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Abstract 94 

Research on physical activity and health, including planned and structured forms such as acute 95 

and chronic physical exercise, has focused on understanding potential dose-response 96 

relationships. Traditionally, the variables of (i) Frequency, (ii) Intensity, (iii) Time, (iv) and Type 97 

(known as the FITT principle) have been used to operationalize the dose of physical activity. 98 

In this article, we describe the limitations of FITT and propose that it should be complemented 99 

by the underappreciated variable density, which defines the temporal distribution of physical 100 

activity stimuli within a single bout of physical activity or between successive bouts of physical 101 

activity relative to time spent resting (e.g., in napping/sleeping or sedentary behaviors). Using 102 

the field of physical activity and brain health as an example, we discuss challenges and 103 

opportunities for further research to use density to improve our understanding of dose-104 

response relationships between physical activity and health-related outcomes. 105 

 106 
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1. Introduction 109 

Physical activity (PA), which includes planned and structured forms such as acute and chronic 110 

physical exercise (see Table 1 for definition), is associated with improved brain health across 111 

various age groups, and with different health status [1–4]. Regular engagement in PA is 112 

beneficial for brain health at multiple levels [5–8], namely (i) the molecular and cellular level 113 

(e.g., expression of brain-derived neurotrophic factor [9–15]), (ii) the functional and structural 114 

brain level (e.g., brain activity patterns [16–18] or hippocampal volume [19–21]), (iii) the 115 

behavioral level (e.g., better cognitive performance [1, 2, 22–30]), and (iv) the risk of adverse 116 

health-related events (i.e., lower dementia risk [31–34]). However, the optimal dose of PA, 117 

including but not limited to the time point at which PA should be applied or repeated to trigger 118 

changes in specific health-related outcomes (i.e., brain health), is not fully understood [6, 8, 119 

22, 26, 27, 35, 36]. 120 

There is currently a need for greater clarity in the definition of the dose of PA (including physical 121 

exercise) [37–42]. This extends to the call for a more complete reporting of dose in intervention 122 

studies using PA [41, 43–45]. From a practical perspective, elucidating the complex dose-123 

response relationship of PA and health-related outcomes, comprising the interindividual 124 

response variability, is an important prerequisite when aiming to maximize the benefits of PA 125 

interventions (e.g., on brain health) by individualizing the PA prescription [37, 38, 40, 45–55].  126 

Traditionally, the dose of PA has been characterized and prescribed using the FITT principle, 127 

an acronym representing: (i) Frequency, (ii) Intensity, (iii) Time (also referred to as duration), 128 

and (iv) Type of PA [51, 56–68]. The FITT principle can also be used to retrospectively analyze 129 

how the dose of free-living PA (e.g., unplanned and unstructured forms of PA) is associated 130 

with health-related outcomes, which can inform recommendations for a specific amount of PA 131 

to maintain or improve health. The FITT principle is also commonly used in systematic reviews 132 

and meta-analyses when analyzing the dose-response relationship between PA and measures 133 

of brain health [26–28, 60]. Some researchers have suggested extending the four elements of 134 

the FITT principle by the factors of: (v) Volume (V), which is defined as the total amount of PA 135 

spent in a given intensity zone that is typically operationalized as a product of the duration of 136 

the acute PA bouts spent in a particular zone of intensity x frequency [57]; and, (vi) Progression 137 

(P), which characterizes the gradual and systematic increase of the PA stimulus to maintain 138 

overload and, thus, provoke further adaptation(s) [69], into FITT-VP [58, 70]. However, 139 

adhering to the FITT-VP principle to prescribe and analyze PA has several disadvantages. 140 

First, the FITT-VP principle does not take into account all acute and chronic variables (e.g., 141 

movement frequency) that determine the dose of PA (especially of planned and structured 142 

forms such as acute and chronic physical exercise) [37, 38, 40, 71]. Second, the FITT-VP 143 

principle does not consider the temporal distribution of PA stimuli within a single bout of PA or 144 



between successive bouts of PA relative to the time spent resting, which is conceptualized as 145 

density (see definition below) [37, 38, 40]. Third, each component of the FITT-VP principle is 146 

treated somewhat independently when in reality variables characterizing PA can be inter-147 

related [37, 71] (e.g., intensity is significantly influenced by other variables such as acute 148 

duration [72, 73] and movement frequency [e.g., cadence operationalized as revolutions per 149 

minute when using a cycle ergometer] [74, 75]). 150 

For example, one study provided evidence that exercise intensity influences the duration 151 

individuals can spend in a specific exercise intensity zone [72]. In particular, in healthy younger 152 

adults (i) the maximal duration (i.e., defined in minutes) that the participants were able to spend 153 

in a given exercise intensity zone during a constant-load exercise test, and (ii) the physiological 154 

responses characterizing distinct duration phases during this performance test show a high 155 

interindividual variability, while the relative duration (e.g., operationalized as % of maximal 156 

duration) was comparable among participants [72]. These findings suggest that a personalized 157 

exercise prescription should consider the individualization of the duration spent in specific 158 

exercise intensity zones [72, 73]. 159 

Regarding movement frequency, a study in trained cyclists showed that, at the same exercise 160 

intensity, cycling at a higher movement frequency (i.e., 120 revolutions per minute on a cycle 161 

ergometer) led to higher physical demands (i.e., operationalized by ratings of perceived 162 

exertion, peripheral blood lactate concentration, heart rate, indices of heart rate variability [74], 163 

or spectral parameters of the electroencephalography [76]) than cycling at a lower movement 164 

frequency (i.e., 60 revolutions per minute) [74, 76]. In addition to the acute differences in 165 

physiological markers, there is evidence that in trained cyclists endurance training at different 166 

movement frequencies (i.e., high vs. low cadence training for four weeks) may differently 167 

influence specific brain measures [77, 78]. In particular, in trained cyclists endurance training 168 

at either high or low cadence produces similar improvements in markers of endurance 169 

performance (i.e., maximal oxygen uptake and power at the individual anaerobic threshold) 170 

