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Abstract 
In soccer, relative population-specific acceleration intensity thresholds are required to create 
meaningful activity profiles. These thresholds can be derived from the maximal acceleration-initial 

running speed (amax-vinit) regression line, whose determination has so far required time-consuming 
testing. The aims of this study were to present a new method for determining population-specific 
amax-vinit regression lines in soccer using game locomotion data and to assess its validity. Game 
locomotion data from 41 male youth elite soccer players were collected using a GPS-based 
tracking system. The amax-vinit regression lines were determined using locomotion data from one 
to five games per athlete. The proposed method overcomes several limitations of existing 
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methods by accounting for the number of games combined and the individual distribution of 
high-intensity accelerations over the velocity measurement range when identifying maximal 
accelerations. Further, the athletes took an acceleration test to determine their test-based amax-
vinit regression line. Mean biases were estimated for the regression coefficients (i.e., amax-intercept 
and slope) and assessed via standardization and Bayesian analysis. Regression lines based on two 
or three combined games showed trivial biases for both coefficients. However, due to the large 
uncertainty in the estimates, the chance of equivalence was only assessed as possibly equivalent. 
Thus, the presented game-based method represents a viable and easy-to-implement alternative 
to the test-based method for determining population-specific amax-vinit regression lines in soccer. 
This simplifies the process of determining relative population-specific acceleration intensity 
thresholds, which are required for creating meaningful activity profiles. 

Introduction 
In soccer, tracking technologies are widely used to assess players’ activity during training sessions 
and matches (Akenhead & Nassis, 2016; Weldon et al., 2021). However, describing the complex 
activity of soccer in a meaningful way using locomotion data is a major challenge. 
In terms of locomotion, soccer is characterized by frequent changes in running speed (Harper et 
al., 2019). This makes the use of acceleration-based metrics essential for creating meaningful 
activity profiles. Therefore, a metric often used in the scientific literature as well as in training 
practice is the number of accelerations above certain intensity thresholds, with absolute generic 
intensity thresholds predominantly used. This means that the same threshold values are applied 
to all acceleration actions and all athletes. For instance, 2 m·s−2 or 3 m·s−2 are frequently used 
thresholds for assessing an acceleration action as highly intense (see reviews by Delves et al., 2021; 
Harkness-Armstrong et al., 2022; Silva et al., 2022). However, the use of such thresholds is 
problematic. First, maximal reachable acceleration decreases with increasing running speed 
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(Sonderegger et al., 2016). This means that when an absolute intensity threshold is used, the 
intensity of acceleration actions initiated from a standing position or a low running speed is 
overestimated compared to that of accelerations initiated from a higher speed (Sonderegger et 
al., 2016). Second, athletes differ in their maximal acceleration capacity. Thus, a generic intensity 
threshold overestimates the intensity of acceleration actions in athletes with a relatively high 
maximal acceleration capacity (e.g., elite athletes) and underestimates the metric in athletes with 
a lower maximal acceleration capacity (e.g., amateur athletes) (Sweeting et al., 2017).  
Therefore, absolute generic intensity thresholds do not allow for a valid intensity assessment of 
acceleration actions in soccer and should consequently not be used for activity descriptions. An 
alternative approach is the use of relative population-specific intensity thresholds (Sonderegger et 
al., 2016). These thresholds assess the intensity of an acceleration action in relation to the maximal 
acceleration that can, on average, be reached in a population from a certain initial running speed 
(e.g., in soccer players of various performance levels, age categories, or genders) (Sonderegger et 
al., 2016). This makes it possible to validly assess the intensity of acceleration actions in soccer and 
to create meaningful activity profiles (de Hoyo et al., 2018; Fischer-Sonderegger et al., 2019). 
The concept of relative population-specific intensity thresholds was initially introduced by 
Sonderegger et al. (2016). Recently, Osgnach et al. (2023) presented a slightly modified version. 
In the original approach, the thresholds are defined in relation to the maximal acceleration-initial 

