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Introduction  
 

Sport and exercise scientists spend enormous efforts measuring performance, biochemical 

components and physiological processes as accurately as they can. A lot of time is spent 

calibrating the measurement tools used and reducing measurement error in the 

measurements taken. After investing so much effort collecting this data to inform key 

decisions, it is important not to throw away all this effort by misunderstanding or misapplying 

our decision-making tools. This chapter explores quantitative decision-making tools. We will 

look at topics such as: classical (frequentist) inference, probability, null-hypothesis 

significance testing, Bayesian inference, confidence intervals and credible intervals, effect 

size, causal effects and data visualisation. You may need to read some sections several 

times before they make sense, but it will be worth the effort in the end.  
 

What is inference and why do we need it?  
 
Inference is defined as “something that you can find out indirectly from what you already 
know”. You could re-phrase this as “educated guessing”. Why would we need to use 
“educated guessing” in science? The things we aim to measure in science are often not 
things we can directly observe; they are latent or hidden. For example, you might think that 
measuring average sprint time for an individual is easy. However, sprint time will vary from 
occasion to occasion even if we go to great effort to make sure conditions are the same. In 
such a situation we need inference to estimate the average sprint time. Inference helps us 
decide about whether what we are seeing is really happening or really there. The ‘educated’ 
part of ‘educated guessing’ comes from the way we carry inference out in science. 
Specifically, we don’t just voice our opinion based on what we think about the world, but we 
gather evidence and use a systematic approach to inference. We are ‘educated’ by this 
process before we infer that some phenomena is or is not happening. Part of that systematic 
approach is the use of statistics (data summaries) and probability theory, which will be 
explained later in this chapter. In summary, statistical inference is the process of using 
statistics and probability theory to help reduce our uncertainty about observations in the 
world and inform our decisions.  
 

Philosophies and views of probability  
 

The definition of statistical inference above incorporates the use of probability. So, what is 
probability? There are three commonly used philosophies or interpretations of probability. 
The oldest view on probability is classical probability. This view of probability was born from 
‘games of chance’ involving dice or cards. Classical probability is defined by dividing the 
number of outcomes we are interested in by the number of possible outcomes. For example, 
in the UK National Lottery there are 59 coloured balls in a rotating barrel. The balls are 
drawn at random from the barrel. For a given draw of the UK National Lottery classical 
probability would assign a 1/59 chance of any given ball being drawn from the barrel at one 
time. 
 
The second philosophy of probability is based on how often we observe an outcome over a 
long series of repeated observations. This philosophy of probability is called frequentism 
because it is based on frequencies of an outcome over many repetitions of an event. The UK 

https://www.oxfordlearnersdictionaries.com/definition/english/inference#:~:text=%2F%CB%88%C9%AAnf%C9%99r%C9%99ns%2F,make%20inferences%20from%20the%20data
https://www.oxfordlearnersdictionaries.com/definition/english/inference#:~:text=%2F%CB%88%C9%AAnf%C9%99r%C9%99ns%2F,make%20inferences%20from%20the%20data
https://en.wikipedia.org/wiki/Latent_and_observable_variables


National lottery publishes frequency data for draws in the lottery. The plot below shows the 
frequentist probability for each of the 59 balls in the lottery.  
 

Figure 1. Frequentist probabilities for each ball from the UK National Lottery. Data is from 
October 2015 to February 2023 and covers 769 draws. The highest and lowest frequency 
draws are highlighted. 
 
As you can see from Figure 1 even though we’ve ‘seen’ nearly 800 UK National Lottery 
draws since October 2015 there is still quite a lot of variability in the frequency with which 
each ball appears. Frequentism is the dominant probability philosophy underlying modern 
statistical inference. This means that the statistical procedures used to examine hypotheses 
are interpreted based on the frequentist philosophy of probability. We’ll discuss this further 
below when we discuss p-values.  
 
There are contexts where the frequentist interpretation of probability struggles. If we 
consider the probability of one-off events, then we have no ‘frequency’ frame of reference. 
For example, what is the frequentist interpretation of probability for life on Mars? We cannot 
observe repeats of the planet Mars because it is unique. So, when we talk about probability 
in a context like this, we mean something else and that something else is usually a 
subjective probability or degree of belief. This subjective interpretation is the third 
philosophical interpretation of probability. In this interpretation we consider probability as it 
relates to what we believe or as it relates to the plausibility of outcomes. We usually have 
some knowledge of the world and we can weigh up the probability of an outcome in the 

https://www.lottery.co.uk/lotto/statistics


world based on what we know and assign some subjective probability to that outcome. In the 
example of the UK National Lottery we might have a belief that some numbers are ‘lucky’ 
and so we would pick those numbers more often if we played the lottery. Data like that 
shown above for the number frequency in the lottery might change our minds. We might 
decide to always include 52 (the most frequent number) and never include 48 (the least 
frequent number) in our lottery picks. Unlike the frequentist interpretation, subjective 
probability has no problem with one-off events. We can assign a probability to life on Mars 
based on what we believe about Mars or based on some expert knowledge (e.g. the 
presence of water on Mars). The subjective interpretation of probability is now most 
associated with a branch of statistical inference called Bayesian statistics which we will 
describe in more detail below. 
 

Null-hypothesis significance testing (Fisher vs NP vs 

NHST)  
It is important to assess the evidence in data for real-world effects. This is especially true if 
we are going to make some decision based on conclusions from the data we have. The most 
common technique for making such assessments from data is called Null Hypothesis 
Significance testing (NHST). NHST gives us mechanisms for calculating the probability of 
data if we assume some hypothesis about the world is true. Usually, a null hypothesis is that 
things are not changing e.g., two means are the same; the difference between them is zero. 
As you might have guessed from the name in NHST we assume a null hypothesis is true 
and we use our data to ‘challenge’ the null hypothesis. Note that usually we actually do not 
believe the null hypothesis (otherwise we wouldn’t go to the bother of gathering data). 
Instead, we calculate the probability of the data if the null hypothesis is true and if that 
probability is low enough, we decide to ‘reject’ the null hypothesis (i.e., we decide the null 
hypothesis is not happening). If the probability evidence is not low enough, we ‘fail to reject’ 
the null hypothesis. There is some nuance here: failing to reject is not the same as 
accepting! You will read in many study reports that there is ‘no effect’ based on the results 
for NHST. But ‘no effect’ means we accept the null and NHST does not allow us to do that. 
We’ll discuss this in a moment when we examine how we carry out NHST. 
 
The NHST process is represented in Figure 2 below. We start at the right by collecting some 
data and deciding on null and alternative hypotheses. Then we create the sampling 
distribution assuming null is true & use a significance level to define critical values (these are 
explained later in the chapter). We calculate a test statistic and finally use that test statistic to 
calculate a p-value. We describe the process more fully below; it’s quite involved! Software 
does the work for us but it’s still useful to be aware of the general process.  
 

 
 

https://theconversation.com/why-7-is-the-luckiest-number-55960


Figure 2. The NHST procedure. From left to right we collect some data, develop null and 
alternative hypotheses, create a sampling distribution based on the null hypothesis and a 
frequentist interpretation of probability, create a test statistic and finally calculate a p-value 
using the test statistic and the null hypothesis sampling distribution. 
 

Setting hypotheses 

We’ll go through each stage of Figure 2 in the text below. Let’s start with an imaginary study. 
Suppose we carried out a study to examine the change in horizontal jump after some lower 
limb resistance training (e.g. back squat). We take 10 individuals and measure horizontal 
jump before and after 12 weeks of back squat training. We take the differences (after – 
before). Our first step is to decide null and alternative hypotheses. If back squat training has 
no effect, then there would be a difference of zero (on average) across the study. When we 
use NHST we examine whether our data supports this hypothesis that there is zero 
difference. The zero difference is our null hypothesis. The null hypothesis is sometimes 
written as H0: mean diff = 0. We also need an alternative hypothesis. One obvious 
alternative hypothesis would be that the mean difference is different from zero. We are 
making no claim for direction here even though we might suspect squat training will make 
legs stronger. This is called a two-sided hypothesis. The alternative hypothesis is often 
written as HA: mean diff ≠ 0. We could also have a one-sided hypothesis (e.g. HA: mean diff 
> 0), where the difference indicates squat training makes legs stronger or (e.g. HA: mean diff 
< 0) where the difference is suggesting squat training decreases leg strength. 
 