[77, 78]. However, training at high cadence led to more pronounced changes in several brain 171 

parameters (e.g., reduction in alpha-, beta- and overall-power spectral density [77] or increase 172 

in frontal alpha/beta ratio [78] assessed during an incremental exercise test). 173 

The above-presented examples highlight the complexity of determining or providing a specific 174 

dose of PA and suggest that an oversimplification of dose may hinder accurate prediction and 175 

optimization of PA interventions on health [37, 38, 40]. This is also supported by the fact that 176 

different PA variables converge in the PA-induced stimulus (i.e., external load) that feeds into 177 

the response matrix, where it interacts with non-modifiable factors such as age, sex, or genetic 178 

predisposition, and (potentially) modifiable non-PA-related factors such as sleep, nutrition, 179 

general stress, and environmental factors, and then triggers specific biological processes that 180 

determine the dose (i.e., defined as (a) specific marker(s) of internal load that are involved in 181 



biological processes driving the desired changes in outcomes of interest – see Table 1) [37, 182 

38, 40, 71, 79]. Thus accounting for such interrelations of PA variables must not only be 183 

considered when tailoring, programming, or progressing PA interventions [37, 38, 40, 71, 80] 184 

but also as part of the assessment and analytic approaches used. 185 

Consequently, to advance the understanding of the dose-response relationship of PA with 186 

specific domains of health (i.e., brain health [40]), it is necessary to consider additional 187 

variables, such as density, which we will show can allow for a more precise determination of 188 

the dose of PA and provide a more nuanced approach beyond the FITT-VP principle. 189 

190 

Table 1. Definition of key terms. PA: physical activity; MET: metabolic equivalent of the task; 191 
SB: sedentary behavior 192 

Key terms 

Brain Health …can be defined as the optimal development and maintenance of 
brain integrity which encompasses: (i) structural (e.g., hippocampal 
volume) and functional (e.g., changes in brain activity) brain 
parameters; (ii) functions that depend on the integrity of the brain, 
including but not limited to mental health, cognition, and movement; 
and (iii) the absence of neurological disorders (e.g., dementia). [81, 
82] 

Dose …is characterized by three key components: (1) external load (i.e., 
defined as the work performed by the individual independent of 
internal characteristics), (2) influencing factors (i.e., all factors [e.g., 
including environmental factors] that can strengthen or weaken the 
stimuli of a single bout of PA), and (3) internal load (i.e., defined as 
the individual and acute physiological, psychological, motor, and 
biomechanical responses to the external load and the influencing 
factors during and/or after the cessation of a single bout of PA). 
Thus, the dose can be operationalized and monitored by using 
specific indicators of internal load involved in the biological 
processes that drive the desired changes in outcomes of interest. 
[37, 40, 79] 

Physical Activity 

(PA) 

…can be defined as any muscle-induced bodily movement (e.g., in 
occupational or leisure time) that results in an increase in the energy 
expenditure above ∼1.5 metabolic equivalents of the task (MET; 1 
MET = 1 kcal (4.184 kJ) • kg−1 • h−1). This includes planned and 
structured forms such as acute and chronic physical exercise (see 
the following definition). PA can be divided into acute (single 
bout/session of) and chronic (multiple bout/session) PA based on 
temporal characteristics.” [81, 83–90] Furthermore, PA can be 
differentiated based on the domains in which it occurs, including 
recreation/leisure time (such as household), transportation, 
education, or occupation [87, 88, 91–95]. 



Physical Exercise …can be defined as a specific form of PA that is planned, structured, 
repetitive, and designed to improve or at least maintain the 
performance in one or more fitness dimensions. Physical exercise 
can be divided into acute (single bout/session) and chronic (multiple 
bouts/sessions) based on temporal characteristics, also referred to 
as physical training [83–86, 88, 89, 91]. In addition, physical exercise 
is typically performed in recreational/leisure time when it is not part 
of healthcare service (e.g., rehabilitation) or occupation (e.g., elite 
athlete). To delimit physical exercise from PA: Physical exercise is 
always PA, PA is not necessarily physical exercise [96]. 

Sedentary Behavior 

(SB) 

…can be defined as any waking behavior characterized by a low 
energy expenditure (≤1.5 MET) while sitting or lying down [87–89, 
92, 97, 98]. SB is ubiquitous, due to rapid changes in human 
environmental, economic, social, and technological contexts. 
Scientifically, SB has been identified as a newer component of the 
activity spectrum, which can adversely impact health [99–102]. SB 
can be categorized as cognitively active (e.g., reading) and 
cognitively passive (e.g., watching television) [81, 103]. For many 
adolescents and adults, daily time spent sedentary is ≥ 5 hours per 
day [104–106]. 

193 

2. Method194 

Given that the German exercise and training variable “Belastungsdichte” [107] (hereafter 195 

referred to as “density”), which has its roots in the field of exercise science, is not well-196 

recognized internationally, we aimed to improve its accessibility by introducing this variable to 197 

the broader scientific community. In this context, we extend the description and application of 198 

“density” to the field of free-living PA, where it has not previously been applied. As “density” is 199 

underappreciated in the scientific community, we opted to perform a narrative review, since 200 

there is not a large and specific enough literature base to conduct a systematic review (e.g., 201 

on the role of density of PA on brain health). 202 

The author group comprises junior, mid-career, and senior researchers from different 203 

disciplines, and cultural and ethnic backgrounds. 204 

205 

3. Definition of density206 

Density can be defined as the distribution of PA bout(s) (also referred to as “work bout[s]”) or 207 

portions thereof over a specific time interval (e.g., within a single bout, day, week, month, or 208 

year) in comparison to the time spent resting (also referred to as “rest, recovery or relief bouts”) 209 