running speed (amax-vinit) regression line. In the modified approach, they are derived from the 
acceleration-speed (AS) regression line. The current reference methods for determining these 
regression lines are isolated performance tests (i.e., sprint tests) (Morin et al., 2019; Samozino et 
al., 2016; Sonderegger et al., 2016). However, in the recent past, various methods have been 
proposed to determine these regression lines for soccer players using training or game 
locomotion data instead of performance test data (Cormier, Tsai, Meylan, & Klimstra, 2023; 
Miguens et al., 2024; Morin et al., 2021; Silva et al., 2023). The basic intention behind these 
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integrated methods is to replace their test-based reference method. By using locomotion data 
automatically collected during training sessions and matches, they offer the great advantage of 
not imposing additional expenditure of time or physical load on the athletes. However, to replace 
an existing reference method with a new method, rigorous validation is required (Impellizzeri & 
Marcora, 2009). 
In this validation process, two studies have examined the validity of an integrated measured 
population-specific AS regression line, so far (Cormier, Tsai, Meylan, & Klimstra, 2023; Cormier, 
Tsai, Meylan, Soares, et al., 2023). For validation, the integrated measured regression line was 
compared to a test-based regression line (i.e., a regression line determined by means of a sprint 
test). Traditional hypothesis tests have been used to decide whether the integrated measured 
regression line could replace the test-based line. Based on statistically non-significant differences 
between the two measures, the authors concluded that an integrated measured regression line is 
valid and can be used instead of the test-based line. However, the appropriate inferential statistical 
procedure to assess whether two measures can be used interchangeably is an equivalence test 
(Lakens, 2017; Walker & Nowacki, 2011). This procedure requires a definition of the smallest 
meaningful deviation between two measures (the equivalence bounds). Simply put, the deviation 
between the measures must be smaller than this smallest meaningful value for them to be 
considered equivalent. In team sports, where there is usually no clear relationship between 
indicators of athletic performance and game performance, a value of 0.2 times the between-
subject standard deviation (SD) can be used as the smallest meaningful deviation (Hopkins, 2004). 
In previously conducted validity studies, if an equivalence test with equivalence bounds of 0.2 
times the between-subject SD had been used, at least one of the tested variables (i.e., A-intercept, 
slope, or S-intercept of the regression line) would always have been outside these bounds. 
Therefore, the conclusions made by the authors are questionable. Based on these previous results 
(Cormier, Tsai, Meylan, & Klimstra, 2023; Cormier, Tsai, Meylan, Soares, et al., 2023), a more 
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appropriate conclusion should have been that it is not possible to determine a valid population-
specific AS regression line using existing integrated methods. 
The determination of a valid amax-vinit or AS regression line using soccer training or game 
locomotion data relies on the presence of multiple maximal accelerations in the data used (i.e., 
accelerations of the same magnitude as in an isolated sprint test performed in a non-fatigued 
state). Combining locomotion data from multiple training sessions and/or games is a logically 
valid approach to increasing the probability of observing multiple maximal accelerations. This 
reasoning is the basis for the prevailing assumption that the validity of an integrated measured 
amax-vinit or AS regression line will improve steadily with increasing amounts of data (i.e., that the 
line will get closer and closer to the test-based line). However, previous studies on the validity of 
an integrated measured amax-vinit or AS regression line could not confirm this assumption (Cormier, 
Tsai, Meylan, & Klimstra, 2023; Cormier, Tsai, Meylan, Soares, et al., 2023). Further, Cormier, Tsai, 
Meylan, and Klimstra (2023) observed an integrated measured AS regression line overestimating 
either the A- or S-intercept compared to the test-based line. This finding suggests that maximal 
accelerations can occur in training sessions or games, but existing integrated methods may not 
be able to determine a valid regression line from them. 
The methodological challenge in the integrated determination of an amax-vinit or AS regression line 
is identifying the maximal accelerations from the totality of accelerations in the underlying 
locomotion data. This challenge is primarily due to the non-negligible random measurement error 
of locomotion tracking systems used in soccer (e.g., global positioning system (GPS) based 
systems) when measuring maximal acceleration (Crang et al., 2023; Fischer-Sonderegger et al., 
2021). Simply put, the random measurement error makes it necessary for an integrated method 
to identify either all maximal accelerations (i.e., those with a positive as well as a negative random 
measurement error) or several with the true maximal acceleration value (i.e., maximal accelerations 
without a random measurement error) from the totality of accelerations in order to generate a 
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valid output (i.e., a regression line equivalent to a test-based regression line). In our view, existing 
methods lack a clear rationale for why they should fulfill one of these requirements. Therefore, we 
believe that a new method is required. 
To facilitate the determination of relative population-specific acceleration intensity thresholds, the 
aims of this study were (1) to present a new method for determining the amax-vinit regression line 
of soccer players using game locomotion data and (2) to investigate how the validity of a 
population-specific amax-vinit regression line, determined by this new method, changes as a 
function of the amount of data used for determination. 