Deciding on a test statistic 

 
Next, we have to decide on a test statistic to use. You may have come across at least some 

of these before. Examples include the , F and the Chi squared (𝞆2) statistic. One way to 

think about test statistics is as signal to noise ratios. Test statistics quantify the amount of 

signal in your data compared to the amount of noise in your data. The usual test statistic for 

a difference in means (like our hypothetical study) is the t-statistic. The t statistic is 

calculated as: 

  

 
  
This might look somewhat impenetrable at first glance! The numerator is the difference 

between the mean in your data ( ) and the mean value from the null hypothesis ( ) which is 

usually zero. The numerator is therefore the amount of signal in your data. The denominator 

is the variability in your data expressed as the standard deviation ( ) divided by the square 

root of the number of subjects (or other experimental units) you have. This is effectively the 

‘noise’ in your data; how much the mean difference would be expected to ‘move around’ if 

you repeated your study. If the mean difference in broad jump across our resistance training 

intervention was 4.7cm with a standard deviation of 3.4 and we had 10 subjects our  statistic 

would be: 
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Deciding on error rates 

We also have to decide on a significance level (sometimes called the alpha (α) level). The 
significance level tells us how often, over a long run of repeated studies sampling from the 
same population, we would claim a difference when there was not in fact a difference. This is 
also called a type I error. It is important that the significance level is determined before our 
study and that we stick to what we have defined. Although you could pick any reasonably 
low level (e.g. 0.1, 0.07 etc) it is conventional to use a significance level of 0.05. There are 
also situations where a significance level lower than 0.05 is appropriate. Significance levels 
of greater than 0.05 are rare... but having said that remember that 0.05 is an arbitrary level. 
 
The significance level or α is not the only ‘long term’ consideration we have though. We 
could also be wrong by missing a difference when there is in fact a difference! This is called 
a type II error. We have to set an acceptable rate for this as well and this rate is usually 
represented by the Greek letter beta (β). It is conventional to set this type II error rate at 0.8 
(80%) or higher. The conclusions we can come to and the error we can make are shown in 
Table 1. 
 
Table 1. Decisions and errors that can be made from NHST. 
Truth NHST says do not reject H0 NHST says reject H0 

H0 Correct No error 😼 Type I error (rate = α) 😾 
H0 False Type II error (rate = β) 😾 No error 😼 

 
The decisions on the level of significance, the test statistic and the type I and type II error 

rates are all pre-study decisions. It is important that you stick to them as the data is collected 

and analysed! 

 

Calculating power 

If we’re carrying out NHST properly then we have one more pre-study calculation to make. 

That calculation relates to what is called statistical power. The ‘power’ of the test is defined 

as the probability of detecting an effect if there is a true effect present to detect. That 

definition also hides some nuance. The main question to consider is “What do we consider a 

‘true’ effect?” That is a subjective choice you have to make. You not only have to define the 

size of the effect (e.g. the mean difference you would consider a ‘true’ effect) but also the 

variation or noise in that ‘true’ effect you might expect to see. Power analysis is a field of its 

own and we won’t go into it further here. The calculations for statistical power involve:  

The proposed (usually minimal) effect size you want to detect 

The variation or standard deviation of that effect 

The type I error rate - α 

https://www.codecogs.com/eqnedit.php?latex=t%20%3D%20%5Cfrac%7B4.7%7D%7B1.075%7D#0
https://www.codecogs.com/eqnedit.php?latex=t%20%3D%204.37#0


The type II error rate - β 

The number of subjects or other experimental units in your study 

 

The formula for statistical power can be re-arranged to get any one of these from the others. 

The usual use of power analysis is to identify how many subjects you need in your study to 

detect a proposed effect with a proposed variability for a given α and β rate. The excellent 

G*Power software is an extremely useful graphical tool for calculating power for a range of 

different experimental designs. Like the other decisions we have made so far power is 

strictly a pre-study concept. You may have read about or be asked to calculate power for a 

study after you or someone else has completed it. Post-study power is not a proper use of 

power analysis. You can read more about the problems with post hoc power here. 

 

Calculate a p-value 

Once we have all of the above, we can actually collect data. Using α, β and the data we 

create a null sampling distribution (the central panel in Figure 2 above). The null sampling 

distribution is an assumed distribution of effects (e.g. mean jump differences) we would 

expect to see if we repeated our study many, many times sampling repeatedly from the 

same population and if the null hypothesis were true. This sampling distribution depends 

entirely on a frequentist interpretation of probability because it is based on repeating our 

study many, many times. Once we have defined the sampling distribution, we can define 

critical values for the test statistic. These are shown in blue in the central panel of Figure. 

The critical values are the values of the test statistic beyond which we would reject the null 

hypothesis. We use the data to calculate the value of the test statistic (e.g. a t-value). Finally, 

we use the test statistic and the null sampling distribution together to calculate a p-value. To 

do this we find the position on the x-axis of the null sampling distribution the test statistic sits 

at. We then calculate the area under the sampling distribution that lies beyond this point. 

This is the p-value and it is represented by the orange area in the rightmost distribution in 

Figure 2. If the p-value is below our chosen level of significance (e.g. less than 0.05) we 

declare our finding ‘statistically significant’ and reject the null hypothesis. 

 

In essence, the process we just described involves creating an assumed distribution of test 

statistic sizes we would expect to see if the null was true and then seeing how well that 

assumed distribution supports our data or data more extreme. Why data more extreme? 

Well, because the p-value is the area under the sampling distribution that lies at or beyond 

the value of the test statistic we are getting the probability for more extreme values of the 

test statistic as well. The orange area in the right-hand panel of figure 2 extends from our 

test statistic value outwards along the curve. 

 

What is a p-value?  

The procedure outlined above for NHST is widely taught, widely practised and often 
misunderstood. The p-value is prone to misinterpretations such as ‘the probability the null 
hypothesis is true’ or ‘the probability that the data result from chance alone’. 

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://daniellakens.blogspot.com/2014/12/observed-power-and-what-to-do-if-your.html


Misinterpretations like these are both widespread and deceptively easy to make; they 

sound right which is why they are so easy to believe. In this section we take some time to 
explain the p-value more thoroughly and point you to some resources that explain why these 
misinterpretations are misinterpretations.  
 
A p-value is simply a probability. Specifically, it is the probability of the data (or data more 
extreme) if the null hypothesis is true. In probability notation the p-value is written as: 
 

 
 
In plain language this means ‘the probability of the data (or more extreme data) given the 
null hypothesis is true’. The pipe symbol (|) means ‘given’. 
 

P-value misinterpretations 

As noted above a common misunderstanding of the p-value is that it tells you the probability 

of the null hypothesis; this is wrong. The p-value is a probability relating to data not a 

probability relating to the null (or any other) hypothesis. If you can remember that you will not 

misinterpret the p-value as the probability of a hypothesis.  

 

Following on from the above misinterpretation another common misunderstanding (widely 

stated unfortunately) is that the p-value tells you the probability that ‘chance’ alone is at 

work; this is also wrong. ‘Chance alone’ is a hypothesis (the null hypothesis) and we said 

above the p-value relates to your data not any hypothesis. So, a p-value cannot be the 

probability of ‘chance alone’.  

 

Misinterpretations of p-values are so widespread that in 2016 the American Statistical 

Association issued guidance for users and consumers of statistical inferences (Wasserstein 

and Lazar 2016). In particular the statement made six recommendations which are worth 

bearing in mind when you look at a p-value. These can be paraphrased as:  

 

The p-value summarises the incompatibility of the data with the hypothesis. 

The ‘hypothesis’ in question is usually the null hypothesis. Remember, the p-value does not 

tell you anything direct about the probability of the null (or any other) hypothesis. So what is 

meant by ‘the incompatibility of the data with the hypothesis’? You could rephrase the above 

recommendation as ‘if the p-value is low (< 0.05 usually) then your data looks weird if the 

null hypothesis is actually true’. That suggests that null is probably not true. 

P-values do not measure the probability that the hypothesis (usually the null hypothesis) is 

true or the probability that ‘random chance’ produced the data. The p-value is a ‘statement’ 

about the data in relation to a specified hypothesis.  

As noted above, if the p-value is low (< 0.05 usually) then your data look weird if the null 

hypothesis is true but remember you do not get a probability the null is true or false. The p-

value is the probability of the data not of the hypothesis. If you can remember that p-values 

are probabilities relating to data you’ll be much less prone to this misinterpretation. 

https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://www.codecogs.com/eqnedit.php?latex=p(data%7CH_0)#0


We should not use ‘bright line’ statistics (e.g. p < 0.05) alone as the basis for decisions or 

scientific conclusions.  

The p-value tells us about the ‘weirdness’ of our data if the null hypothesis is true. They do 

not tell us anything about how important a proposed effect might be in the real world or if an 

effect is real. The key distinction here is that statistical significance is not the same as 

‘matters in the real world’. Just because something is ‘statistically significant’ it does not 

mean it will have any important effect or is a reproducible effect. You have to decide yourself 

whether what you see is real. 

Proper inference requires full reporting and transparency. Do not cherry pick results to report 

or engage in other questionable research practices.  

Questionable research practices (QRPs) are practices that can occur when designing, 

conducting, analysing, and reporting results from studies. QRPs lead to biased results. 

