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Abstract

Jump height (JH) achieved in a countermovement jump (CMJ) has been suggested
to allow for the monitoring of neuromuscular fatigue (NMF) and assessment
of lower body power. Although force platforms (FP) are considered the gold
standard for measuring CMJ] height, they are expensive compared to mobile
apps such as My Jump Lab (MJL). Therefore, this study aimed to assess the
concurrent validity and agreement of the MJL app compared to a FP (ForceDecks
[FD]) system and to determine its test-rest reliability. A convenience sample
of 26 (n = 11 females and n = 15 males) recreationally active university sport
students and staff (mean = SD; age: 23.08 £ 6.33 years; mass: 72.85 +
9.93 kg; stature: 176.63 £ 10.18 cm) participated in the study. Participants
attended the laboratory for testing on two separate occasions, separated by
one week. After a standardised warm-up, they completed three CMJ]s on each
occasion, with CMJ] height simultaneously assessed by the FD and MIL app.
The MIL Artificial Intelligence mode showed a mean bias of 4.32 cm [95% CI:
3.4, 5.26] overestimation with 95% limits of agreement ranging from -3.33 cm
[95% CI: -4.96, -0.85] to 11.98 cm [95% CI: 10.13, 13.41]. Both methods
demonstrated minimal mean bias (FD = 0.61 cm [95% CI: -0.31, 1.37] and MIL
= 0.25 cm [95% CI = -0.48, 0.98]) between sessions, and both showed a similar
width to their limits of agreement, ranging ~7 cm about the mean bias. In
summary, the MLJ overestimated CMJ height in this sample compared to the FD
system, but both methods were reliable. Given the significant differences in cost
for these two methods, teams on a budget may interested in trialling the MIL app.

All authors have read and approved this version of the manuscript.
The manuscript was last updated on July 15, 2024


https://sportrxiv.org
https://orcid.org/0000-0002-7605-4289
https://orcid.org/0009-0005-8964-9811
https://orcid.org/0000-0002-8003-0757
mailto:lee.bridgeman@solent.ac.uk
https://osf.io/z9q2k/

Lee Bridgeman et al. (2024)

Keywords: Countermovement Jump; Force Decks;, My Jump; Impulse-
momentum

Introduction

The jump height (JH) achieved in a countermovement jump (CMJ) has previously been sug-
gested to allow for the monitoring of neuromuscular fatigue (NMF) (Bishop, Turner, et al.,
2022; Claudino et al., 2017; Hughes et al., 2019) and assessment of lower body power (Mc-
Master et al., 2014; Nuzzo et al., 2008). As a result, this test is often utilised in laboratory and
field-based testing. While several methods are available to assess CMJ] height, force platforms
(FP) are typically seen as the gold-standard measure (Balsalobre-Fernandez et al., 2015) as
they can capture both kinematic and kinetic variables. In particular, it has been proposed that
dual FPs utilising the impulse-momentum (IM) relationship to assess CMJ height are desirable
(Heredia-Jimenez & Orantes-Gonzalez, 2020; Xu et al., 2023). However, these systems come
with a price tag (~£10,000+) that may be beyond the means of some teams and, therefore,
is prohibitive. The proliferation of smartphone devices, which most coaches possess, now
means they can access more affordable and easy-to-use solutions for assessing CMJ perfor-
mance (Balsalobre-Fernandez et al., 2015) through app-based solutions. One such app is My
Jump Lab (MIL), available on Android and Apple devices via a subscription-based model (1
month =£4.99, 1 year = £34.99, Lifetime = £99.99 - prices correct at time of writing). A
meta-analysis which investigated the validity of the app reported a correlation using a fixed
effect model of 0.994 (95% CI = 0.992 - 0.995, p < 0.001) and 0.992 (95% CI = 0.998 -
0.995, p < 0.001) when using a random effect model to compare jump performance with the
criterion method (FP) (Gengoglu et al., 2023). When examining the app’s reliability for the
CMJ using a fixed effects model, an ICC of 0.969 (95% CI = 0.965 - 0.972, p < 0.001) was
reported and 0.982 (95% CI = 0.961 - 0.992, p < 0.001) when using a random effect model
(Gencoglu et al., 2023). The authors concluded that the MIL app was valid and reliable for
assessing jump performance (Gengoglu et al., 2023).