[8, 40, 80, 108]. Assuming the characteristics of work bouts remain similar (i.e., are identical 210 

in terms of acute and chronic variables that characterize PA), density is determined by the 211 



duration of rest bouts. In other words, density can be modified by changing the duration of 212 

such bouts to adjust the work-rest ratio.  213 

In this context, we would like to highlight three important points. First, density is related to the 214 

construct of the work-rest ratio, but differs conceptually in that density is associated with 215 

changing the time spent at rest (i.e., duration of the rest bout[s]), whereas the work-rest ratio 216 

can also be adjusted by increasing the duration of the work bout(s). Second, the variables that 217 

characterize the work bout(s) and the rest bout(s), namely the type of activity, the intensity, 218 

and the duration, need to be considered to gain a more nuanced understanding of the influence 219 

of density and, in turn, the dose-response relationship of PA with measures of brain health. 220 

Third, density needs to be further differentiated based on the temporal context, namely (i) in 221 

acute density (i.e., in the context of acute PA; see Figure 1 a) and (ii) in chronic density (i.e., 222 

in the context of chronic PA; see Figure 1 b) [37]. 223 

 224 

 225 

Figure 1: (a) Schematic illustration of different acute densities using an acute bout of physical exercise 226 
in interval mode as an example. In our example, the number of the work bouts (4x) and rest 227 
bouts (4x) is equal whereas the duration of the rest bout in the upper example (i.e., low acute 228 
density; the work-rest ratio of 1:2) is twice as long as in the lower one (high acute density; the 229 
work-rest ratio of 1:1) resulting in a different acute density and, in turn, dose. In this example, 230 
an active rest bout, which is conducted at half of the intensity as the work bout, is selected. 231 



The example also illustrates the fact that specific acute variables are interrelated (e.g., acute 232 
density, acute duration, and intensity of work and rest intervals). (b) Schematic illustration of 233 
the difference between frequency and chronic density in the context of chronic physical 234 
activity. The visualization shows that the same frequency (3x physical activity bouts per week) 235 
can be distributed differently over a week resulting in a different chronic density and, in turn, 236 
dose. The asterisk (*) indicates that other acute (i.e., type of physical activity, intensity, and 237 
acute duration) and chronic variables (i.e., chronic duration) that characterize the bout(s) of 238 
physical activity are assumed to be constant. Please note that we used sedentary behavior 239 
as an example for the rest bout(s). With regard to acute and chronic physical activity, physical 240 
activity at a lower intensity than that of the work bout(s), standing, and sleep can be also 241 
encompassed by the rest bout(s), depending on the context. Furthermore, the 242 
operationalization of chronic density depends on the period of interest (e.g., day, week, 243 
month, year). 244 

 245 

3. Operationalization of acute and chronic density 246 

In the following sections, we propose different approaches to operationalize and analyze 247 

density considering the temporal context of PA, the availability and accessibility of population-248 

based datasets, and recent advances in technology to assess PA (i.e., miniaturized wearables 249 

to track activities within the 24-hour activity cycle).  250 

3.1 Acute density 251 

As illustrated in Figure 1a, acute density can be operationalized by the duration of the rest 252 

bout(s) between the successive work bouts (i.e., in seconds or minutes or relative to the 253 

duration of the work bout) within a single session of PA. Thus, a modification of acute density 254 

can be achieved by decreasing or increasing the duration of the rest bout(s), resulting in a 255 

higher acute work-rest ratio (i.e., higher density) or a lower acute work-rest ratio (i.e., lower 256 

density), respectively.  257 

3.2 Chronic density – Simple analysis approaches 258 

The operationalization of chronic density depends on the period of interest (e.g., day, week, 259 

month, year). Although chronic density can be operationalized in minutes or hours when 260 

several isolated work bouts are performed throughout the day, the operationalization of chronic 261 

density is more challenging when longer periods are considered (e.g., week, month, year), 262 

especially for unplanned and unstructured forms of PA. To illustrate chronic density in terms 263 

of a micro-cycle of one week, consider the following example: if a person is physically active 264 

on Monday, Wednesday, and Friday or Monday, Tuesday, and Wednesday, this will result in 265 

the same frequency but not the same chronic density within a micro-cycle of one week (see 266 

also Figure 1b). More specifically, in the first example shown in Figure 1b, the person is 267 

physically active on non-consecutive days (i.e., work bouts spread over a week), whereas in 268 

the second example, the person is physically active on consecutive days (i.e., work bouts 269 

performed on three consecutive days).  270 



Accordingly, a simple approach to studying the influence of different chronic density patterns 271 

on brain health is to characterize different groups of individuals based on their chronic density 272 

patterns (e.g., a low chronic density group in which individuals performed PA on non-273 

consecutive days versus a high chronic density group in which individuals performed PA on 274 

consecutive days – see also Figure 1). For chronic physical exercise, the influence of chronic 275 

density on specific measures of brain health can be studied by comparing intervention groups 276 

that were instructed to perform physical exercise sessions with different chronic densities (e.g., 277 

a low chronic density group performing physical exercise sessions on non-consecutive days 278 

versus a high chronic density group performing physical exercise sessions on consecutive 279 

days). 280 

3.3 Chronic density – Sophisticated analysis approaches 281 

Comparable to other studies analyzing the influence of PA patterns (e.g., intensity, and 282 

duration of the acute PA bouts) on health-related outcomes (e.g., cognitive performance or 283 

cardiometabolic health), the application of more sophisticated approaches using distributional 284 

data analysis [109] or machine learning (e.g., via K-means clustering) [110–113] holds some 285 

promise for identifying groups of individuals with distinct chronic density patterns. Despite 286 

some limitations and challenges (e.g. the need for large sample sizes and, high-dimensional 287 

data, the time-consuming nature of training algorithms, and the lack of benchmark data), 288 

machine learning-based approaches provide several advantages for the purpose of profiling 289 

PA patterns (e.g., more accurate classification and prediction, the possibility of a hypothesis-290 

free/generating approach) [114–118]. Another advantage of machine learning-based 291 

approaches is their capacity to handle large, complex, and high-dimensional datasets [114]. 292 