QRPs include only publishing statistically significant findings. This is termed the ‘file drawer’ 

problem; non-significant results are rarely reported. The file drawer problem is exacerbated 

by p-hacking or manipulation of data (e.g. dropping points or testing only specific subsets) to 

achieve statistical significance. These clearly bias the scientific literature since all studies 

look like successes. There is also a problem with creating a hypothesis after carrying out 

statistical testing (termed HARKing or Hypothesising After the Results are Known). Proper 

statistical interpretation requires full transparency about what was done at each stage of the 

research process.  

The p-value (or statistical significance) does not measure the size of an effect or the 

importance of a result. Statistical significance is not real-life significance. 

A low p-value is not a measure of, for example, how big a difference there was in a study 

and as we noted above a p-value does not tell you anything about real world importance. 

A p-value alone does not provide good evidence regarding a model or hypothesis. The p-

value provides limited information about the null hypothesis (the only hypothesis usually 

tested). 

Although we may get a low p-value and decide to reject the null hypothesis that is not 

necessarily useful. It is often the case that the null hypothesis was likely not true anyway (a 

strawman hypothesis) and so there is limited value in ‘rejecting’ it. Similarly, our alternative 

hypothesis is often so vague as to be pretty much meaningless. What does it mean for an 

effect in the real world to say that it is ‘not equal to zero’? Not much really; it could be huge; 

it could be tiny. The interpretation of all results in science depends on human judgement. We 

have to look at the effect and make a judgement. There is very good guidance and advice on 

statistical misinterpretations in (Greenland et al. 2016). 

 

Why NHST has a ‘user interface’ problem? 

In software design user interface (UI) problems are issues or difficulties using software that 

can lead to a poor user experience. One of the reasons the results of NHST are so often 

misinterpreted is that NHST is actually a hybrid of two separate systems which have different 

interpretations of the p-value and indeed of how we should use statistical testing. These 

systems were developed in the 1920’s and 1930’s. They are Ronald Fisher’s significance 

testing approach and Jerzy Neyman and Egon Pearson’s hypothesis testing approach. The 

https://replicationindex.com/2015/01/24/qrps/
https://pubmed.ncbi.nlm.nih.gov/27209009/


conceptual differences in Fisher’s and the Neyman-Pearson approaches are summarised in 

the table below (adapted from Huberty, 1993).  

Whilst the technical aspects that differ between the two approaches are beyond our scope, 

we can see two differences immediately highlighted in Table 2. Firstly, Fisher only concerns 

himself with a null hypothesis (H0) whereas the Neyman-Pearson technique uses both null 

and alternative (H1) hypotheses. Secondly, Fisher has no concept of type I or type II error 

and therefore no concept of power. Each of the two techniques give rise to p-values but the 

exact meaning of those p-values is different depending on which procedure you use.  

In Fisher’s approach the p-value describes the compatibility of the data derived statistic with 

the null hypothesis. If the p-value is very low then you can say that if the null was true then 

your data look ‘weird’. In this case Fisher suggests you repeat your study. Fisher does not 

directly address the probability (or the frequency) that you have made a mistake; there is no 

formal (i.e., mathematical) concept of type I or type II error. Fisher’s approach is good for ad-

hoc research (i.e., a single study where you want some indication of whether the approach 

or idea is worth pursuing). An example in sport might be some new strength training regime. 

You might run a small study with some athletes to examine if the training programme 

increases strength enough to be worth it. If p < 0.05 and the change in strength was large 

enough you might consider repeating your study. 

 

Table 2. Differences between Fisher’s significance testing and NP hypothesis testing. 

Fisher’s test of significance NP null hypothesis test 

State H0 State H0 & H1 

Specify a test statistic & a distribution for 
the test statistic based on H0 

Specify a test statistic & a distribution for 
the test statistic based on H0 

Collect data & calculate the value of the test 
statistic 

Specify type I error rate (α) & type II error 

rate (ꞵ) & calculate power for your study 
based on H0 and H1 

 Use α & ꞵ to determine a ‘rejection’ region 
for H0 

Determine the p-value Collect data & calculate the value of the test 
statistic 

Reject H0 if p is small; otherwise ‘fail to 
reject’ H0 

Reject H0 if p is small; otherwise ‘fail to 
reject’ H0 

 

In the Neyman-Pearson approach a p-value below the α level (assuming proper power 

analysis etc) means you can say that you would not make a type I error in more than 1-α 

(exact) repeats of the study. This concept of the frequency of errors means the Neyman-

Pearson approach is useful for repeated sampling research using the same population and 

tests. Continuing our strength training example after a successful trial, as discussed above, 

you could use the values from that trial to carry out proper power analysis with defined type I 

and type II errors and use the NP approach to design and analyse a second trial. If the p-

value from this was below your chosen α level (e.g., 0.05) that would give you some 

confidence that repeatedly applying the strength training technique on new athletes you are 

coaching would improve performance by some defined amount in e.g., 95% of trials using 

athletes (samples) from the same ‘population’.  

 

https://eric.ed.gov/?id=EJ475199


NHST combines the above approaches, but individuals may use a more or less Fisher or NP 

approach to NHST when they interpret their studies. For example, mistaking a p-value 

derived from Fisher’s approach, (your data looks weird if the null is true) with a p-value 

derived from the NP approach (you will see results like this or more extreme results with a 

frequency of 1-α if all your assumptions are correct and you sample from the same 

population) is easy under NHST because NHST does not discriminate between these two 

different p-values. In the end you have to be aware of the experimental design used and 

interpret the p-value accordingly. We’ll leave this part of the chapter with Figure 3 below 

which was posted to twitter by data scientist A. Jordan Nafa. 

 

This figure may seem rather pessimistic. NHST is useful but you should be aware of what an 

assessment of evidence by NHST means. Hopefully the text above has made that 

somewhat clearer. 

 

 
Figure 3. Conceptual image of NHST  
 

Bayesian inference  
Bayesian inference takes a different view of probability than the methods described so far. 

Probability is defined more closely to how most non-statisticians define it, as an expression 

of plausibility —the chance of something happening. In this sense, it is a mathematical 

expression of uncertainty and reflects our level of belief and expressed by any number 

between zero and one— or transforming this to a percentage between zero and 100% — 

which indicates how strongly we should believe something is true based on the information 

we have available. So, rather than probability being considered as something external to us, 

Bayesian conceptions of probability are seen as personal or subjective in the sense they 

depend on the available knowledge an individual has. [ 

Let’s look at a simple example, we are intending to go for a hike in the countryside and want 

to decide on what to wear by deciding the probability of rain today. We can use some 

frequency evidence; it has not rained at all this week, nor has it rained on this date for at 



least the past three years. Using this frequency data, it would be reasonable to assign a low 

probability of it raining this afternoon. However, we can do better than just using these 

frequencies and use some other information too. Suppose we looked at the weather app on 

our phone — which was generally reliable — and it predicted no rain today, it would be 

reasonable to lower our probability of rain further (see Figure 4 below).  

  

Figure 4. Weather app.                                           Figure 5. Sky overhead 

  
However, if we had access to additional information our probability assignment may change. 

Suppose we looked outside and saw dark clouds overhead (see Figure 5). With this 

additional information we should reasonably raise our probability of rain. In addition to their 

subjective nature, these probabilities are also objective in the sense that they do not depend 

on the personality of the user or any personal hopes, fears, value judgments, or other 

feelings regarding the formulated propositions (Jaynes, 2003). 

While Bayesian probability differs from frequentist probability, it also offers similar 

opportunities for hypothesis testing and estimating specific values that you are interested in, 

known as parameters, it just does this distinctly different. Bayesian inference starts with 

some knowledge, belief or educated guesses about the probability of an event occurring or 

the probability of obtaining values for something we are investigating (prior probability). We 

then observe what happens (likelihood) and update our knowledge or initial guess based on 

what happens (posterior distribution).  

Let's examine a simplified example of how we update knowledge by using the probability of 

success for a football team. Given our initial knowledge about the team and how likely the 

team is to perform is highly uncertain, we assign equal probability to the team winning or 

losing — a uniform distribution (see Figure 6 below). 

 

https://bayes.wustl.edu/etj/prob/book.pdf


  

 Figure 6. Uniform prior to assign equal prior probability to all proportions of the team 

winning or losing. 

 

Each time the team plays and wins or loses, we update our knowledge until after 10 games 

we have a probability of success. In the example below, from complete uncertainty, we end 

up with a probability of 0.7 or a 70% chance of future success. 

 



Figure 7. Updating knowledge proportions of the team winning or losing following each 

game.  

 
Nonetheless, this probability may change again as new knowledge comes in (see Figure 7). 

You can get a sense of how updating knowledge works by trying out the following interactive 

app Bayesian updating. So, as our current state of knowledge — the posterior distribution— 

is a compromise between the prior distribution and the data, as evidence accumulates, the 

posterior distribution changes in the light of that evidence — the data.  