One issue with previous iterations of the MIL app was that it required practitioners to manually
identify an athlete’s take-off and touch-down from frame-by-frame video once the jumps had
been completed. While this may not be an issue when working with individual athletes, it
is suggested that when working with squads of 20-plus athletes, this may become a labour-
intensive process for time-poor support staff (Sentirk et al., 2024). A newer version of the
app has been launched to alleviate these issues. This app now allows real-time jump height
(JH) measurement without post-processing (Balsalobre-Fernandez et al., 2015). At present,
two studies have investigated the reliability and validity of this app (Balsalobre-Fernandez
et al., 2015; Sentirk et al., 2024). In the 1st proof of concept study (single participant),
Balsalobre-Fernandez (2015) completed 400 jumps over 24 consecutive weeks, recording JH
simultaneously on a FP (Hawkins Dynamics) and the MIL app. They reported a very high
correlation (r = 0.971, 95% CI = 0.963 - 0.975) and large agreement (ICC 0.969, 95 CI
= 0.963 - 0.975) between the measures. Initially, though, large differences were reported
between the instruments (mean absolute difference = 0.06 £ 0.01 m, d = 4.4, p < 0.001).
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However, after applying a regression equation to correct the app’s raw data, non-significant,
trivial differences were reported (mean absolute difference = 0.01 £ 0.008 m, d = 0.1, p
= 1.000) between the devices. In a further study, Senturk ndefinedet al. (2024) compared
the CMJ height recorded simultaneously by the MIL app and a FP (Vald - Force Decks) in 36
recreationally active participants. They reported a nearly perfect correlation (r = 0.968, p =
0.001) between the devices and very good agreement (mean difference = -1.016 cm, 95%
CI = -1.229 - -0.803 cm) (Senturk et al., 2024). This study also reported high intra-session
reliability for the app (SEM = 0.43 cm; CV = 1.23%). These findings led the authors to
conclude that the app was reliable and valid for measuring CMJ height.

However, it should be noted that in this study, all the participants were male and completed five
jumps with a two-minute rest period between jumps (Sentirk et al., 2024). The authors sug-
gest that this is different from what actually happens in a team sport environment, where there
are often many athletes to test in a short period, and a 30-second rest period, as employed in
this study, is more appropriate. Previous research has also noted concerns about replication
in sport and exercise science; thus, further research using similar procedures to see whether
the previous results are replicated is considered valuable (Mesquida et al., 2022). Therefore,
this study aimed to assess the concurrent validity and agreement of the MJIL application for
CMJ height compared to the ForceDecks system and its test-rest reliability.

Method

Experimental Approach to the Study

This cross-sectional study aimed to investigate the validity of the MJL application for measuring
JH compared to the gold-standard method (jump height measured by the impulse-momentum
calculation using a FP). The secondary aim was to investigate each piece of equipment’s relia-
bility. A convenient sample of recreationally active participants with previous CMJ experience
was recruited for this study. Participants attended the laboratory for testing on two sepa-
rate occasions, separated by one week, and completed three CMJs on each occasion, with JH
simultaneously assessed by both the FP and MJL.

Participants

A convenience sample of 26 (n = 11 females and n = 15 males) recreationally active univer-
sity sport students and staff (mean + SD; age: 23.08 £ 6.33 years; mass: 72.85 £ 9.93 kg;
stature: 176.63 £ 10.18 cm) participated in the study. Before commencing testing, all partic-
ipants were fully informed about the procedures, possible risks, and purpose of the study. All
participants also completed a PAR-Q form and provided written informed consent. The Solent
University Ethics Committee approved this study.
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Procedures