The ability and flexibility to handle such datasets make machine learning-based approaches 293 

well-suited for analyzing the influence of density on specific markers of brain health because 294 

density is a more complex variable than other PA variables (e.g. duration). This assumption is 295 

supported by the fact that these approaches have already been successfully applied to 296 

elucidate the influence of “micropatterns” of PA including intensity and duration (also referred 297 

to as bout length) on health-related outcomes such as mortality [119, 120] and cancer 298 

incidence [121]. Thus, extending machine learning-based approaches to density is a promising 299 

area for future research to elucidate the influence of different chronic density patterns on 300 

measures of health in general and brain health in particular.  301 

In the context of brain health, the application of such sophisticated classification and analysis 302 

techniques may enable the investigation of specific research questions (e.g., is a low density 303 

of moderate-intensity PA in older adults more, less, or equally beneficial for brain health than 304 

having a high density of moderate-intensity PA?) or to study the association of specific density-305 

related PA patterns, such as the stability of density, with measures of brain health. In this 306 

context, we propose that the stability of density is characterized by the periodicity and the 307 



fluctuations (variability) that are reflected by the degree of randomness of the duration of the 308 

rest bouts between successive work bouts within a given time interval (e.g., day, week, month, 309 

year). We suggest that, among other approaches [122], the stability of density can be 310 

operationalized by measures used to assess fractal dynamics. 311 

Fractal dynamics are characterized by the self-affinity (also referred to as self-similarity or scale 312 

invariance) of a given signal (e.g., derived from accelerometers) across time scales [123–127]. 313 

There is a strong case to be made that fractal dynamics can help to better understand the 314 

periodization of chronic physical exercise [128], and several studies have used this approach 315 

to analyze physiological data (e.g., frequently applied to heart rate variability data [129–146]) 316 

or PA patterns [147–150]. In the context of PA, a popular method for assessing fractal 317 

dynamics (e.g. of PA [147–150]) is detrended fluctuation analysis (DFA), which is a 318 

nonstationary time-series analysis of specific signals (e.g., accelerometer data) that reflects 319 

the correlative structure and fractal dimension of signal fluctuations across a range of time 320 

scales based on a modified root-mean-square analysis [126, 127, 151–153]. For instance, a 321 

study using data from 5097 middle-aged adults showed that greater fractal stability of daily PA 322 

(i.e., assessed via a thigh-mounted accelerometer over seven days and reflected in a higher 323 

DFA scaling exponent) was associated with better verbal fluency performance in males but not 324 

in females [150]. Such sex-specific differences are consistent with the evidence suggesting 325 

that sex is an important moderate in the relationship between PA and brain health [47, 48, 326 

154–160]. However, whether such findings extend to the chronic density of PA remains a 327 

promising area for further investigations. 328 

3.4 Recommendations regarding the assessment of chronic density 329 

To quantify the chronic density of PA, we recommend the application of device-based 330 

assessments to complement subjective assessments (i.e., questionnaires) for the following 331 

reasons. First, popular questionnaires to assess chronic PA such as the International Physical 332 

Activity Questionnaire (IPAQ) only quantify the frequency but not the chronic PA density (i.e., 333 

neither the long form [161] nor the short form [162] of the IPAQ), although some recently 334 

developed questionnaires do collect such information (e.g., Daily Activity Behaviours 335 

Questionnaire [163–166]). Second, although subjective assessment tools (e.g., 336 

questionnaires) have several advantages (e.g., low burden for participants, cost-effective and 337 

convenient administration), they are prone to several sources of bias (e.g., recall bias or social 338 

desirability bias) that can confound the estimation of chronic PA patterns [95, 167–169]. 339 

Device-based assessment tools can circumvent the above-described limitations of subjective 340 

assessment tools, but it should be considered that (i) the applied device-based measurement 341 

tool needs to be valid and reliable [170–172], and (ii) there is not yet a fully established 342 

consensus on the application of device-based measurement tools (e.g., placement and 343 

sampling frequency of the device) or on the data processing procedures to obtain specific 344 



indices of PA (e.g., minimal length of the epochs, filter, cut-off points, non-wear-time definition) 345 

although some recommendations exist [173–175].  346 

Furthermore, we recommend combining popular device-based tools such as accelerometers 347 

with other sensors (e.g., for environmental light, barometer/altimeter, or geolocation) and 348 

digital tools (e.g., smartphones) to allow for the recording of contextual information (e.g., 349 

weather via geolocation at specific time point [176] or type of activity conducted during rest 350 

bout(s) via an accelerometer-triggered e-diary [176–182]). The latter approach is also referred 351 

to as ambulatory assessment [81, 177, 183, 184]. In addition, regarding the analysis of chronic 352 

density in the context of chronic PA, future studies should consider SB and sleep to provide a 353 

more holistic understanding of the 24-hour activity cycle on health in general [185–189] and 354 

brain health in particular [81, 92, 190–193]. 355 

3.5 The potential of density to complement existing analysis approaches of the 24-hour activity 356 

cycle 357 

Since density specifies the temporal distance between stimuli within or between successive 358 

bouts of PA, it can complement other approaches used to analyze the influence of PA patterns 359 

within the 24-hour activity cycle on health-related outcomes, namely (i) timing of PA (e.g., time 360 

of day on which the PA has been conducted such as in the morning, afternoon or evening 361 