The Bayesian methods owe a great deal to the brilliant 18th-century French mathematician 

Pierre Simon Laplace. However, the method is named after an English clergyman, Reverend 

Thomas Bayes. An essay published after Bayes's death presented Bayes' solution to a 

problem of inverse probability — using past events to determine the probability of a future 

event, which formed the basis for Bayes' formula which we use in Bayesian data analysis 

(Bayes, 1763).  

 

Figure 8. Bayes Formula used in modern Bayesian data analysis 

 

In order to better understand Bayesian inference, let's examine all three components: the 

prior, likelihood, and posterior distribution. 

 

Prior knowledge 

We capture prior knowledge in the form of a probability distribution of different values and 

decide on the best distribution for these values. However, to keep things simple, we will 

consider a normal distribution. We might have considerable knowledge about a parameter 

we are interested in investigating and have a strongly informative prior, that includes specific 

knowledge such as the mean and standard deviation of likely values. However, we may 

have much less knowledge and use a weakly informative prior, which only contains partial 

https://tonydmyers.shinyapps.io/Bayesian_updating/
https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1763.0053?fbclid=IwAR1J7hCd54nKa6d3ULOo2yMA1j7vVuUtS3qguqUUhHNcAqOb8rufrjZijog


information, but which is enough to give the posterior distribution reasonable bounds. For 

example, we may know the bounds of 10 metre sprint times — slowest and fastest times — 

but not have any confidence in actual mean values.  

 

The likelihood 

The likelihood can be considered a way to measure how well certain values in a statistical 

model fit the data we have collected. Likelihood works by fixing the data and changing the 

hypotheses. Therefore, it does not provide the probability that a particular estimate is true, 

given the observed sample, but helps determine which combination of parameter values 

makes the most sense or best explains the data. Likelihood helps us do that by giving a 

score to each combination based on how well it fits the observed data. The higher the 

likelihood score, the better that a specific combination of parameter values matches the 

data.  

First, we collect and data which we considered fixed because it remains constant throughout 

the analysis. Next, we change the hypotheses by testing different values for the parameter 

we are interested in. We then calculate the likelihood scores for each of these parameter 

values to see how well each one fits our fixed data. The higher the likelihood score, the 

better that specific parameter value explains the data. Finally, we choose the parameter 

value with the highest likelihood score, as it provides the best estimate based on the data we 

have collected.  

The entire likelihood function lets us look at every possible hypothesis simultaneously, and 

this gives us the full picture of the evidence. For example, say we were interested in 

estimating basketball players' average height. We produce a statistical model with one 

parameter, which represents the average height. We collect height data from a sample of 

basketball teams. To find the most accurate estimate of the average height, we can calculate 

the likelihood scores for different parameter values (e.g., 190 cm, 198 cm, 201 cm etc.) and 

choose the one with the highest likelihood score. Say we find that 198 cm has the highest 

likelihood score, we conclude that 198 cm is the most reasonable estimate for the average 

height of basketball players. This is highest-scoring parameter value and so would be our 

best estimate of the average height of basketball players based on the data we have 

collected.  

 

The posterior distribution 

The posterior distribution is a probability distribution that reflects our updated knowledge 

about the parameter we are interested in after we have collected data and determined its 

likelihood. The posterior distribution has to be found numerically using either an estimation 

method or using Markov chain Monte Carlo (MCMC) using specialist software. Given this is 

a probability distribution, its total area is equal to 1, with its shape determined by the range of 

values — the more uncertain the estimates the wider the distribution. To try out an example 

of how the prior and data interact to produce a posterior distribution: Bayesian interactive 

app. 

 

https://tonydmyers.shinyapps.io/Prior_to_posterior/
https://tonydmyers.shinyapps.io/Prior_to_posterior/


Figure # shows an example for a posterior distribution of differences in sprint times between 

a control and intervention group. Notice that the values in the centre of the distribution are 

the more probable values and those in the tails of the distribution less probable (see Figure 

9). 

  

Figure 9. posterior distribution of differences in sprint times.  

 
To answer questions we are interested in, we usually summarise the posterior distribution 
using summary statistics (mean, median, standard deviation, quantiles) which we frequently 
support graphically using plots. In the example below, we can say the mean (and median) 
difference between groups is 2 seconds, with a 95% chance that the intervention results 
between 0.27 seconds and 4.19 second difference (see Figure 10).  

 



 

Figure 10. A 95% credible interval of the posterior distribution of differences in sprint times 

 

Bayesian parameter estimation 
 

Let’s look at an example of estimating the effect of sleep deprivation on power output from a 

15-minute self-paced time trial on a cycle ergometer, where the power output was 

dependent upon pedal rhythm. The power output was continuously monitored throughout the 

trials. Each trial's power output was averaged into segments of 60 seconds for pacing 

purposes, then expressed in terms of a percentage of a participant's average power — so 

any differences between conditions would be taken into account. The three sleep conditions 

were 1) a control condition with a complete night’s sleep, 2) a partial sleep deprivation 

condition where participants were able to sleep for 4 hours, and 3) a total sleep deprivation 

condition, where participants were awake the whole night.  

The study used a repeated measures experimental design, where participants were involved 

in all three conditions but had 7-days to recover between each condition. Bayesian models 

were fitted to the data to model differences between conditions. The models ranged from 

traditional linear models to multilevel models that capture the effects of individuals. Each 

model type included prior information, ranging from uniform priors which suggest complete 

uncertainty, to increasingly informative priors that capture what we knew about likely 

differences before the experiment. 

Table # below shows the estimates of the posterior distribution of the differences between 

sleep conditions. These suggest that if we are completely uncertain and use a uniform prior 

there is a 99% chance that total sleep deprivation had an effect on mean power output, with 

the most probable difference being 27.4 Watts but with a 95% chance that the population 

difference is between 9.06 Watt and 44.82 Watts. Incorporating our prior knowledge of what 

power output differences are possible, we get a slightly more conservative estimate (see 

Table 3 below).   



  
Table 3. Comparisons of the differences in mean power tests between conditions from 

models with flat and informative priors. 

 
Reporting the results of these models together allows a direct comparison of the impact of 

incorporating appropriate prior information into models. 

  

The posterior distributions can be plotted and compared visually using draws from the 

posterior distribution (see Figure 11). 

 

 
Figure 11. Estimates of average power (Watts) for sleep conditions 

  

Details of the full study can be found on Cullen et al., (2019).   

 

Bayesian hypothesis testing 
 

Like its frequentist counterpart, Bayesian hypothesis testing involves deciding whether to 

support a particular hypothesis or not. Rather than assuming the null hypothesis is true, 

https://www.tandfonline.com/doi/full/10.1080/02640414.2019.1662539


Bayesian hypothesis testing compares two models — the null model of no effect and the 

alternative model of an effect — and provides a continuous scale (Bayes Factors) for 

deciding how likely the patterns of data collected would be under each of these models. In 

statistical terms, a Bayes factor is the ratio of two competing statistical models as 

represented by their evidence — more formally the ratio of marginal probabilities — and 

indicates how many times more likely the data are under one model than the other. Let's 

look at the example of line calls in tennis to illustrate Bayes Factors and the weight of 

evidence. Hawk-eye is a technology used in tennis for determining if the ball is in or out, and 

if a player challenges a call this technology makes the final decision if the ball is in or out of 

the court. When a ball touches the line in tennis it is considered in, and this is what Hawk-

eye needs to determine. See the three examples of three different line calls and the Bayes 

Factor for each (Figure 12).  

 

Figure 12. Bayes Factors as evidence the data provides for the research and null hypotheses. 

 
Let’s look at an example to illustrate how Bayesian hypothesis testing works using simulated 
counter movement jump height data for four groups of players from four local football teams. 
Group one has a mean of 40 cm ± 7 cm, group two has a mean of 43 cm ± 5 and group 
three has a mean of 40 cm ± 7 cm and group four 41 cm ± 7 cm. This data was deliberately 
simulated to show a clear difference, no difference and a more uncertain at a population 
level. Using JASP software we use this data to conduct three Bayesian independent t-tests 
comparing group one with group two, group one with group three and group one with group 
four using the default priors. You can see the results in Figure 13.  
 
 

https://jasp-stats.org/


 
Figure 13. Bayes Factors for the three jump height comparisons 
 
The first comparison shows extreme evidence of a difference, with the data being 49000 
times more likely under the research hypothesis of a difference between groups than a null 
hypothesis of no difference in jump height between groups. The second comparison shows 
moderate evidence for the null hypothesis with the data being 9 times more likely under the 
null hypothesis of no difference, compared to a hypothesis of a difference. The final 
comparison shows high uncertainty with no real evidence for one particular hypothesis — a 
Bayes Factor of 1 means that both the null and the research hypothesis are equally likely.   
 