Participants were asked to refrain from lower body exercise 24 hours before each testing ses-
sion and not to drink caffeine for two hours before testing. All testing took place at the same
time of the day for all participants (£ 1 hour) during both testing sessions. When the partici-
pants arrived at the laboratory, mass (Seca 875, Seca, Hamburg, Germany) and stature (Seca
portable stadiometer, Seca, Hamburg, Germany) were recorded. The participant’s stature
(cm) was recorded with shoes on to ensure measurement accuracy as they completed the
jumps with shoes on as the app developer recommended. Before completing the jumps, each
participant did a warm-up consisting of five minutes of cycling (Wattbike Pro, Wattbike, UK) at
100 W (80 - 90 rpm) followed by five bodyweight squats and three CMJs (30 seconds between
jumps). Upon completion of the warm-up, the participants rested for three minutes before
completing three CMJ trials (30 seconds between trials). All CMJ trials took place using the
FDLite force plates (ForceDecks [FD], Vald, Brisbane, Australia) sampling at 1000 Hz. These FP
have been reported to have high reliability (ICC =0.93) when using the IM method to calculate
CMJ height (Merrigan et al., 2024). A study by Collings et al. (2024) also reported a 5% rel-
ative difference between FD and an embedded laboratory FP system and excellent test-retest
reliability (ICC = 0.97 [0.92 - 0.99]) for JH. Before jumping, the FD were zeroed, and then the
participants were weighed on the FD. After a period of quiet standing (~2 seconds), the partic-
ipants squatted to a self-selected depth with their hands placed akimbo and were instructed to
jump as high as possible for each of the three jumps. Jump height (cm) calculated by the IM
relationship was the FD variable of interest during these trials. Simultaneously, a tripod with
an iPhone 15 Pro Max (Apple, California, USA) was set up two metres away from the FD and at
a height of one metre (to keep the participants in the bounding boxes created at a rate of 60
Hz) to record these jumps (consistent across all trials). These were recorded at 240 frames
per second (FPS) using the MIL app (v.4.2.8, 2024) with the artificial intelligence (AI) setting
activated, which uses computer vision techniques to detect the participant’s movement in each
frame of the live video (Balsalobre-Fernandez et al., 2015). This allows JH to be measured in
real time.

Statistical Analysis

The present analysis was not pre-registered as we had no a priori hypotheses and, given
the limited sample size due to resource constraints, was considered exploratory. Inferential
statistics were treated as highly unstable local descriptions of the relations between model as-
sumptions and data in order to acknowledge the inherent uncertainty in drawing generalised
inferences from single and small samples (Amrhein et al., 2019). For all analyses we opted
to take an estimation-based approach typical when examining validity and reliability. That is,
we provide point estimates and the uncertainty in them for the statistical parameters reported.
Two sets of models were employed exploring the JHs recorded from CMJ trials; one to exam-
ine the agreement between the two methods, and one to explore the test-retest reliability for
each method. Given we had nested data whereby each participant provided three trials for
each method on two separate testing sessions we adopted a mixed effects limits of agreement
approach (Parker et al., 2020). This allowed us to estimate mean bias for each method com-
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pared with the gold-standard for agreement utilising both first and second session data, and
any test retest bias for reliability, in addition to to upper and lower limits of agreement provid-
ing 95% coverage probabilities for both agreement and test-retest reliability. Models were fit
using the 1me4 package and using Restricted Maximum Likelihood Estimation. For each of the
models fit we used nonparametric case based bootstrapping resampling 10000 times at the
individual participant level and refitting models in order to construct 95% quantile intervals for
both the mean bias and limits of agreement estimates. Bootstrapping was performed using
the 1meresampler package.

Agreement

For estimation of bias and limits of agreement regarding the agreement between the gold-
standard Force-Decks and impulse momentum method with the My Jump Lab Artificial Intelli-
gence mode we utilised the following mixed effects model structure:

Digp=p+o;+7, + €4y
a;, ~ N(0,02)
s ~ N(0,0%)
€ist ™ N(Ov 0'3)

Where D, is the difference between measurements taken between the two methods (i.e.,
Yisto — Yist1)r Where the method indexed by 1 is the gold-standard and method indexed by 2
is the comparison method, for participant ¢ during session s and for trial . Here p is the overall
mean of the between method differences (i.e., the mean bias), «; is the random effect for the
ith participant,, is the random effect for the sth session which is nested within participant,
and ¢, is the error term. The 95% limits of agreement can then be calculated as:

p+1.964/02 + 02 + o2

with the square root of the total variance providing an estimate of the standard deviation of
the differences for use in the conventional Bland-Altman limits of agreement calculation. A
model was fit for each method in comparison o the gold-standard.

