or very long (> 90 min) exercise durations. The carbohydrate models are 

more likely to overestimate use during longer sessions, as there is an expected decrease in 

carbohydrate reliance as exercise duration extends [34]. Some error may have also been 

introduced in the TSS calculation, which uses functional threshold power (FTP) that is often 

established using 95% of the average power attained during a 20-min time-trial [18]. To reduce 

participant burden, we used power at VT2 as an estimate of FTP. This approach has been used 

elsewhere [31], although direct comparisons have reported VT2 power as being both higher [70] 

and lower [71] than FTP. For cyclists applying our models using TSS, a corrected FTP based on 

fitness level could be recommended [72]. Although the use of FTP as a marker of intensity 

domains has been questioned [73], it could be considered that the best use of FTP may be in 

enabling an athlete to have a measure of TSS. Finally, it is possible that RPE-based training load 

values recorded in a laboratory setting may not be directly applicable to outdoor training, a 

finding observed in some [74] but not all [75] studies. 

 

Future studies should consider longer exercise durations (>90 min), other exercise modalities 

such as rowing, and the influence of different pre-exercise nutritional intakes (e.g., fasted-state 



training vs. pre-exercise carbohydrate or protein intake) and starting levels of muscle glycogen 

to further investigate the predictive capabilities of these models. 

 

Conclusion 

This study presents a novel method for measuring and estimating both carbohydrate utilization 

and energy expenditure during endurance exercise using easily available measures of training 

load and lab-based testing. We found all measures of training load displayed very large 

correlations with both carbohydrate and energy expenditure during exercise, but TSS was the 

only measure of training load to accurately reflect similar total carbohydrate use between longer 

sessions at low intensity and shorter sessions at high-intensity interval training. Our prediction 

models can be effectively applied in running and kayaking when used with a calibration 

adjustment. 
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Supplemental	Table	1.	Sample	size	calculations	

	 R2 apparent	 Model parameters	 R2 adjusted	 Minimum sample size	
Kcal	
TWD-kJ	 0.96	 3	 0.95	 7	
TSS	 0.96	 3	 0.95	 7	
TSS-HR	 0.94	 6	 0.89	 10	
Lucia TRIMP power	 0.93	 4	 0.90	 11	
Lucia TRIMP HR	 0.93	 5	 0.89	 11	
sRPE-TL	 0.93	 5	 0.89	 11	
CHO	
TSS-HR	 0.93	 5	 0.89	 11	
TWD-kJ	 0.92	 4	 0.89	 13	
TSS	 0.92	 6	 0.86	 13	
Lucia TRIMP power	 0.89	 5	 0.83	 18	
Lucia TRIMP HR	 0.90	 6	 0.83	 16	
sRPE-TL	 0.88	 5	 0.81	 19	
CHO = carbohydrate, R2 apparent = R2 from initial model, R2 adjusted = Adjusted R2 based on sample size and 
model parameters. Minimum sample size calculated as minimum data points required divided by two because 
each participant provides two data points.	

	



Examples from published literature 
	

	

	

This	approach	to	energy	and	carbohydrate	calculations	can	be	‘stress-tested’	using	
previously	published	research	which	has	measured	muscle	glycogen	and/or	other	
contributors	to	energy	expenditure.	

Assumptions 
• To	convert	from	kcal	to	grams	of	carbohydrate,	consideration	of	the	carbohydrate	

source	is	necessary,	because	the	energy	yield	is	3.719	kcal	per	gram	from	glucose	
and	4.187	kcal	per	gram	from	glycogen	(Livesey	and	Elia	1988).	

• Glycogen	was	converted	from	dry	weight	to	wet	weight	using	the	conversion	factor	
(0.23)	of	Areta	and	Hopkins	(2018),	and	to	grams	of	carbohydrate	assuming	45%	
muscle	mass	and	25%	active	muscle	mass	(Medbo	and	Tabata	1993).	A	molecular	
weight	of	glycogen	of	162	was	used	in	the	conversion	(Schaubroeck	2022).	
Conversion	steps	are	shown	as	follows:	
1) Glycogen	(mmol/kg	wet	weight)	=	Glycogen	(mmol/kg	wet	weight)	*	0.23	
2) Activated	muscle	mass	=	body	mass	(kg)	*	0.45	*	0.25	
3) Glycogen	(mmol)	=	mmol/kg	wet	weight	*	Activated	muscle	mass	(kg)	
4) Glycogen	(g)	=	Glycogen	(mmol)	*	(162	/	1000)	

	

Romijn	et	al	(1993)	used	stable	isotope	tracers	and	indirect	calorimetry	were	to	evaluate	
the	regulation	of	endogenous	fat	and	glucose	metabolism	in	relation	to	exercise	intensity	
and	duration.	