Materials and methods 

Participants 
A total of 41 male youth elite soccer players from six youth elite soccer teams of age level under 
18 and under 21 from Switzerland participated in the study (age 18.2 ± 2.3 years). Goalkeepers 
were excluded from the study. The study was conducted in accordance with the Declaration of 
Helsinki and approved by the Ethics Committee of Bern (Project ID: 2019-01586, 19 November 
2019). Players received verbal and written information about the study design before giving 
written informed consent. 

Design 
For validity testing, a fully paired comparative diagnostic test accuracy study design was used 
(Yang et al., 2021). During the 2021/22 soccer season, locomotion data from all official 
championship matches were collected. Midway through the second half of the season, the 
participants took an acceleration test to determine their amax-vinit regression line (Sonderegger et 
al., 2016). One week before the actual test, a familiarization test was performed. The test-based 
regression line served as the criterion measure. The game-based regression line was determined 
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based on the locomotion data of the game closest to the test. In determining a game-based 
regression line based on data from multiple games, the games closest to the test were always 
combined. For each athlete, only games in which he had participated for at least 80 minutes were 
used. 

Measurements 
All games as well as the acceleration test were recorded with a 10 Hz GPS-based tacking system 
(Advanced Sport Instruments, FieldWiz V2, Lausanne, Switzerland). To prevent measurement 
errors due to possible inter-unit variation, each athlete always wore the same sensor for all 
measurements. The GPS units derived instantaneous velocity via the Doppler shift method. 
Unfortunately, the number of connected satellites and the horizontal dilution of precision during 
the measurements are not provided by the manufacturer for the FieldWiz V2 devices. For 10 Hz 
GPS devices, good intra-unit reliability and validity in measuring instantaneous velocity in various 
movement tasks have been reported (for review, see Crang et al., 2021). However, intra-unit 
reliability and validity in measuring maximal acceleration in high-intensity movement tasks are 
worse (Crang et al., 2023).  
The acceleration test was performed according to the protocol of Sonderegger et al. (2016) and 
consisted of four maximal accelerations from four different initial running speeds. All tests were 
performed on an artificial turf soccer field at the training site of the respective club. In each case, 
the test was performed at the beginning of a normal training session after a warm-up led by the 
club’s athletic coach. On the test day, players were in a recovered state (i.e., match day +3 or +4 
and no intensive training session the day before). 
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Data analysis 

Data processing and event detection 
The Doppler shift velocity signal and time stamp of all measurements were exported from FieldWiz 
online software. All analyses were then performed based on these data using a custom Matlab 
script (Version 9.8.0 (R2020a), MathWorks Inc., Natick, USA). According to the manufacturer the 
exported velocity signal has already been smoothed with a one-second moving average filter. 
Therefore, no further filtering techniques were applied. The acceleration signal was calculated as 
the first derivative of the velocity signal. The two signals were then used to detect acceleration 
actions, applying the same procedure as Fischer-Sonderegger et al. (2019). Each action was 
described by its initial running speed (vinit) and the maximal acceleration reached (amax). 