John Kruschke (2015) proposed an alternative method of hypothesis testing using the 
posterior distribution and credible intervals. This method uses a predetermined region of 
practical equivalence (ROPE) around zero that includes values that, for practical purposes, 
are assumed to be equivalent to zero (or the null hypothesis) in the context being 
investigated. The idea behind ROPE is to acknowledge that in most real-world scenarios the 
null often encompasses more than just a single value and includes a range of values. This 
region or ROPE is determined before analysis and include a range of values around the null 
value (often zero) that are considered practically equivalent to the null. This range is based 
on domain knowledge and the specific context of the study. By defining a ROPE around a 
null value, researchers can determine whether the credible intervals (or highest density 
intervals, HDI) of a parameter overlap with this region. If the credible intervals do overlap the 
ROPE, it suggests that the effect might not be practically important. 
 
To illustrate how this method compares with the Bayes Factor analysis, we can use the 
same simulated jump height data. By using this approach, we can only claim the research 
hypothesis of a difference to be true if the HDI falls completely outside of the ROPE. In the 
first comparison between group one and group two, this is clearly the case (see Figure 14). 

 

https://nyu-cdsc.github.io/learningr/assets/kruschke_bayesian_in_R.pdf


 
Figure 14. Differences fall completely outside the ROPE 

 
Conversely, if HDI falls completely within the ROPE, the null hypothesis is supported for all 
practical purposes. Like the Bayes Factor comparison, this is the case when comparing 
group one and group three (see Figure 15).  
 

 
Figure 15. Differences fall completely inside the ROPE 
 
When a HDI overlaps with a ROPE, the advice is to reserve judgement, and this is the case 
with our final comparison (see Figure 16). 



 
So, in summary, it is important to note that the ROPE is used to interpret the results at the 
parameter level, not at the level of individual data points or trials. The ROPE represents a 
set of parameter values that are considered practically equivalent to the null hypothesis. It is 
not about individual data points but about the range of values the parameter (e.g., mean 
difference between groups) can take. If the HDI of the posterior distribution falls entirely 
within the ROPE, it suggests that the observed effect is not practically different from the null 
hypothesis and that the parameter values supported by the data are all within the range that 
we consider practically negligible. 

 

 
Figure 16. Differences fall partly inside the ROPE 

Quantifying uncertainty - confidence intervals and credible 

intervals  
Quantitative methods use samples to draw conclusions about a larger group. A sample is a 

small group selected from a larger group that we are interested in — it represents the larger 

group in some way. We estimate population values from the sample. How accurate these 

estimates are, is dependent on the size and how well the sample represents the population 

of interest.  

Bayesian credible intervals and classical or frequentists confidence intervals both provide 

estimates that include a range of possible population estimates, but they are interpreted 

differently. Let's illustrate this with an example. Imagine that we are investigating the effect of 

a new training program on 20 metre sprint times for academy soccer players. We want to 

estimate the average improvement in sprint time after completing the training program. 

Initially, we would randomly assign soccer players to either a treatment or control group - the 

treatment group would receive the intervention, and the control group would not. Initially, we 

would need to establish baseline sprint times for each participant in both the treatment and 

control groups. Following the treatment group’s 6-week intervention programme, we had 



each group sprint three 20 metre sprints on an indoor 3G synthetic surface. Players would 

have 3 minutes of rest between sprint repetitions.  

 

 

 

Confidence intervals 

In frequentist or classical statistics, researchers compute p-values and confidence intervals, 

assuming that we draw the data from one of many random samples from a population of 

interest.  

Based on the data analysed, confidence intervals are a set of population estimates 

(parameter values) consistent with the data. In our example, the average improvement in 

sprint time is likely to fall with a certain level of confidence. For example, a 95% confidence 

interval means that if we repeat a study many times with the same sample size and all the 

assumptions used to compute the intervals were correct, 95% of those intervals would 

contain the true average improvement. However, it does not mean that the true value has a 

95% chance of being in the specific interval that we calculated from our sample. The 

confidence interval focuses on the long-run reliability of the estimation method rather than 

the probability of the parameter itself.  

The width of a particular confidence interval is determined by confidence level (the 

percentage we are interested in e.g., 99%, 95% or 90%) and sampling error, which is in turn 

determined by the sample size and variation in what is measured. A 99% confidence interval 

is wider than a 95%, all else being equal. Therefore, it is more likely to contain the true 

parameter value, such as the average sprint time improvement. Click on the link to the 

interactive app for Frequentist confidence intervals. This is designed to give you a sense of 

what happens to the width of the confidence interval when you increase the sample size or 

when you change the percentage level. You will also see that when all else is the same, the 

width of an interval does not make it more likely that the interval will capture the true 

parameter value. Confidence interval shiny app. 

 

Bayesian Credible intervals  

A Bayesian credible interval is like a confidence interval, in the sense it generates 

reasonable estimates for a given population parameter based on data analysed. Combining 

the data collected and our prior knowledge, provides a range of plausible values with a 

particular probability that the true value of a parameter will be captured in the interval. For 

example, a 95% credible interval means that, given the observed data and our prior 

knowledge, there is a 95% chance that the true average improvement in sprint time lies 

within that interval. So, unlike a confidence interval, a credible interval gives a direct 

probability statement about the parameter itself. There are two types of credible intervals 

that are generally calculated and reported. The first is called the Highest Density Interval 

(HDI) — where all points within the interval have a higher probability density than points 

https://tonydmyers.shinyapps.io/Freq_confidence_intervals/?_ga=2.226644308.819741823.1680822498-943785382.1679532290


outside the interval. A higher probability density means that the values of the parameter 

within the HDI are more likely (have higher posterior density) compared to those outside the 

HDI. It is important to recognise that the interval does not provide the probability of any 

specific data point falling within it; rather, it represents the collection of values that are most 

credible for the parameter.  

The second credible interval, is the Equal Tailed Interval (ETI). In an Equal Tailed Interval 

(ETI), a specified percentage of the probability mass is allocated equally between the lower 

and upper tails outside the interval's limits. This means the interval has the same probability 

below the lower limit as above the upper limit. The primary distinction between ETI and HDI 

is its treatment of distribution tails. Specifically, the ETI maintains equal probability in both 

tails outside the interval, regardless of the distribution's shape (in a 95% confidence interval 

this would be the 2.5th percentile and the 97.5th percentile). Where the posterior distribution 

is symmetrical — for example a normal distribution - both intervals will be the same, but if 

the distribution is skewed, they will be different as in Figure 17 below.  

 
Figure 17. Comparing the Highest Density Interval and Equal Tailed Interval of a skewed 

posteriors distribution. 

Use the interactive app below to look at how the Highest Density Interval and Equal Tailed 

credible Intervals can differ. Credible interval shiny app.  

 

Effect size — raw differences, standardised differences or 

explaining variance?  
In sport and exercise science, it is often very important not only to determine if there has 

been an effect but also the size of that effect. Combined with how probable an effect is, the 

https://tonydmyers.shinyapps.io/HDI_v_ETI/


magnitude or size of an effect is important in determining if the effect is meaningful. There 

are several ways in which we decide how big an effect is. However, the importance of an 

effect, is ultimately down to sport and exercise scientists' knowledge of what is being 

investigated. For example, improving speed by 0.5 seconds could be an incredibly important 

difference in some track running events (e.g., 100m) but would not be important to invest 

time or resources for marathon runners as that time difference almost never determines 

placings in a marathon.  

The type of effect size we calculate depends on what we measure, the measurement units, 

and whether we want to compare the size of effect we get with other effect sizes that use 

different measures. In sport and exercise science, some common types of effect sizes 

include examining raw differences, computing a standardized difference, assessing the 

proportion of variance in the measured variable explained by the statistical model, and 

calculating odds ratio or relative risk of an event occurring.  

 

Raw differences 

Differences in raw values are the simplest form of effect size. For instance, you might 

compare the average sprint times of two groups of athletes following different training 

programmes. The difference in this case might 0.7 seconds for example. 

 

Standardised differences 

In some cases, raw differences may not be as useful as in the example above and we used 

a different form of effect that is not measured in raw units such as time, distance or weight 

but in standard deviations different. Cohen's d is a standardised measure of effect size that 

quantifies the difference between two groups or conditions (e.g., before and after an 

intervention, or between treatment and control groups) in terms of standard deviations. You 

calculate it by subtracting the mean of one group from the mean of the other and then 

dividing the result by the pooled standard deviation, which estimates the population standard 

deviation. 

Since we rarely know the population standard deviation, we estimate it from our sample 

data. The pooled standard deviation is a weighted average of the standard deviations from 

both groups. A weighted average considers the sample sizes of the groups, giving more 

weight to the group with the larger sample size. This provides a more accurate estimate of 

the population standard deviation compared to a simple average. 

Cohen's d is useful for comparing effect sizes across different studies or variables. There are 

several variations of Cohen’s d to account for small sample sizes and also when comparing 

an experimental group to a control group. These include Hedges' g, which adjusts for small 

sample sizes, and Glass' delta, which uses only the control group's standard deviation for 

comparison.  