[194–196]) and (ii) compositional data analysis (e.g., using the relative time spent in a specific 362 

activity [e.g., PA] in relation to the time spent in other activities [e.g., SB or sleep] instead of 363 

absolute times spent in a specific activity for analysis [197–204]).  364 

In terms of the diurnal impact of PA, PA is an important “Zeitgeber” (time cue) for the human 365 

circadian system [205] and thus a critical factor in sleep health, a mediator of the effects of PA 366 

on brain health [5, 206]. In this regard, the findings of a recent systematic review suggest that 367 

there is currently no consistent evidence in adults as to whether PA conducted at one time of 368 

day (e.g., morning) is associated with more pronounced health benefits than PA performed at 369 

a different time of day (e.g., afternoon or evening) [194]. In general, PA is associated with 370 

better sleep health [207–212], but there is no compelling evidence that PA performed at any 371 

particular time of day is superior for promoting sleep health [209, 213, 214] because even 372 

acute PA conducted in the evening is not typically detrimental for sleep [215–217] if it is not 373 

performed too close before bedtime (≤1 hour) [215]. To the best of our knowledge, the timing 374 

of PA and its direct relationship with measures of brain health so far has received relatively 375 

little attention in empirical studies. The findings from one study suggest that, in adolescents, 376 

an acute bout of physical exercise in the morning is more effective in improving behavioral 377 

measures of brain health (e.g., global reaction time), compared with the afternoon [218]. 378 

However, currently (i) there is a lack of studies on the influence of the timing of PA on brain 379 

health, and (ii) the evidence on the timing of PA on sleep health, an important mediator of the 380 



effects of PA on measures of brain health [5, 206], is less clear. Thus, future research is needed 381 

to draw firm conclusions on whether the timing of PA can influence specific measures of brain 382 

health differentially [219]. Such future research on the timing of PA is likely to benefit from 383 

considering density, which specifies the temporal distance between stimuli within or between 384 

successive bouts of PA (e.g., the time between morning and/or evening bouts of PA).  385 

Compositional data analysis has been used to investigate the relationship between PA and 386 

behavioral measures of brain health in preschoolers [220–222], middle-aged [223], and older 387 

adults [224] and has provided valuable insights into the complex relationship between PA and 388 

brain health. For example, compared to other activities of the 24-hour activity cycle (e.g., SB 389 

and sleep), a loss of time spent in moderate-to-vigorous PA appears to be relatively detrimental 390 

to cognitive performance (i.e., cognition composite score) in middle-aged adults, given its 391 

smaller relative amount in the 24-hour cycle [223]. Notably, in older adults, longer time spent 392 

in light-intensity PA was associated with better inhibitory control (i.e., operationalized by Stroop 393 

task performance), especially when accumulated in bouts longer than 10 minutes [224].  394 

Comparable to compositional data analysis approaches, a promising area for further 395 

investigations is to operationalize density as the relative time spent in work bout(s) (e.g., PA in 396 

a specific intensity zone) in relation to the time spent in rest bout(s) (e.g., SB or sleep) to further 397 

our understanding of the temporal dynamics of PA and their influence on brain health. Such a 398 

better understanding of the temporal dynamics of PA is needed to better inform the 399 

individualization of PA interventions [225]. 400 

3.6 Interim summary 401 

Taken together, chronic density captures information beyond that provided by frequency, 402 

because frequency only specifies the number of PA bouts in a given time interval (e.g., day, 403 

week, month, year) but not their distribution within that time interval. Given that the dose of PA, 404 

which is influenced by the external load and confounding factors in terms of the acute 405 

psychophysiological responses elicited [37, 40], is an important factor in inducing changes in 406 

measures of brain health, including cognition [22, 27], it seems reasonable to assume that 407 

acute and chronic PA performed at different densities might differentially influence measures 408 

of brain health. This latter assumption is also supported by the fact that density is also related 409 

to exercise intensity [80, 226, 227] and both acute and chronic density are variables that are 410 

important in inducing a specific level of overload and achieving progression [70], both of which 411 

are well-known and important factors and principles influencing the dose of PA and therefore 412 

the desired outcomes [40, 69]. In the next section, we will discuss the role of density in 413 

modifying the dose of PA in more detail.  414 

 415 



4. Density and the dose of physical activity 416 

Currently, neither the precise dose [6, 8, 22, 26, 27, 35, 36] nor the neurobiological 417 

mechanisms that drive the positive effects of acute and chronic PA on brain health are fully 418 

understood [5, 6, 23, 40, 228–230]. This knowledge gap extends to the empirical evidence on 419 

how density may influence the dose and neurobiological mechanisms that drive brain health. 420 

However, our assumption that accounting for density is crucial when aiming to elucidate the 421 

dose-response relationship between PA and brain health is supported by evidence from (i) 422 

acute PA studies on the temporal dynamics of specific markers of brain health and (ii) studies 423 

on glycemic control and brain health in adults with type 2 diabetes, although the latter cannot 424 

be readily generalized to healthy adults. 425 

4.1 Temporal dynamics of acute physical activity for brain health 426 

There is some evidence from a meta-analysis that the after-effects of acute physical exercise 427 

on cognitive performance are transient, depending on the characteristics of the physical 428 

exercises, such as type of physical exercise, intensity, and duration [25]. More specifically, 429 

according to this meta-analysis, the greatest effects of acute physical exercises on cognitive 430 

performance can be expected 11-20 minutes after the cessation of the acute bout of physical 431 

exercises and diminish with longer delays [25]. However, some studies provide evidence that 432 

the after-effects of acute physical exercises on specific behavioral measures of brain health 433 

(e.g., executive functions) can even persist for up to 30 minutes in healthy younger adults 434 

[231–234], 60 minutes in children [235] and younger adults [236], and 90 minutes in healthy 435 

younger adults, [237] or even that in healthy younger adults performing acute physical exercise 436 

four hours after learning is more beneficial for improving memory performance and 437 

hippocampal pattern similarity (i.e., assessed 48 hours later) as compared to performing acute 438 

physical exercise immediately after learning the task [238].  439 

Based on the paucity of research in this area, the exact time course and moderators (e.g., 440 

acute PA-related factors such as type, intensity, duration, and non-PA-related factors such as 441 

age, sex, health status, and fitness level) of the after-effects of acute PA on specific measures 442 

of brain health remain somewhat elusive, at least in part due to methodological challenges 443 

(e.g., a limited number of follow-up assessments, confounding influence of activities performed 444 

between cessation of acute PA and cognitive test administration) [23]. However, based on the 445 

above-presented evidence, it is reasonable to assume that considering temporal dynamics of 446 