Reliability

For estimation of bias and limits of agreement regarding the test-retest reliability between
each test session for each method we utilised the following mixed effects model structure:

Dy = p* + af + €
ai ~ N(0,02.)
€5 ~ N(0,02)
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Where D, is the difference between measurements taken between the two sessions for a
given method (i.e., Y;;9 — ¥;+1), Where the session indexed by 1 is the first test session and
the session indexed by 2 is the second test session, for participant ¢ and for trial ¢ (note we
use the superscript * to distinguish this from the agreement model. Here p* is the overall
mean of the between session differences (i.e., the mean bias), ;] is the random effect for the
ith participant, and €, is the error term. The 95% limits of agreement can then be calculated

as:
p* +1.964/02. + o2

with the square root of the total variance providing an estimate of the standard deviation of
the differences for use in the conventional Bland-Altman limits of agreement calculation. A
model was fit for each method in order to examine its test-retest reliability.

Open data, code, and materials

All data and code is presented in the supplementary materials (https://osf.io/z9q2k/). The renv
package was used for package version reproducibility and a function based analysis pipeline
using the targets package was employed (the analysis pipeline can be viewed by downloading
the R Project and running the function targets: :tar_visnetwork()). We cite all packages used
in the analysis pipeline below using the grateful package (Rodriguez-Sanchez et al., 2023):

We used R version 4.3.3 (R Core Team, 2024) and the following R packages: glue v. 1.7.0
(Hester & Bryan, 2024), here v. 1.0.1 (here?), janitor v. 2.2.0 (janitor?), knitr v. 1.47 (Xie,
2014, 2015, 2024), Ime4 v. 1.1.35.4 (Bates et al., 2015), Imeresampler v. 0.2.4 (Loy et al.,
2024), patchwork v. 1.2.0 (Pedersen, 2024), quarto v. 1.4 (quarto?), renv v. 1.0.5 (Ushey &
Wickham, 2023), rmarkdown v. 2.27 (Allaire et al., 2024; Xie et al., 2018, 2020), tarchetypes
v. 0.9.0 (Landau, 2021a), targets v. 1.7.1 (Landau, 2021b), tidyverse v. 2.0.0 (Wickham et
al., 2019).

Results

Table 1: Mean £ SD jump height (cm) for each piece of equipment in session 1 and 2

Session 1 Jump Height Session 2 Jump Height
Equipment (mean * SD) (mean * SD)
ForceDecks 29.68+7.03 cm 30.44+6.50 cm
My Jump Lab 34.13+£7.63 cm 34.70+6.73 cm

Table 1 shows the mean £ SD CMJ heights for each piece of equipment in both sessions.
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Agreement

The mean bias and limits of agreement along with their bootstrapped interval estimates can
be seen for the agreement between methods in Figure 1 along with the raw data. The My
Jump Lab Artificial Intelligence mode showed a mean bias of 4.32 cm [95% CI: 3.4, 5.26]
overestimation with 95% limits of agreement ranging from -3.33 cm [95% CI: -4.96, -0.85]
to 11.98 cm [95% CI: 10.13, 13.41].

Agreement Between Methods
Mixed Effects Model Mean Bias and 95% Limits of Agreement
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Figure 1: Mean bias (thick horizontal line) and 95% limits of agreement (dotted horizontal
lines) along with 95% quantile interval estimates for agreement of My Jump Lab Artificial Intel-
ligence mode in comparison to the gold-standard (Force Decks impulse-momentum method).