Event selection and model fitting 
To determine the amax-vinit regression line of an athlete based on the totality of detected 
acceleration actions in one or multiple games, maximal acceleration actions from different initial 
running speeds have to be identified and subsequently described by a linear model (Sonderegger 
et al., 2016). For this purpose, the following procedure was used (see Figure 1 for a graphical 
illustration): First, all acceleration actions detected in a game were plotted in a two-dimensional 
cartesian coordinate system with amax on the y-axis and vint on the x-axis. If the amax-vinit regression 
line was to be determined based on the locomotion data of multiple games, the actions of all 
underlying games were inserted into the same coordinate system. Second, depending on the 
number of games pooled together, the x-axis of the coordinate system was divided into intervals 
of a certain length (4.3, 2.1, 1.4, 1.1, and 0.9 km·h−1 in the case of one, two, three, four, and five 
games, respectively), and within each interval, the action with the highest amax was selected. The 
selected actions were then described by a linear model using a robust regression technique (Yohai, 
1987) (Figure 1A). Third, the estimated regression line was used to select all high-intensity actions 
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(i.e., actions with an amax >75% of the amax predicted by the regression line). Fourth, depending on 
the number of games pooled together, a certain number of quantiles were calculated for the x-
values of the high-intensity actions (6, 13, 20, 27, and 34 in the case of one, two, three, four, and 
five games, respectively). Fifth, within each interval between successive quantiles, the action with 
the highest amax was selected, and the actions selected in this way were then described by a linear 
model using a robust regression technique (Yohai, 1987). The regression line of this analysis shows 
the amax-vinit regression line of an athlete (Figure 1B). 
The athletes’ test-based amax-vinit regression lines were determined according to the reference 
method of Sonderegger et al. (2016) by a linear least squares regression analysis of the four 
acceleration actions recorded in the test. From both regression lines (game- and test-based), the 
coefficients of the regression equation (amax-intercept and slope) were then used for the statistical 
analysis.  
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Figure 1. Procedure for determining a maximal acceleration-initial running speed (amax-vinit) regression line 
using game locomotion data, shown as an example for the case of three combined games. Different symbols 
represent the actions of a representative athlete from different games. A: (1) the x-axis is divided into 
intervals with a length of 1.4 km·h−1 (gray dashed vertical lines), (2) within each interval the action with the 
highest amax is selected (black filled symbols), and (3) the selected actions are described by a linear model 
(black dashed line). B: (1) High-intensity acceleration actions are selected (gray filled symbols), (2) 20 
quantiles are calculated for the x-values of the high-intensity acceleration actions (gray dashed vertical 
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lines), (3) within each interval between successive quantiles, the action with the highest amax is selected 
(black filled symbols), and (4) the actions selected in this way are described by a linear model, resulting in 
the amax-vinit regression line of the athlete (black dashed line). 