Extracting	Fig.	8	allows	us	to	use	these	values	in	calculating	estimated	energy	expenditure.	



	

	

30-min at 85% VO2max 

Using	data	from	Romijn	et	al	(1993)	we	can	estimate	as	follows	based	on	the	30	min	
session	at	85%	VO2max.	

Source	 Cal Kg Min	 Body Weight	 Kcal Min	 Session Duration	 Session Kcal	
Plasma Glucose	 36.7	 75.2	 2.76	 30	 82.8	
Plasma FFA	 43.0	 75.2	 3.23	 30	 96.9	
Muscle Triglycerides	 39.3	 75.2	 2.96	 30	 88.8	
Muscle Glycogen	 176.0	 75.2	 13.24	 30	 397.2	

	

Summing	everything	together	gives	an	estimate	of	666	total	kcal,	and	summing	together	
the	contributions	from	glucose	and	glycogen	after	dividing	by	the	appropriate	yields	of	
kcal/g	from	glucose	(3.719)	and	glycogen	(4.187),	gives	117	g	carbohydrate.	

	



We	can	also	estimate	the	session	expenditure	using	the	summed	aerobic	(VO2)	+	anaerobic	
(lactate)	systems	approach,	assuming	3.77	mmol	lactate	accumulation	during	the	30	min	of	
cycling	(reported	at	85%	VO2max	in	Romijn	1992),	and	an	average	RER	value	of	0.91.	

romijn_delta_lactate <-  4.55- 0.78 # based on Romijn 1992 at 85% VO2max	
	
romij_vo2_calc <- tibble(	
    vo2_max = vo2max_romijn, # 5.04 L, reported in paper	
    pct_max = .85,  # reported in paper	
    vo2 = pct_max * vo2_max, # get absolute VO2	
    rer = .91  # reported in paper 	
  ) %>%	
  	
  # get RER-adjusted VO2-kcal conversions from Elia and Livesey 1992	
    left_join(kj_lookup_tbl, by = "rer") %>%  	
    	
  # calculate kcal and carb for 1 minute	
  mutate(	
    kcal_from_vo2 = vo2 * kcal_L ,  	
    kcal_from_carb = pct_carb/100 * kcal_from_vo2,	
    pct_from_glucose = 1- pct_max,  # intensity-adjusted	
    yield_from_glucose = pct_from_glucose * glucose_yield, #glucose yields 
3.719 kcal/g	
    yield_from_glycogen = pct_max * glycogen_yield,  #glycogen yields 4.187 
kcal/g	
    glucose_glycogen_yield = yield_from_glucose + yield_from_glycogen,	
    carb_ox_g_min = kcal_from_carb/glucose_glycogen_yield	
  )	

	

These	calculations	are	reflected	below:	



	 Value	
vo2_max	 5.04	
pct_max	 0.85	
vo2	 4.28	
rer	 0.91	
kJ_L	 20.65	
kcal_L	 4.94	
pct_carb	 70.53	
kcal_from_vo2	 21.14	
kcal_from_carb	 14.91	
pct_from_glucose	 0.15	
yield_from_glucose	 0.56	
yield_from_glycogen	 3.56	
glucose_glycogen_yield	 4.12	
carb_ox_g_min	 3.62	

	

Multiplying	the	per-minute	values	by	30	and	adding	the	anaerobic	component:	

romij_vo2_lactate_calc <- romij_vo2_calc %>% 	
  #multiply by 30 for 30 min session	
  summarise(	
    aerobic_carb_g = carb_ox_g_min * 30, 	
    aerobic_kcal = kcal_from_vo2 * 30	
  ) %>% 	
  # calculate anaerobic energy expenditure using net lactate accumulation 
method	
  mutate(	
    ml_o2_lactate = romijn_delta_lactate * 3 * bw_romijn,	
    lactate_kj = ml_o2_lactate/1000 * 21.1,	
     # kJ to kcal to grams * 11.845 to account for anaerobic inefficiency	
    carb_from_lacate_g = lactate_kj/4.184/4.187  * 11.845,  #	
    total_carb_g = round(carb_from_lacate_g + aerobic_carb_g,0),	
    total_kcal = round(aerobic_kcal + (carb_from_lacate_g * 
glycogen_yield),0),	
    estimate = "Romijn VO2-lactate calculation",	
  ) 	

	

	

	

The	above	calculations	result	in	the	following	values:	

	



## # A tibble: 1 × 4	
##   `Aerobic CHO (g)` `CHO (g) from lactate` `Aerobic kcal` `Total kcal`	
##               <dbl>                  <dbl>          <dbl>        <dbl>	
## 1               109                     12            634          685	

	

When	compared	together	they	display	good	agreement.		