PA - conceptualized as density - has a great potential to add to our understanding of the dose-447 

response relationship of acute PA on specific measures of brain health. More importantly, 448 

considering density in future research may help to elucidate the precise time point(s) at which 449 

the acute PA stimulus needs to be applied or repeated to prolong the acute PA-related benefits 450 

on specific measures of brain health. Such information on the appropriate timing to set a PA 451 



stimulus is thus crucial to inform an experimental design and to maximize the effectiveness of 452 

PA interventions (e.g., “just-in-time adaptive PA interventions” [239–241]). 453 

Several studies support the notion that the density of the PA can be important in optimizing the 454 

effectiveness of PA interventions. For example, two studies in healthy younger adults 455 

investigated the effects of two repeated acute bouts of high-intensity interval exercise (HIIE, 456 

4x 4-minute work bouts at 90% of VO2 peak interspersed with 3-minute rest bouts at 60% VO2 457 

peak) on inhibitory control (i.e., assessed by the Stroop task every 10 minutes after the cessation 458 

of each bout of physical exercise for 5x times) [242, 243]. In both studies, a recovery interval 459 

of 60 minutes separated the first bout of acute HIIE from the second bout of HIIE, in which the 460 

Stroop task performance was repeatedly assessed [242, 243]. These studies showed that 461 

inhibitory control (i.e., reverse Stroop interference score) improved immediately [242, 243] and 462 

10 minutes [243] after exercise cessation after the first and second bout acute bouts of HIIE 463 

compared to the pretest. However, only after the first acute bout of HIIE the after-effect did 464 

persist up to 40 minutes after exercise cessation [242, 243]. In contrast, the executive 465 

performance assessed 10 minutes [242] or 20 minutes [243] after the second bout of HIIE was 466 

not significantly different from the pretest and was lower than that of the first bout of HIIE when 467 

assessments at 20 minutes [242], 30 minutes [242], and 40 minutes [242, 243] (but not 50 468 

minutes [242, 243]) after exercise cessation were considered. Collectively, these observations 469 

suggest that the acute PA-related effects on inhibitory control were less pronounced in the 470 

second bout of HIIE compared to the first bout of HIIE. Hypothetically, such a diminished effect 471 

after the second bout of HIIE could be, among other factors, related to the relatively close 472 

temporal proximity between the two single bouts of HIIE (i.e., 60 minutes).  473 

Based on the observation that the acute PA-induced performance improvements in inhibitory 474 

control correlated with changes in blood lactate concentration in both studies [242, 243] and 475 

that changes in peripheral blood lactate concentration were significantly lower during and after 476 

the second bout of HIIE [243], it seems reasonable to speculate that there is a neurobehavioral 477 

relationship between both measures [8, 40, 108, 244, 245]. This assumption is supported by 478 

the fact that peripheral blood lactate can cross the blood-brain barrier via monocarboxylate 479 

transporters and be utilized as “fuel” for cognitive processes [246–254], which may further 480 

explain the positive associations between acute PA-induced blood lactate increases and 481 

cognitive enhancement. Indeed, recent studies have reported that changes in peripheral blood 482 

lactate concentration are correlated with acute PA-related improvements in cognitive 483 

performance [255–257] although it remains somewhat unclear whether blood lactate changes 484 

are a mediator of acute PA-induced benefits on cognitive performance because only one study 485 

found evidence in favor of this idea [258] while another did not [259].  486 

In addition, there is evidence that a change in peripheral blood lactate concentration (e.g., 487 

induced by acute physical exercise [260] or infusion at rest [261]) is associated with a change 488 



in the concentration of serum levels of the brain-derived neurotrophic factor (BDNF), an 489 

important neurotrophin involved in processes of PA-related neuroplasticity and brain health [7, 490 

12, 15, 262–267]. Notably, in younger healthy adults BDNF changes in response to acute PA 491 

are correlated with cognitive improvements [268], lending credence to the hypothesis that 492 

BDNF is involved in acute PA-induced improvements in behavioral measures of brain health 493 

[269]. Such acute PA-triggered effects of BDNF on cognitive performance are likely to be 494 

transient, as several studies on the kinetics of BDNF have consistently shown that elevated 495 

BDNF levels return to baseline 15-60 minutes after exercise cessation (for review, see [9]), 496 

supporting the notion that temporal dynamics (e.g., density) should be considered when 497 

examining the effects of acute PA on brain health.  498 

Regarding the functional brain level, alterations in cerebral blood flow (CBF) are hypothesized 499 

to mediate the acute effects of PA on behavioral measures of brain health [23]. Indeed, some 500 

studies provide evidence that acute PA-induced changes in cerebral blood velocity (CBV), a 501 

surrogate for CBF that can be operationalized by monitoring middle cerebral artery velocity via 502 

transcranial Doppler ultrasound [270–273], correlate with acute PA-induced improvements in 503 

behavioral measures of brain health (i.e., executive functioning operationalized by the 504 

antisaccade task) [274, 275]. The acute PA-induced increase in CBV can persist for up to 2 505 

hours after exercise cessation depending on several factors (e.g., characteristics of the person 506 

and the acute bout of PA, methodological factors - for review see [270]) but typically returns to 507 

baseline levels relatively shortly after exercise cessation [270, 271] (e.g., 30 minutes - for 508 

review see [270]). Comparable to the transient effects of acute PA at the cellular and molecular 509 

level (e.g., BDNF), the transient nature of acute PA-related changes at the functional brain 510 

level (e.g., CBF) urges future research to consider density as a variable to facilitate our 511 

understanding of the neurobiological mechanisms mediating the effects of acute PA on brain 512 

health, which is currently relatively scant [5, 23, 229]. Such a better understanding of the 513 

temporal dynamics at different levels of analysis [5, 23, 40] (e.g., molecular and cellular levels, 514 

such as changes in the noradrenergic and dopaminergic systems [230] or functional levels, 515 

such as brain activity or connectivity changes [17, 18]) may yield a more robust understanding 516 

of the potential dose-response relationship, which in turn can help to inform future practical 517 

applications better.  518 

A recent study provided direct evidence that acute density can influence the acute PA-related 519 

effects on specific behavioral measures of brain health. In particular, this study used a within-520 

subject crossover design with a pretest-posttest comparison to investigate in healthy younger 521 

adults whether the use of different inter-set rest intervals (i.e., 1 minute versus 3 minutes, 522 

representing higher and lower acute densities) during an acute bout of low-load resistance 523 

exercise (i.e., 40% of a one-repetition maximum, 6x sets of 10x repetitions) can influence acute 524 

exercise-induced changes in inhibitory control (i.e., operationalized with the Stroop test) [276]. 525 