Statistical analysis 
The measures of centrality and dispersion are the mean ± SD. Statistical modeling was performed 
using SAS Studio (Version 3.81; SAS Institute Inc., Carry, USA). To account for non-uniform effects 
of groups formed based on playing positions, the mixed linear modeling procedure (PROC MIXED) 
was used (Hopkins, 2006). The coefficients of the amax-vinit regression equations were the outcome 
variables, and a separate analysis was performed for each. The fixed effect was playing position × 
measurement condition (to estimate the mean of the outcome variable for the different 
measurement conditions [i.e., test and game] within groups formed by playing positions [center-
backs, central midfielders, forwards, and outside players [i.e., full-backs and wide midfielders 
combined]]). The random effect was the intercept (to account for differences in the outcome 
variable between players). Player identity was the subject variable (to model the nesting of 
measurements within players), and playing position was the group variable (to model the nesting 
of players within positions). The estimated, position-specific means of the outcome variable were 
then combined to obtain a single mean for the test condition, the game condition, and the bias 
(i.e., game − test) (using a LSMESTIMATE statement). In this combination, the outside players’ 
mean was weighted double that of the other position-specific means. This results in effects that 
are similar to those of a fully pooled analysis (i.e., only measurement condition as a fixed effect in 
the model) if the sample contained the same number of center-backs, central midfielders, and 
forwards and a double number of outside players. Thus, the position groups were weighted 
according to their proportions in the population. The mean bias in raw, percentage, and 
standardized units was the measure of validity. Standardization was performed using the 
between-subject SD of the test condition (i.e., the criterion measure). 
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Plots of residual versus predicted values from the analyses showed no evidence of nonuniformity 
of error, and no outliers (defined as observations with a studentized residual >3.5) were detected. 
Uncertainty in the estimates of effects (mean biases) is presented as 90% compatibility intervals 
(CI), derived by assuming a t sampling distribution. Analogous to the effect estimates, CIs were 
obtained from combining position group-specific intervals (Hopkins, 2006). Decisions about 
magnitudes of effects accounting for the uncertainty were based on a reference-Bayesian analysis 
with a minimally informative prior (Hopkins & Batterham, 2016; Hopkins & Batterham, 2018), 
which provided estimates of chances that the true magnitude was a substantial negative value, a 
trivial value (i.e., game measure equivalent to the test measure), and a substantial positive value. 
For these calculations, a previously published spreadsheet was used (Hopkins, 2007).  
All effects are reported with a qualitative descriptor for the chance of the effect to be trivial using 
the following scale: ≤0.005, most unlikely; >0.005–0.05, very unlikely; >0.05–0.25 unlikely; >0.25–
0.75, possibly; >0.75–0.95, likely; >0.95–0.995, very likely; >0.995, most likely (Hopkins, 2020; 
Hopkins et al., 2009). Magnitudes of standardized effects were assessed as ≤0.2 trivial, >0.2–0.6 
small, >0.6–1.2 moderate, >1.2–2.0 large, >2.0–4.0 very large, and >4.0 extremely large (Hopkins 
et al., 2009).  

Results 
Table 1 shows the final sample sizes, descriptive statistics, and mean bias estimates in raw and 
percentage units. Figure 2 shows the standardized mean bias estimates, their magnitude, and the 
decision on equivalence. Compared to a single game, the combination of locomotion data from 
two games led to a reduction in the mean bias estimates of both regression coefficients (amax-
intercept and slope). However, with the addition of further games, the mean bias for the amax-
intercept did not change meaningfully. By contrast, for the slope, the addition of a fourth and fifth 
game led to a new gradual increase in the mean bias. Thus, with trivial mean biases for both 
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coefficients, the regression lines based on two and three combined games were equivalent to the 
test-based regression line. However, due to the large uncertainty in the estimates, the chance that 
the true effect of the coefficients of these two regression lines is trivial, or that the coefficients are 
indeed equivalent to the coefficients of a test-based line was only assessed as possibly trivial or 
equivalent. 
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Table 1 
Means (and Standard Deviations) of the Test- and Game-based Regression Coefficients and Mean Bias Estimates in Raw and Percentage Units [with 

90% Compatibility Intervals] 

   Game-based coefficients   Test-based coefficients   Mean bias raw units   Mean bias percent units 

Gamesa n amax-intercept Slope   amax-intercept Slope   amax-intercept Slope   amax-intercept Slope 

1 41 4.65 (0.62) −0.128 (0.081)  4.85 (0.32) −0.158 (0.025)  −0.20 [−0.36, −0.03] 0.030 [0.007, 0.052]  −4.06 [−7.42, −0.70] 18.96 [4.74, 33.19] 

2 32 4.85 (0.33) −0.152 (0.033)  4.85 (0.34) −0.156 (0.028)  0.00 [−0.12, 0.11] 0.004 [−0.007, 0.016]  −0.04 [−2.44, 2.35] 2.86 [−4.40, 10.12] 