Estimate	 Total kcal	 Total CHO (g)	
Romijn additive calculation	 666	 117	
Romijn VO2-lactate calculation	 685	 121	

	

Wingate tests 

We	also	calculated	kcal	and	carbohydrate	use	from	a	study	reporting	muscle	glycogen	
reductions	during	a	single	30-s	Wingate	sprint	(Esbjornsson-Liljedahl	et	al	1999),	which	
also	reported	data	for	males	and	females	separately.	

We	extracted	VO2	data	from	a	separate	study	(Beneke	et	al	2002),	adjusting	for	VO2max	to	
match	each	group	

To	estimate	contributions	from	plasma	glucose	and	muscle	triglycerides	we	adapted	the	
numbers	from	Romijn	1993,	and	used	each	group’s	reported	values	of	muscle	glycogen	
breakdown.	Considering	both	the	intensity	and	short	duration,	FFA	contribution	was	
deemed	negligible.	



	

	

This	study	also	reported	fiber-type	specific	glycogen	reduction,	which	was	then	adjusted	
based	on	relative	area	of	fiber	types	reported	in	Table	1	of	the	paper.	We	assumed	for	
average	RER	value	of	1.0	during	the	3.5	min	window.	

esbj_session_duration <- 3.5	
wingate_glucose_cal_kg_min <- 36.7	
wingate_tg_cal_kg_min <- 39.3	
wingate_avg_rer <- 1	
beneke_vo2max <- 4.22	
	
Esbj_additive_calcs <- tibble(	
  sex = c("m", "f"),	
  mass = c(75, 65),	
  session_duration = esbj_session_duration, 	
  fat_cal_min = wingate_tg_cal_kg_min,  	
  fat_kcal = fat_cal_min * mass * session_duration/1000,	
  glucose_cal_min =  wingate_glucose_cal_kg_min,  	
  glucose_kcal = glucose_cal_min * mass * session_duration/1000,	
  glucose_g = glucose_kcal/ glucose_yield,	
  quad_mass = mass * .45 * .25,	
  type1pct = c(56, 66)/100,	
  type2pct = 1-type1pct,	
  glycogen_delta_type1 = c((452-326), 428-355),	
  glycogen_delta_type2 = c((526-395), (542-393)),	
  weighted_glycogen_delta_dm = (glycogen_delta_type1 * type1pct + 
glycogen_delta_type2 * type2pct),	



  weighted_glycogen_delta_wm = weighted_glycogen_delta_dm * .23,	
  glycogen_g = convert_glycogen_to_grams(weighted_glycogen_delta_wm, 
quad_mass),	
  glycogen_kcal = glycogen_g * glycogen_yield,	
  total_kcal = fat_kcal + glucose_kcal + glycogen_kcal,	
  total_carb_g = glycogen_g + glucose_g,	
  estimate = c("Esbjornsson additive calculation - males", "Esbjornsson 
additive calculation - females"),	
) 	

These	calculations	result	in	the	following	values:	

Calculation	 M	 F	
mass	 75.00	 65.00	
session_duration	 3.50	 3.50	
fat_cal_min	 39.30	 39.30	
fat_kcal	 10.32	 8.94	
glucose_cal_min	 36.70	 36.70	
glucose_kcal	 9.63	 8.35	
glucose_g	 2.59	 2.25	
quad_mass	 8.44	 7.31	
type1pct	 0.56	 0.66	
type2pct	 0.44	 0.34	
glycogen_delta_type1	 126.00	 73.00	
glycogen_delta_type2	 131.00	 149.00	
weighted_glycogen_delta_dm	 128.20	 98.84	
weighted_glycogen_delta_wm	 29.49	 22.73	
glycogen_g	 40.30	 26.93	
glycogen_kcal	 168.75	 112.76	
total_kcal	 188.70	 130.05	
total_carb_g	 42.89	 29.18	

	

Esbj_lactate_calcs <- tibble(	
  sex = c("m", "f"),	
  mass = c(75, 65),	
  lactate_delta = c(11.8- 1.46, 9.35-1.35),	
  ml_o2_lactate = 3 * lactate_delta * mass,	
  lactate_kj = ml_o2_lactate/1000 * 21.1,	
  carb_from_lacate_g = round(lactate_kj/4.184/4.187  * 11.845,1)	
) 	
	