In this study, it was observed that shorter inter-set rest intervals (i.e., 1 minute - high density) 526 

improved inhibitory control (i.e., operationalized by a reverse Stroop interference score) 527 

immediately, 10 minutes, 20 minutes, and 30 minutes after exercise cessation, whereas such 528 

effects were absent for longer inter-set rest intervals (i.e., 3 minutes - lower acute density). 529 

Moreover, the improvement in executive functions was greater at 20 and 30 minutes after 530 

exercise cessation in the shorter inter-set rest interval condition (i.e., higher acute density) 531 

compared with the longer inter-set rest interval condition (i.e., lower acute density) [276]. Thus, 532 

the findings of the above-presented study provide strong support for the importance of 533 

considering acute density when investigating the dose-response relationship of acute PA with 534 

specific measures of brain health.  535 

4.2 Glycemic control and brain health 536 

There is growing evidence that type 2 diabetes, which is characterized by impaired glucose 537 

control [277] and poses a public health burden due to its high and still growing worldwide 538 

prevalence and related health complications [277–280], is associated with significantly poorer 539 

brain health [281–284]. For instance, there is accumulating evidence that type 2 diabetes is 540 

associated with reduced structural and functional brain integrity [285–288], lower cognitive 541 

performance [285–293], and an increased risk of dementia [294–297]. Given that impaired 542 

homeostasis of glucose control is the key feature of type 2 diabetes [277], maintaining “normal” 543 

glucose control across the lifespan (e.g., by reducing sedentary behavior and engaging in PA) 544 

seems to be an important factor in maintaining brain health, especially in later life stages [298]. 545 

Indeed, some systematic reviews provide evidence that PA in adults with type 2 diabetes is 546 

associated with a positive but weak influence on specific measures of brain health such as 547 

cognitive performance, [299–302] although such evidence is not universal, probably due to the 548 

heterogeneity of intervention studies in terms of the exercise and training variables 549 

characterizing the physical exercise interventions [303].  550 

Notably, two small-scaled studies (n = 12 in both studies) in adults with type 2 diabetes showed 551 

that interrupting 7 hours of sitting with 3 minutes of light-intensity walking every 15 minutes 552 

(i.e., high acute density) was more beneficial for specific measures of glucose control (e.g., 553 

fasting glucose and duration of the dawn phenomenon [304] or post-breakfast and 21-hour 554 

glucose control [305]) than interrupting sitting every 30 or 60 minutes (i.e., low acute density) 555 

[304, 305]. During the rest periods, the participants had access to a personal computer, 556 

internet, and books [304, 305]. Thus, these two small studies in adults with type 2 diabetes 557 

provide preliminary evidence that density can influence neurobiological processes (i.e., 558 

glucose control) relevant to brain health [298] which, in turn, supports our idea that considering 559 

density is crucial for a more nuanced understanding of the dose-response relationship between 560 

PA and measures of brain health. However, the higher density in the above-described studies 561 



[304, 305] is also related to a higher frequency of physical exercise bouts, and thus future high-562 

quality studies are needed to (i) disentangle the unique influence of frequency and density on 563 

(brain) health-related measures, and (ii) investigate whether different acute and chronic 564 

densities of PA might differentially influence specific levels of brain health (e.g., at the 565 

molecular and cellular levels such as the release of brain-derived neurotrophic factor). 566 

4.3 Interim summary 567 

Taken together, the evidence on temporal dynamics of specific markers of brain health in 568 

response to acute PA and the glucose control - brain health association corroborates our 569 

assumption that density is important for advancing our understanding of the dose-response 570 

relationship between PA and measures of brain health because it provides crucial information 571 

on temporal distribution of PA. More specifically, studying density plays an important role in 572 

understanding the minimal and optimal dose by providing information on the minimal and 573 

optimal time interval (i.e., rest bout) between PA stimuli within a single bout of PA or successive 574 

bouts of PA (i.e., work bouts) being required to maintain or improve specific measures of brain 575 

health. Such information on the minimal and optimal time intervals for the delivery of a PA 576 

stimulus holds great potential to inform and optimize intervention approaches aimed at 577 

promoting PA, such as “just-in-time adaptive PA interventions” [239–241] (e.g., in the context 578 

of breaking up prolonged sitting with acute breaks of PA including physical exercise [306–579 

309]). 580 

 581 

5. Density in relation to other activities of the 24-hour cycle 582 

There is an increasing interest in the scientific community to develop a more holistic 583 

understanding of the influence of the 24-hour activity cycle including PA, standing, sedentary 584 

behavior (SB), and sleep on health status [185–189] and brain health [81, 92, 190–193].  585 

Regarding density, rest bouts are a key construct and may be considered synonymous with, 586 

or primary to, time spent in SB when considering waking hours. Epidemiological and 587 

experimental evidence shows that sedentary time may influence the relationship between 588 

participation in PA and its well-established cardiometabolic health benefits (i.e. highly 589 

sedentary individuals may need to do more than the recommended levels of PA to offset the 590 

detrimental effects of sedentary behavior) [99–101, 310]. Experimental evidence provides 591 

compelling insights into the potential for “exercise resistance” [100]. Coyle and colleagues 592 

showed that when acute physical exercise was preceded by a prolonged period of SB, 593 

postprandial metabolic responses and metabolic benefits were significantly attenuated [311–594 