Reliability

The mean bias and limits of agreement along with their bootstrapped interval estimates can
be seen for the test-retest reliability of each method between sessions in Figure 2 along with
the raw data. Both methods demonstrated minimal mean bias between sessions each typically
less than 1 cm, and both demonstrated a similar width to their limits of agreement ranging ~7
cm about the mean bias.
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Test—Retest Reliability Across Methods
Mixed Effects Model Mean Bias and 95% Limits of Agreement
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Figure 2: Mean bias (thick horizontal line) and 95% limits of agreement (dotted horizontal
lines) along with 95% quantile interval estimates for each the test-retest reliability of method
between sessions.

Discussion

This study aimed to assess the concurrent validity and agreement of the MIL app for CMJ
height compared to the FD system and evaluate its test-rest reliability. The main finding was
that the MJIL app overestimated CMJ height compared to the FD system (Mean bias = 4.32 cm
[95% CI: 3.4, 5.26]). Concerning test-retest reliability, the bias for each device was found to
be minimal (FD = 0.61 cm [95% CI: -0.31, 1.37] and MJL = 0.25 cm [95% CI = -0.48, 0.98])
and both showed a similar width to their LoA.

The current study agrees with Senturk et al. (2024), who reported that the FD system pro-
duced lower JH than the MJL app (mean difference = -1.016 cm, 95% CI = -1.229 - -0.803
cm). However, it should be noted that the difference is larger in this study, with a mean bias of
4.32 cm in favour of the MIL app. Although the previous study (Senttlirk et al., 2024) utilised
the same equipment, direct comparisons are difficult as the authors did not report the method
used to calculate JH from the FD system. Thus, whether they utilised the IM method or flight
time to determine JH is unclear and may account for the difference.

Previous versions of the MIL app, which used manual identification of take-off and touch-
down to calculate JH, have been reported to be reliable (Balsalobre-Fernandez, 2024; Bishop,
Jarvis, et al., 2022; Gengoglu et al., 2023). However, as stated previously, manually calcu-
lating JH for every jump can be time-consuming and does not allow for real-time feedback
(Balsalobre-Fernandez et al., 2015; Sentlrk et al.,, 2024). In agreement with previous re-
search (Balsalobre-Fernandez et al., 2015; Senttrk et al.,, 2024) investigating the MIL app
using Al to detect JH, the current study found minimal bias between the two testing sessions.
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Therefore, it is suggested that the MIL app with AI activated can reliably measure JH.

While using a dual FP and the IM calculation to measure JH is considered the gold standard
(Heredia-Jimenez & Orantes-Gonzalez, 2020; Xu et al., 2023), a considerable cost is associ-
ated with purchasing such a system (~£10,000+), which may make it unfeasible for many
individuals and teams. Thus, an app-based system such as MJL may be attractive for its cost,
ease of use, and portability. The ability to give athletes real-time feedback as they jump is
also an attractive feature of the updated app. However, FPs can provide a wealth of kinetic and
kinematic data (Lombard et al., 2017) that is not possible using MJL, allowing practitioners to
assess both the outcomes and the strategies used to achieve them. This may be useful when
using the CMJ to assess NMF, as it has been suggested that athletes who are still not fully
recovered can mitigate reductions in JH by altering their jumping strategy (e.g. longer eccen-
tric duration) (Gathercole et al., 2015). Thus, if you only monitored JH, you may incorrectly
decide that the athlete is fully recovered, which could increase their injury risk. Therefore,
when considering which system to purchase, ease of use, cost implications, and assessing
what metrics you need to monitor CMJ performance is necessary.

Limitations

The key limitation of this study was that we only used sports students and staff as participants.
Therefore, the results may not be as applicable to elite athletes who, in general, will jump
higher. However, this study did include female participants, which previous research had not
done. More research is required on male and female elite athletes.

Conclusion

In conclusion, the MIL overestimated CMJ height in this study compared to the FD system.
However, the app’s test-retest reliability was found to be good. Given the relatively cheap cost
of the app in comparison to FP systems, teams with smaller budgets may wish to investigate
the MIL app if JH is the primary outcome of interest.
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