Esbj_lactate_calcs 	

## # A tibble: 2 × 6	
##   sex    mass lactate_delta ml_o2_lactate lactate_kj carb_from_lacate_g	



##   <chr> <dbl>         <dbl>         <dbl>      <dbl>              <dbl>	
## 1 m        75          10.3         2326.       49.1               33.2	
## 2 f        65           8           1560        32.9               22.3	

# Adjust VO2 values for each group's VO2max	
Esbj_vo2max_tbl <- tibble(	
  sex = c("m", "f"),	
  mass = c(75, 65),	
  est_vo2max = c(55, 45),	
  vo2max_l = est_vo2max * mass/ 1000,	
  adjustment_factor_from_beneke = vo2max_l/ beneke_vo2max  # adjust for 
group-specific VO2max values	
)	
	
	
vo2_calcs_tbl <- wingate_df %>% 	
  interpolate() %>% 	
  mutate(	
    m = vo2 * Esbj_vo2max_tbl$adjustment_factor_from_beneke[1],	
    f = vo2 * Esbj_vo2max_tbl$adjustment_factor_from_beneke[2],	
    rer = wingate_avg_rer	
  ) %>% select(-vo2) %>% 	
  	
  pivot_longer(m:f, names_to = "sex", values_to = "vo2") %>% 	
  nest(.by = sex) %>% 	
  left_join(Esbj_vo2max_tbl %>% select(sex, vo2max_l), by = "sex") %>% 	
  unnest(data) %>% 	
  mutate(pct_max = vo2/vo2max_l) %>% 	
  nest(.by = sex) %>% 	
  mutate(	
    # apply second-by-second aerobic energy calculations function 	
    totals = map(data, calculate_carb_kcal_fn)	
  ) %>% unnest(totals) %>% select(-data)  %>% 	
  left_join(Esbj_lactate_calcs, by = "sex") %>% 	
  mutate(	
    estimate = c("Esbjornsson VO2-lactate calculation - males", "Esbjornsson 
VO2-lactate calculation - females"),	
    total_kcal = aerobic_kcal + carb_from_lacate_g * glycogen_yield,	
    total_carb_g = aerobic_carb_g + carb_from_lacate_g, .keep = "unused"	
  ) %>% select(estimate, total_kcal, total_carb_g)	

Good	agreement	is	seen	for	both	males	and	females	



Estimate	 Total kcal	 Total CHO (g)	
Esbjornsson additive calculation - males	 189	 43	
Esbjornsson VO2-lactate calculation - males	 169	 41	
Estimate	 Total kcal	 Total CHO (g)	
Esbjornsson additive calculation - females	 130	 29	
Esbjornsson VO2-lactate calculation - females	 115	 28	

	



Converting TSS to sRPE-TL 
	

For	people	wishing	to	use	the	carbohydrate	models	who	don’t	have	access	to	prior-day	
sRPE-TL	data,	prior-day	TSS	could	be	substituted	by	using	a	conversion	to	estimated	sRPE-
TL	(albeit	with	some	acknowledged	trade-offs	in	terms	of	accuracy).	

	

Using	data	combined	from	the	primary	and	validation	studies,	there	is	a	strong	correlation	
(r	=	0.86)	between	TSS	and	sRPE-TL.	Therefore,	a	regression	line	can	be	estimated	and	
used	to	convert	prior	day	TSS	to	a	value	of	sRPE-TL	which	can	then	be	used	in	the	
prediction	models.	

	

tss_convert1 <- lmer(sRPE_TL ~ TSS + (1 | subject_id), mod_refit_tbl)	
	
tss_convert1	

## Linear mixed model fit by REML ['lmerModLmerTest']	
## Formula: sRPE_TL ~ TSS + (1 | subject_id)	
##    Data: mod_refit_tbl	
## REML criterion at convergence: 1973.78	
## Random effects:	
##  Groups     Name        Std.Dev.	
##  subject_id (Intercept) 41.56   	
##  Residual               75.91   	
## Number of obs: 169, groups:  subject_id, 70	
## Fixed Effects:	
## (Intercept)          TSS  	
##     -65.389        5.177	



	

	

So	for	example	if	you	have	a	TSS	of	100,	use	the	equatoion	-65.4	+	(TSS	*	5.18)	to	estimate	a	
value	of	453.	