3 29 4.86 (0.28) −0.151 (0.025)  4.83 (0.36) −0.155 (0.028)  0.03 [−0.08, 0.14] 0.004 [0.007, 0.014]   0.61 [−1.66, 2.89] 2.28 [−4.59, 8.80] 

4 28 4.83 (0.22) −0.145 (0.015)  4.82 (0.35) −0.153 (0.027)  0.02 [−0.09, 0.12] 0.008 [−0.001, 0.017]  0.33 [−1.92, 2.57] 5.12 [−0.96, 11.20] 

5 23 4.84 (0.21) −0.143 (0.017)  4.85 (0.36) −0.155 (0.029)  −0.01 [−0.14, 0.13] 0.012 [0.000, 0.024]  −0.18 [−2.94, 2.58] 7.74 [0.06, 15.41] 

aNumber of games combined for determining the games-based regression line. 
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Figure 2. Standardized mean bias estimate of the coefficients of the game-based maximal acceleration-
initial running speed (amax-vinit) regression line as a function of the number of games combined and the 
respective decision on equivalence to the coefficients of the test-based regression line. The gray shaded 
area shows the trivial effect or equivalence range. Error bars show 90% compatibility intervals. 

Discussion 
In this article, we present a new method for determining amax-vinit regression lines of soccer players 
using game locomotion data. Unlike existing methods, our method accounts for the amount of 
locomotion data used and the individual distribution of high-intensity accelerations over the 
velocity measurement range when identifying maximal accelerations. This is intended to allow for 
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the identification of all maximal accelerations (both those with a positive and those with a negative 
random measurement error) and, thus, to determine valid amax-vinit regression lines. Amax-vinit 
regression lines allow for the derivation of relative acceleration intensity thresholds and are 
therefore essential for creating meaningful activity profiles in soccer. The advantage of a game-
based method over a test-based method for determining amax-vinit regression lines is that it is 
easier to implement, as no time-consuming testing is required. 
Using the new method and varying amounts of game locomotion data from male youth elite 
soccer players, we determined population-specific regression lines and compared them to a test-
based regression line. Game-based regression lines based on locomotion data from two or three 
games differed only trivially from the test-based line. However, due to the large uncertainty in the 
estimates, the chance that regression lines based on two or three combined games are indeed 
equivalent to a test-based line was only assessed as possibly equivalent. The use of data from 
fewer than two or more than three games resulted in larger differences. Thus, in situations in 
which the determination of a test-based, population-specific amax-vinit regression line is not 
possible, our game-based method represents a viable alternative. Contrary to what is assumed for 
existing game-based methods, for our method, there seems to be an optimal amount of 
locomotion data to be used and not a minimally required one. 