For example, consider an experiment designed to assess the differences in perfectionist 

tendencies between two groups. After an intervention, we observed an average reduction of 

2 points on a psychological questionnaire in negative perfectionistic concerns. The control 

group had a standard deviation of 1.9, while the experimental group had a standard 



deviation of 1.7. To quantify this difference, we can use Cohen's d, a measure of effect size 

that expresses the difference between the two group means in terms of standard deviations. 

Here, a lower score shows fewer negative perfectionistic concerns, which is desirable. 

For a sample of 20 participants, we calculated Cohen's d to be 1.08 (95% CI = 0.03 to 

47.43). This value of 1.08 shows that the mean of the experimental group is 1.08 standard 

deviations lower than the mean of the control group. The average participant in the 

experimental group exhibits a reduction in negative perfectionistic concerns that is 1.08 

standard deviations below the average participant in the control group.  

 

Common language effect size 

The common language effect size, also called the Probability of Superiority, gives the 

probability, often expressed as a percentage, that a measure randomly selected from one 

group (for example, an experimental group) is greater than one randomly selected from 

another (for example, a control group).  

In the example used above, a Cohen’s d of 1.08 would translate into Probability of 

Superiority of 77.70% (95% CI=59.52% to 100%). Which means when sampling 

observations from each group randomly, there is a 77.7 % chance that a randomly sampled 

person from the control group will have a higher observed rating than a randomly sampled 

person from the experimental group — with the observation that the intervention appeared to 

reduce negative perfectionistic concerns.  

To look at raw effects, standardised effects and common language effects to see how they 

relate to each the effect, look at the interactive app: Effect sizes shiny app . 

 

Cohen's U3 

This effect size measure is like the Common Language effect size and is used to interpret 

the practical importance of Cohen's d within the context of a particular study. Cohen's U3 

represents the percentage of the control group that falls below the mean of the experimental 

group. Higher values of Cohen's U3 show larger effect sizes and greater practical 

significance. 

Cohen's U3 is useful for understanding the practical implications of Cohen's d. For instance, 

if Cohen's U3 is 70%, it means that 70% of the control group scores below the mean of the 

experimental group, suggesting a substantial effect of the intervention. Unlike measures that 

compare individuals sampled at random from control and experimental groups, Cohen's U3 

focuses on the group means. As a result, the percentages produced by Cohen's U3 are 

slightly higher than those produced by the Probability of Superiority calculation, which 

directly compares individual scores from the two groups.  

 

Proportion of the variance explained or shared between 
variables 

https://tonydmyers.shinyapps.io/effect_sizes/


 
Another type of effect size examines how much variance particular predictors explain in the 
measured (or dependent) variable. The proportion of variance explained represents the part 
of the total variance that specific predictors can be attributed to. In any statistical system, we 
consider the total variance to be 100%. Each predictor may explain a different proportion of 
that variance, and there will be some proportion of the variance that is not accounted for by 
any predictors in the model.  
 
For example, in the statistical test known as Analysis of Variance (ANOVA), Eta squared (η2) 

measures the proportion of the total variance in the data that is attributed to a specific factor (or 

main effect) or interaction. It quantifies the strength of the relationship between the factor(s) and 

the dependent variable. For example, if we were comparing moderate to vigorous physical activity 

(MVPA) levels across different ages and ethnic groups, we calculated an Eta squared (η2) of 

0.05 for ethnicity, 0.07 for age, and 0.09 for the interaction between age and ethnicity. This 

would suggest that 5% of total variation in MVPA can explained by ethnicity, 7% explained 

by age and 9% by the interaction between ethnicity and age (these factors combined). [ 

In regression, another type of analysis related to the ANOVA, R-squared (R²) represents the 

proportion of variance in the dependent or measured variable explained by the independent 

or predictor variable. For example, if we wanted look how well MVPA predicted Body Mass 

Index (BMI) we might conduct regression analysis with BMI as the dependent or response 

variable, and MVPA as the independent or predictor variable. If the analysis produced an R-

squared of 0.15, we could say that MVPA explained 15% of the variance in BMI.  

In the statistical test known as Multivariate analysis of variance (MANOVA), Wilk’s Lambda 

(Λ) tells you how each level of independent variable contributes to the model. Wilk's Lambda 

ranges from 0 to 1. A value closer to 0 indicates that the group means differ, while a value 

closer to 1 suggests that the group means are similar. So a smaller value of Wilk’s Lambda 

indicates a stronger effect of the independent variable(s) on the dependent variables. The 

term λ in the formula's denominator represents the proportion of variance in the dependent 

variables that is explained by the model's effect. For example, we decide to conduct a 

MANOVA to compare three training regimens: High-Intensity Interval Training (HIIT), 

Steady-State Cardio (SSC), and Strength Training (ST). The dependent or response 

variables are a measure of cardiovascular endurance, Maximum Volume of Oxygen Uptake 

(VO2 max), a measure of muscular endurance and Time to Exhaustion during a resistance 

exercise. The MANOVA is used to explore the differences in the combined VO2 max and 

Time to Exhaustion scores based on the training regimens. If we obtained a Wilk's Lambda 

value of 0.60 from the analysis, we can calculate variance explained if we use 1- Lambda 

(Λ), so in our example, this would be 1-0.6=0.4 or 40%. So, in this case, 40% of the variance 

in the combined VO2 max and Time to Exhaustion scores can be attributed to or explained 

by the training regimen and the remaining 60% down to other factors not considered in the 

study.  

To get a sense of what variance explained means, look at the Figure 18 below: 



 
Figure 18. Variance explained  
 

 

Ratios 

Ratios describe how much of one thing is compared to another. See Figure 19 below for a 

simple series of examples. We will look at two ratios that are used as effect size measures in 

sports and exercise science.  

  
Figure 19. Examples of ratios 

 

Odds ratio (OR) 



Sometimes in sports and exercise science, we have a measured variable that has just two 

categories — something happened (labelled 1) or it didn't happen (labelled 0). This is known 

as a binary variable because there are just two outcomes (1 and 0). One of the metrics we 

get after analysing this data (using logistic regression for example) is called an odds ratio.  It 

describes the relationship between an independent variable (e.g., a risk factor) and a binary 

outcome (e.g., injury).  A odds ratio of 1 means that the likelihood of either event happening 

is equal. An odds ratio greater than 1 indicates an increased likelihood of the outcome, while 

a odds ratio less than 1 indicates a decreased likelihood. Figure 20 illustrates this using a 

fictitious example of predicting injury. 

 
Figure 20. Odds Ratio and their confidence intervals for predictors of injury  
 

 
 

Log response ratio (LRR) 

Another ratio that researchers can use as an effect size is the log response ratio (LLR). This 

is the natural logarithms of the ratio of the mean of the treatment group and the mean of the 

control group (LRR = ln(Xtreatment/Xcontrol)).   

If you are unfamiliar with logarithms, they are the inverse operation to exponentiation. For 

example, you can find the natural logarithm (ln) of a number by raising the base 'e' 

(approximately 2.72) to a power that produces that number. If we have ln(a) = b, it means 

that e^b = a. In the LRR, the natural logarithm helps to linearise ratios and make the 

interpretation of proportional changes easier. 

This effect size is appropriate for outcomes measured on a ratio scale - so that zero 

represents the absence of the outcome as a whole. Studies that measure test scores, 

attitude measures, or judgments do not have natural scale units or a true zero, so the 

response ratio is not appropriate. When data is appropriate, there are two versions of the 

LRR reported, LRR-increasing (LLRi) and LRR-decreasing (LRRd). For LRR-increasing 

(LRRi), positive values are attributed to improvements in performance or therapeutic 



outcomes. Conversely, for LRR-decreasing (LRRd), negative values correspond to improved 

performance or therapeutic outcomes. [ 

For example, suppose we are studying the effect of a new medication on reducing blood 

pressure. The mean blood pressure in the treatment group is 120 mmHg, and in the control 

group, it is 140 mmHg. 

LRR Calculation: LRR = ln(120 / 140)  

≈ ln(0.857) 

≈ -0.154 

This LRR value (-0.154) suggests a reduction in blood pressure because of the treatment. 

Since this is an LRR-decreasing scenario (LRRd), the negative value shows an improvement 

(i.e., a reduction in blood pressure). By understanding logarithms and the concept of LRR, it 

becomes clearer how we can interpret proportional changes and improvements in different 

contexts. 

 
 

Causal effects — how do we decide?  
Understanding what causes some things to happen and what does not, is arguably one of 

the most important goals of science generally — this is the same with sport and exercise 

science. There are three distinct types of thinking we need to consider when looking to 

master: seeing, doing, and imagining. In the first stage, we observe and measure things to 

identify patterns — looking for connections. Some of these connections might suggest a 

cause-and-effect relationship, while others may not. However, simply looking at the data 

cannot necessarily reveal the cause and effect. The second stage, action, entails predicting 

the outcomes of intentional changes we make in our environment — determining which 

changes will lead to which results. By actively changing our surroundings, we gain a deeper 

understanding of cause-and-effect beyond mere observation. Intervention involves actual 

change. It ranks higher in understanding cause and effect than association.  