Comparison with previous studies: Method 
The method presented in this study differs in several aspects from previously published methods 
for determining amax-vinit (Silva et al., 2023) or AS (Cormier, Tsai, Meylan, & Klimstra, 2023; Miguens 
et al., 2024; Morin et al., 2021) regression lines using soccer players’ training or game locomotion 
data. However, the differences described below and their related mechanisms apply only to the 
methods of Silva et al. (2023), Morin et al. (2021), and Miguens et al. (2024). These methods are 
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conceptually comparable to our method. The method proposed by Cormier, Tsai, Meylan, and 
Klimstra (2023) takes a fundamentally different approach. 
Compared to the methods proposed by Silva et al. (2023), Morin et al. (2021), and Miguens et al. 
(2024), a first difference is that in our method, the number of combined games is taken into 
account when selecting accelerations for the regression analyses. The increase in the number of 
accelerations to be selected with an increasing number of combined games is intended to reflect 
the likely increase in the number of maximal accelerations associated with it. This is because it can 
be assumed that if the number of accelerations to be selected (i.e., the assumed number of 
maximal accelerations) does not correspond to the (unknown) true number of maximal 
accelerations in the underlying data, the regression line is likely to be biased. If the number of 
accelerations to be selected is larger than the existing number maximal accelerations, submaximal 
accelerations will inevitably be selected. This results in an underestimation of an athlete’s true 
regression line (i.e., a too-low amax- or A-intercept). Conversely, if the number of accelerations to 
be selected starts to exceed the existing number of maximal accelerations, the applied 
acceleration selection procedure increasingly selects only maximal accelerations with a positive 
random measurement error. This results in an overestimation of an athlete’s true regression line 
(i.e., a too-high amax- or A-intercept). The occurrence of a random measurement error is 
unavoidable when something is measured (Rabinovich, 2005). Moreover, when measuring 
maximal acceleration using a GPS-based tracking system, the random error is of meaningful 
magnitude (Crang et al., 2023; Fischer-Sonderegger et al., 2021). Notably, an amax-vinit or AS 
regression line based primarily on maximal accelerations with a positive random measurement 
error is also expected to have a steeper slope than the true amax-vinit or AS regression line. This is 
due to the higher random measurement error in the low velocity region compared to the high 
velocity region (Fischer-Sonderegger et al., 2021). Based on these mechanisms, we can therefore 
assume that the methods of Silva et al. (2023), Morin et al. (2021), and Miguens et al. (2024) can 
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determine a regression line with a valid amax- or A-intercept only for a specific number of combined 
games. 
A second difference is that in our method, the individual frequency distribution of high-intensity 
accelerations over the velocity measurement range is taken into account when selecting maximal 
accelerations. Simply put, in areas of the velocity measurement range where an athlete performed 
more high-intensity accelerations, more accelerations are selected. The rationale for this 
methodological approach is that we assume that the frequency distribution of maximal 
accelerations is similar to the frequency distribution of high-intensity accelerations (or is optimally 
equal to it). An incorrect assumption regarding the frequency distribution of maximal 
accelerations over the velocity measurement range leads to two problems. First, in areas where a 
too-low frequency of maximal accelerations is assumed, primarily maximal accelerations with a 
positive random measurement error are selected. Second, in areas where a too-high frequency of 
maximal accelerations is assumed, either maximal accelerations with a lower positive or no 
random measurement error are selected or it comes to the selection of submaximal accelerations. 
Consequently, this leads to a bias in the slope of the regression line. In Silva et al.’s (2023), Morin 
et al.’s (2021), and Miguens et al.’s (2024) methods, an even, non-individual distribution of 
maximal accelerations over the velocity measurement range is assumed. However, in soccer 
games, it is unlikely that maximal accelerations will be evenly distributed. A right-skewed 
distribution is more likely (i.e., more maximal accelerations in the low-velocity range than in the 
high-velocity range) (de Hoyo et al., 2018; Fischer-Sonderegger et al., 2019; Martínez-Cabrera et 
al., 2021). Therefore, these methods are unlikely to determine an amax-vinit or AS regression line 
with a valid slope for soccer players using game locomotion data. 
A third difference is that in our method, a robust regression technique (Yohai, 1987) is used to 
determine the amax-vinit regression line. In brief, this regression technique down-weights the 
influence of unusual observations and, thus, yields parameter estimates that fit the bulk of the 
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data well. This makes this technique well-suited for automated data analysis (Andersen, 2008). 
Silva et al.’s (2023), Morin et al.’s (2021), and Miguens et al.’s (2024) methods use different 
regression techniques and/or outlier detection procedures. Whether a certain procedure in the 
linear modeling process generates a more valid output than others requires further research. 

Comparison with previous studies: Bias 
The present study is the first to assess the validity of an integrated measured population-specific 
amax-vinit regression line. In our study, the regression lines based on locomotion data from two or 
three games were the most similar to the test-based line. Both coefficients showed only trivial bias 
(amax-intercept 0.00 m·s−2 or −0.04% and 0.03 m·s−2 or 0.61%; slope 0.004 or 2.86% and 0.004 m·s−2 
or 2.28%). However, our results can be compared to the results regarding the validity of integrated 
measured AS regression lines. Depending on the method used for determination, Cormier, Tsai, 
Meylan and Klimstra (2023) reported a moderate (0.48 m·s−2 or 6.79%) and trivial (−0.05 m·s−2 and 
−0.98%) bias for the A-intercept of such a regression line. The bias of the slope was not reported. 
For determination, they used locomotion data from 15–19 training sessions or games per athlete. 
Cormier, Tsai, Meylan, Soares, et al. (2023) and Alonso-Callejo et al. (2023) examined how the bias 
of an integrated measured AS regression line changes as a function of the amount of locomotion 
data used for determination. In Cormier, Tsai, Meylan, Soares, et al.’s (2023) study, the bias of the 
A-intercept was minimized using 16 training sessions or games per athlete (−0.28 m·s−2, small) 
and that of the slope using 6 (exact value not evident in article but tending towards zero). In 
Alonso-Callejo et al.’s (2023) study, the bias of the A-intercept was minimized using six training 
sessions or games per athlete (−0.03 m·s−2 or −0.41%). The bias of the slope was not reported. In 
summary, the present study is the first to determine an amax-vinit or AS regression line showing 
only trivial bias for both coefficients. This required a relatively small amount of locomotion data 
from only two or three games. 
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Mechanisms 
The trivial biases observed for the regression lines based on two or three games show that in 
these cases, the method’s assumptions regarding the number and distribution of actions with 
maximal acceleration were sufficiently well met in the underlying data. As our method adjusts the 
assumption regarding the number of actions with maximal acceleration to the number of 
combined games, we expected regression lines of equal validity, regardless of the number of 
combined games. However, this was not the case. Further analysis of our data showed that the 
slope of the regression line used in the method for identifying high-intensity acceleration actions 
gradually decreased with an increasing number of combined games (i.e., became flatter). Due to 
the gradual nature of this decrease, we consider it to be effectively caused by the number of 
games combined rather than by sampling variation. Accordingly, we also consider the observed 
mean bias changes to be actually caused by the number of games combined and not by sampling 
variation. 

Strengths and limitations 
The main strength of the present study is the proposal and in-depth discussion of a new method 
for determining game-based amax-vinit regression lines. This method is the first to account for the 
amount of locomotion data used and the individual distribution of high-intensity accelerations 
over the velocity measurement range when identifying maximal accelerations. Further, compared 
to previous studies (Alonso-Callejo et al., 2023; Cormier, Tsai, Meylan, & Klimstra, 2023; Cormier, 
Tsai, Meylan, Soares, et al., 2023), this study presents a superior methodology for validity 
assessment. This relates to the selection of the study participants (athletes from multiple teams 
instead of a single team), the type of locomotion data used (exclusively data from official 
championship games instead of a mixture of training and game data), and the statistical analysis 
(equivalence test instead of traditional hypothesis test). A limitation of the study is the unknown 
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reliability of the test-based regression line. Due to the familiarization test, we consider a systematic 
bias to be unlikely. However, an assumption regarding random measurement variation is not 
possible. 

Practical application 
The test-based amax-vinit regression line provided in this study can be used to derive relative 
acceleration intensity thresholds for the population of male youth elite soccer players 
(Sonderegger et al., 2016). These thresholds can then be used to validly assess the intensity of 
acceleration actions and thus create meaningful activity profiles. The presented game-based 
method is a viable and easy-to-implement alternative to the test-based method for determining 
amax-vinit regression lines in additional populations of soccer players (e.g., women, other age 
categories, or performance levels). However, it is important to be aware of the factors that 
influence the validity of a game-based amax-vinit regression line (number and frequency distribution 
of actions with maximal acceleration in the underlying locomotion data). 

Conclusion 
The method presented in this study for determining the amax-vinit regression line of soccer players 
using game locomotion data overcomes several limitations of existing methods. Our results show 
that the method is a viable alternative to the test-based method for determining population-
specific amax-vinit regression lines in soccer. This greatly simplifies the process of determining 
relative population-specific acceleration intensity thresholds in soccer. Such thresholds are 
essential for a valid intensity assessment of acceleration actions and, consequently, for creating 
meaningful activity profiles. 
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