We often make such changes in our daily lives without labelling them as “interventions.” For 

example, when a sport and exercise scientist suggest adjusting an athlete's training plan to 

improve their endurance, they are altering one factor (the intensity and duration of training 

sessions) to affect another (the athlete's endurance level). If the sport and exercise 

scientist’s view of the effectiveness of the new training plan is correct, the athlete's situation 

will change from "having lower endurance" to "having improved endurance." By actively 

changing the training plan, the sport and exercise scientist gains a deeper understanding of 

cause and effect beyond mere observation.  

To understand cause and effect, we need to imagine scenarios. However, imagining the 

possible outcomes of "what if" scenarios — sometimes called counterfactual scenarios — 

can be challenging. It is a necessity to be able to do this if we wish to really understand 

cause and effect. This is because data alone cannot tell us what might happen in 

hypothetical situations where things are different from what was actually observed. However, 

our minds can make educated guesses about these imaginary situations, which helps us 

better understand cause and effect.  

Some common methods sport scientists use to establish cause-and-effect: 

 



Randomised Controlled experiments 

An experiment using control and experimental groups helps establish causality. Participants 

are randomly assigned to groups, and the experimental group receives a specific treatment 

— for example, a new training method — while the control group does not. By comparing the 

outcomes of these groups, we can determine whether the treatment was responsible for 

causing differences in performance or health. Where sample sizes are smaller, what is 

known as a randomised blocked design can be used. Randomised block designs are 

experiments where people sharing certain characteristics are grouped together, and the 

treatment (or intervention) is assigned randomly between these participants. 

 

Longitudinal studies 

These studies follow participants over a long period of time, collecting data on various 

factors and outcomes. By analysing changes in measured variables over time and 

controlling for confounding factors, we can identify potential cause-and-effect relationships.  

 

Quasi-experiments 

We can use quasi-experimental designs where random assignment is impossible or ethical. 

These studies compare existing groups that differ in a specific factor (e.g., professional 

athletes vs. amateur athletes) and analyse the differences in outcomes to infer potential 

causal relationships.  

 

Statistical methods 

Statistical techniques, like regression analysis or structural equation modelling, can help 

researchers control confounding variables. When combined with experimental designs these 

can help us identify causal relationships.  

 

Causal modelling 

Causal modelling (e.g., using Pearl's framework) allows researchers to represent and 

analyse cause-and-effect relationships using graphs. By combining this approach with 

experimental or observational data, we can make inferences about the causal effects of 

various factors on performance or health. 

We will take a closer look at causal modelling — as recommended by Judea Pearl — 

because it is a really useful concept, especially when trying to understand cause-and-effect 

relationships from non-experimental data.  

http://bayes.cs.ucla.edu/WHY/


In simple terms, causal modelling is a way to represent and analyse cause-and-effect 

relationships using Directed Acyclic Graphs (DAGs) and mathematical expressions (e.g., do-

calculus).  

Pearl and Mackenzie (2018) discuss causality and correlation using the flow of 

information. Using DAGS can be useful in visualising this information flow. In DAGS, nodes 

represent particular variables (e.g., diet, training, or performance), and arrows represent the 

cause-and-effect connections between these variables.  

In a DAG, an open path has arrows pointing in the same direction, and the association 

between these variables reflects a causal relationship.  

 

Figure 21. An open path on a DAG 

However, two variables might be correlated either due to the causal connection (the causal 

path) or due to the confounding correlation (the non-causal path). 

A closed (or blocked) path is a pair of variables that have the same effect in causal 

modelling, known as a Collider. In a DAG this is where two arrows meet — they collide! 

(see Figure 22). 

 

 

Figure 22. A collider in a DAG 

A Confounder creates an open backdoor path between two variables X and Y and results 

from the exposure and the outcome having a common cause (see Figure 23). For example, 

consider the relationship between physical activity and heart health. If we do not account for 

age, it can act as a confounder because age affects both physical activity levels and heart 

health. Without controlling for age, the observed relationship between physical activity and 

heart health might be misleading, as it would not account for the influence of age. 

https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1740-9713.2018.01165.x


 

Figure 23. A confounder in a DAG 

A Mediator is an intermediate variable that lies on the causal pathway between two 

variables and explains or clarifies the relationship (see Figure 24). For example, let's 

consider the relationship between strength training and improved sprint performance. 

Suppose that strength training increases muscle power (the mediator), which enhances 

sprint performance. In this scenario, muscle power mediates the relationship between 

strength training and sprint performance.  

 

Figure 24. A mediator in a DAG 

Let’s take a simple example, if we were interested in looking at the impact of a vegan diet on 

strength using a DAG. First, we need to identify the relevant variables and consider their 

possible causal relationships. Here are some variables we might consider. 

Diet — a binary variable representing whether the person is on a vegan diet or not. 

Protein intake — A continuous variable representing the amount of protein a player 

consumes daily whether on vegan or non-vegan. 

A categorical variable representing different kinds of training regimens an individual may 

undertake. 

Body composition — A continuous variable representing the body composition of the person, 

e.g., lean muscle mass, body fat percentage. 

Strength — A continuous variable representing a person’s strength, measured by strength 

tests. 

In this simple example, the paths are all open with no backdoor paths (see Figure 25 below). 



 

Figure 25. DAG for the effect of a vegan diet on strength  

Here is another simple DAG example where on this occasion we need to control for a 

variable to make sure we analyse the causal relationship. If we wanted to look at the effect 

of “Experience of School Sport” on “Physical Activity”, we could set up the following DAG 

where our exposure variable is “Experience of School Sport”, the outcome variable is 

“Physical Activity”. If we were to just regress “Experience of School Sport” on “Physical 

Activity (i.e. Physical Activity ~ Experience of Sport at School), we would get a biased 

answer. To obtain an unbiased answer we need to condition on the “Quality of Physical 

Education” (see Figure 26 below). In a regression model, this would mean Physical Activity ~ 

Experience of Sport at School + Quality of Physical Education. 

 

Figure 26. the “Experience of School Sport” on “Physical Activity” an example of the need to 

control for a confounder. 



Click the following link for a useful introduction to DAGs and causal influences:  Casual 

Influence: The Mixtape.  

 

Data visualisation, Exploratory data analysis and 

description  
 

Exploratory data analysis (EDA) is probably the most important stage of any project that 

uses data. EDA involves examining our data and making sure that the data is both what we 

expect and that it meets the assumptions of any statistical procedure we want to use. EDA 

means we can avoid the ‘garbage in garbage out’ problem. We can apply EDA to both 

quantitative data and to qualitative data, but as this chapter is about quantitative data that is 

what we will discuss below. 

 

What do we use EDA for? 

There are different ways to examine quantitative data. Often, we are interested in two 

specific aspects - the central tendency (where the centre of the data is on the number line) 

and the spread (how spread out the data is on the number line). Summary statistics are one 

common approach. You are probably already familiar with several summaries of central 

tendency (e.g. mean & median) and summaries of spread (e.g. standard deviation, range). 

One widely used set of summary statistics is the five number summary. The five number 

summary presents five sample percentiles: 

 

the minimum 

the 25th percentile - 25% of data below this value; 75% of data above this value 

the median (50th percentile) - 50% of data above; 50% of data below this value 

the 75th percentile - 75% of data below this value; 25% of data above this value 

the maximum 

 

Why is plotting best? 

Numerical summaries are useful, but they do not tell the full story and they hide a lot of detail 

in data. The best way to carry out EDA is to plot the data. One example of the importance of 

plotting is provided by Anscombe's quartet. 

This is a collection of four datasets which have nearly identical summary statistics. Table 4 

below shows the data. Each of the four datasets in Table 4 have the same means, standard 

deviations and (x,y) correlations. Furthermore, the regression coefficients (intercept and 

slope) and the R2 values between x & y in each dataset are also the same. 

 

https://mixtape.scunning.com/03-directed_acyclical_graphs
https://mixtape.scunning.com/03-directed_acyclical_graphs
https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
https://en.wikipedia.org/wiki/Five-number_summary
https://en.wikipedia.org/wiki/Anscombe%27s_quartet


Table 4. Anscombe’s quartet.  

Dataset A Dataset B Dataset C Dataset D 

x y x y x y x y 

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 

 

 

The summary statistics are shown in Table 5 below. As far as we’re concerned based on 

Table 5 below each dataset has the same centre, the same spread and the same 

correlation. If we only generated these summary statistics, we might conclude that these 

datasets all looked the same and had the same relationship between x and y.  

 
 
Table 5. Summary statistics for each of the four datasets in Anscombe’s quartet.  

Summary statistic Value 

Mean of x 9 

Variance of x 11 

Mean of y 7.5 

Variance of y 4.125 

Correlation x & y 0.816 

Regression line x & y y = 3.00 + 0.500x 

R2 x & y 0.67 

 



 
Plotting the datasets however tells another story. 
 
 

 
Figure 27. Scatterplots of the four datasets in Anscombe’s quartet with a least squares 
regression line fit through each dataset. 

 
The plot in Figure 27, makes it obvious that the relationship between x and y in each of the 

four datasets is quite different. Anscombe’s quartet also illustrates the usefulness of plotting 

for detecting extreme values. In datasets C & D there are single values that lie away from 

the bulk of the data. Often the temptation is to remove these values because they are 

‘outliers’. However, we should really consider whether these values are realistic given the 

context we are working in. If the extreme values could be real then we should not remove 

them. A similar example but with more extreme relationships is the Datasaurus. 

 

Useful basic plots for EDA 

The graphical exploration of Anscombe’s quartet provides us with more information than 
summary statistics alone. There are several basic plots (and many more advanced plots we 
won’t cover) that we can use in EDA. Scatterplots like those in figure XX are used when we 
want to examine the relationship between two (or sometimes three) continuous variables. 
We can also use colour or symbol shape in scatterplots to represent a categorical variable. 
For example, Figure 28 below shows the x and y values for all four of Anscombe’s datasets 
in one plot and we have represented the ‘dataset’ variable by colour. If you use colour or 
different symbols in this way it is important to include a legend so that the reader (possibly 
you some weeks later!) knows what the different colours or symbols mean. Scatterplots are 
the basic ‘go to’ plot for examining relationships between continuous variables. However, it 
can be difficult to clearly separate points if they fall close to each other. In the plot below we 
can see an example at (10,8) where a red and a blue point fall on top of each other. Without 
colour it would be hard to tell that there are two different points here. 
 

https://www.youtube.com/watch?v=It4UA75z_KQ


 
Figure 28. Scatterplot showing all four of the Anscombe’s quartet datasets on one plot. Here 

could represents dataset for each point. 

As noted above we are often concerned with where the ‘typical’ value for data is and how 

spread out that data is. For these purposes box-and-whisker plots and histograms are 

useful.  

 



 
Figure 29. Box & whisker plots of the y variable from each of the Anscombe’s quartet 
datasets. 
 
Box and whisker plots are useful for examining continuous data in different categories. 

These plots lay out the five number summary in graphical form and indicate the distribution 

of the data. The central line is at the median and the borders of the box are at the 25th and 

75th quartiles; 25% of the data lies below the box and 25% of the data lies above the box. 

The box itself spans the middle 50% of the data. The spines extending from the box indicate 

the minimum and maximum values. Most software that draws box and whisker plots also has 

some calculation to define extreme values and these are usually plotted as points. This 

extreme value definition is usually 1.5 times the interquartile range, but it can be different. In 

Figure 29 above we can see that datasets B, C & D have ‘extreme’ values. We can also see 

that the medians are all approximately the same and that whilst datasets A, C & D are all 

fairly symmetrical, dataset B is asymmetrical with more low values than high values. One 

disadvantage of boxplots is that they do not show individual values (except for extreme 

values). Note that boxplots should not be used for smaller datasets with only a few points. 

Histograms present a visual representation of the number of observations within a defined 

interval using bar heights. Like boxplots histograms can be used to examine the distribution 

of data. Figure 30 below shows a histogram of the y values from the Anscombe’s quartet 

data. 



 
Figure 30. Histograms of the y data from Anscombe’s quartet combined across all groups. 
 
These histograms suggest that the y-values from Anscombe’s quartet follow an 

approximately bell-shaped distribution with a central value of about 7.5 and ranging from 

around 2.5 to around 12.5. The bars in histograms represent the count of data in bin widths 

of (usually) fixed size. Software will usually choose the bin size for you, but you should be 

aware that different bin sizes lead to different visual representations of data in histograms. 

The plot on the left above has a bin width of about 0.3; the bar heights represent the number 

of datapoints in each 0.3-unit interval on the x-axis. The histogram on the right has a bin size 

of 1; the bar heights represent the number of values in each one-unit bin on the x-axis. 

These plots look quite different and give somewhat different impressions of the underlying 

data. 

Barplots are often used to present a summary of data such as the mean (Figure 31; left 

panel). The height of the bar represents the value of the summary statistic and there may be 

error bars indicating the variability of that summary value. You should pay careful attention to 

what the error bars are. Common error bars used are the standard deviation (which tells you 

about variability in the data), the standard error (which tells you about variability in the mean 

over many study repeats) and 95% confidence intervals (which tell you about a plausible 

range of the mean). Note that confidence intervals, like p-values are easy to misinterpret. 

Confidence intervals are not the same as Bayesian 95% credible intervals! For example, you 

cannot say that there is a ‘95% probability that the population mean lies in the 95% 

confidence interval’. What you can say is that if you repeated your study 100 times then 95% 

of the intervals generated would contain the population mean. See (Greenland et al. 2016) 

for guidance. 

https://pubmed.ncbi.nlm.nih.gov/27209009/


 
Figure 31. Barplot and jittered dot plot of the y values from Anscombe’s quartet. 
 
Barplots have been criticised for hiding the actual data underlying the summary statistic they 

represent. Barplots also imply that the data in different groups all span the same range. In 

the figure above the barplot suggests that data from all three groups spans a range from 0 to 

approximately 9.5.  

In the right-hand panel of Figure 31 above we have shown a jittered dotplot with horizontal 

bars representing the mean value. Hopefully it is clear to you that the dotplot has much more 

information in it than the barplot. In the dotplot we can see the individual values, we get a 

better sense of the range and the distribution of those values. The dot plot makes it clear 

that the data generally span a range from ~4 to ~12.5 but that datasets C & D have smaller 

ranges than datasets A & B. Although not available in all statistical software yet dotplots are 

to be preferred as a visualisation because they make it easy to examine the underlying data, 

whilst barplots hide and possibly distort the underlying data. 

If we have data that vary over time then lineplots are useful. Below we show finishing times 

for the Boston marathon from 1970 to 1999 from the OpenIntro datasets. We have used two 

curves to represent male and female average finishing times.  

 

https://openintro.org/


 
Figure 32. Finishing times for the Boston marathon from 1970 to 1999 
 
The year is plotted on the x-axis and the mean finishing times are plotted on the y-axis. The 

points in Figure 32 represent the mean race time for each year. The addition of the lines 

connecting the points helps to clarify that these data are changing over time. The idea being 

conveyed is that there is some connection between successive points. We would not use a 

plot like this if we were plotting finishing times from different individuals. We might use points 

in that case but because there is no connection between different individuals the lines would 

convey a misleading message.  

 

In summary EDA is the most important step in any data analysis project. Effective EDA 

means you avoid making decisions based on dubious data. Whilst summary statistics are 

useful, there is no substitute for plots and basic plots which can get you a long way in EDA. 

Angra and Gardner (2016) present some common plots & how to interpret them in their 

figure 2. 

 

Summary 
 
This chapter examined qualitative decision-making tools used by sports and exercise 

scientists. It emphasises the need for proper data analysis to advance sport and exercise 

science and avoid wasting efforts or making misleading claims. 

The chapter begins with inference, showing how appropriate statistical 

inference reduces uncertainty about observations and informs decisions. Following this, the 

chapter discusses classical probability, frequentist probability, and subjective probability. The 

chapter then explores null-hypothesis significance testing (NHST) and looks at common 

misinterpretations of p-values. Then, the chapter introduced Bayesian inference and 

examined Bayes Factors and the concept of the Region of Practical Equivalence (ROPE). 

The discussion then moved on to effect size and its practical significance in sport and 

https://journals.physiology.org/doi/epdf/10.1152/advan.00152.2015


exercise contexts. The chapter then discussed causal effects, highlighting the importance of 

observation, intervention, but also imagination in establishing causality. Introducing methods 

like randomised controlled experiments, longitudinal studies, and causal modelling to help 

researchers establish cause-and-effect relationships. The chapter next covered data 

visualisation and exploratory data analysis (EDA), emphasising the importance of EDA in 

ensuring data quality and meeting statistical assumptions.  

Finally, the chapter contrasts Bayesian credible intervals with frequentist confidence 

intervals, explaining their interpretations with examples. Concluding by stressing the 

importance of accurate and meaningful data analysis and visualisation to support robust 

decision-making in sport and exercise science. 

Take-Home message 

Some of the statistical concepts discussed in this chapter can be challenging. If you find 

certain topics difficult, do not be too concerned. Even experienced editors and researchers 

can misunderstand statistics and make mistakes. By taking the time to grasp and 

understand these concepts, you will have a head start on many researchers in sport and 

exercise science and related disciplines. Remember, small details can make a real 

difference, so paying attention to the fine print is important. It is normal to need to read some 

sections multiple times until they make sense, but the effort will be worth it in the end. 
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