313]. More specifically for brain health, the effect of physical exercise on cognitive function is 595 

altered by subsequent exposure to prolonged sitting versus breaks in sitting [306], and 596 



emerging evidence shows that different types of SB, namely passive and mentally active SB, 597 

could be differentially associated with brain health [81, 103, 314]. For instance, previous 598 

studies have indicated that mentally active SB (e.g., reading or using a computer) can benefit 599 

measures of brain health (for review see [81, 103, 314]). A growing body of evidence suggests 600 

that the consequences of too much time spent in SB are distinct from those of too little PA with 601 

respect to cardiometabolic health [100] and brain health [81, 101, 105]. This reinforces the 602 

utility of considering SB as a mechanism for the importance of density as a key new element 603 

to complement the FITT-VP principle.  604 

Given that the duration and the characteristics of the rest bout(s) are the key elements in 605 

defining density, considering sleep is important in understanding how the temporal distance 606 

between successive bouts of PA can influence measures of brain health, especially when 607 

tracking and analyzing free-living PA over longer periods (e.g., a week, month, or year). There 608 

is growing evidence that sleep (i.e., often operationalized as time in bed) can mediate and/ or 609 

moderate the effect of PA on brain health [193, 219, 315, 316]. For example, several cross-sectional 610 

studies provide evidence that (i) older adults with poor sleep efficiency (i.e., percent of the time 611 

in bed spent asleep) benefit most from PA in terms of global cognition [317], (ii) sleep efficiency 612 

mediates the relationship between PA and working memory, task switching, verbal ability and 613 

fluency, and memory recall in a mixed sample of younger and older adults [21], (iii) better 614 

subjective sleep quality mediates the relationship between PA and verbal fluency, immediate 615 

recall, and delayed recall [318] or working memory [319] in middle-aged and older adults, and 616 

(iv) subjective sleep quality and sleep efficiency mediate the relationship between PA level and 617 

inhibitory control in younger adults [320]. A 6-month intervention study, in which cognitively 618 

healthy older adults performed moderate- or high-intensity interval exercise twice a week, 619 

reported that participants in the moderate-intensity group, who had poorer sleep efficiency at 620 

baseline, showed greater exercise-induced improvements in episodic memory and global 621 

cognition [321].  622 

Collectively, the above-presented evidence supports the idea that consideration of all activities 623 

in the 24-hour activity cycle [81, 92, 190–193, 316] is necessary to improve our understanding 624 

of the influence of specific lifestyle-related factors on brain health. This assumption is 625 

reinforced by emerging evidence suggesting that (i) other activities of the 24-hour cycle that 626 

can contribute to or constitute the rest bout(s), such as free-living standing activity [322] and 627 

light-intensity PA [29], are positively associated with behavioral measures of brain health, and 628 

(ii) activities such as SB and sleep, which are typical activities of a rest bout(s), interact with 629 

each other with respect to brain health, as an observational study showed that sleep problems 630 

mediated the detrimental associations of passive SB with depression [323]. To this end, 631 

complementing the 24-hour activity cycle approach with density may enable even more 632 



nuanced insights into its health effects by improving the characterization and thus our 633 

understanding of the dose of PA.  634 

 635 

6. The current state of evidence and future directions 636 

The role of density as an important variable can be considered helpful when investigating dose-637 

response relationships of PA with key health-related outcomes (e.g., brain health). For brain 638 

health, the current evidence indicates that (i) acute density is typically not considered when 639 

analyzing the influence of acute bouts of PA on cognitive performance (e.g., as a moderator 640 

variable) [23, 25, 324–326], (ii) chronic density is often not reported in studies investigating the 641 

influence of chronic PA on brain health [8, 327], (iii) chronic density is absent in moderator 642 

analyses in recent systematic reviews and meta-analyses investigating the influence of chronic 643 

PA on cognitive performance [22, 26], and (iv) chronic density is typically not mentioned in 644 

recommendations (e.g. from the World Health Organization) and policies aimed at reducing 645 

the risk of cognitive decline and dementia by lifestyle changes (e.g., via PA) [328]. Such an 646 

absence of density in the literature, analyses of the dose-response-relationships, and 647 

recommendations of official bodies could lead to the assumption that (i) acute and chronic 648 

density are unimportant variables or (ii) that researchers studying the effects of PA on 649 

measures of brain health are unaware of the importance of density. 650 

Given that other fields of research have begun to recognize the influence of the distribution of 651 

PA across a week (e.g., the “weekend warrior” pattern characterized by ≤2x bouts [329–336] 652 

or 1x bout [337] of PA per week) and the interrelated impacts of PA, sleep, and SB [81, 92, 653 

100, 101, 186–189, 191–193, 316], density is an excellent candidate determinant of brain 654 

health effects that should not be overlooked when analyzing the dose-response relationship 655 

within the context of PA-related benefits on measures of brain health. To simulate future 656 

research, we highlight in the following two sections further directions for observational and 657 

intervention studies on the influence of PA density on measures of brain health.  658 

6.1 Observational studies 659 

Other research fields have started to analyze observational and population-based data in 660 

adults regarding the influence of achieving the amount of PA recommended by the World 661 

Health Organization (i.e., ≥150 minutes of moderate- or ≥75 minutes of vigorous-intensity PA 662 

per week [88, 89]) in ≤2x bouts per week (i.e., denoted as “weekend warrior”) or ≥3x bouts per 663 

week on health-related outcomes such as the risk of mortality [329–331], risk of cardiovascular 664 

events [336], prevalence and health aspects associated with the metabolic syndrome (e.g., 665 

adiposity, hypertension) [332, 334], or risk of mental disorders [333]. Although none of the 666 

above-mentioned studies considered chronic density, because they did not account for the 667 



temporal distance between the successive bouts of PA into account, all provided evidence that 668 

achieving the recommended amount of PA in ≤2x bouts per week has a comparable influence 669 

on health-related outcomes as achieving this amount in ≥3x bouts per week [329–334, 336]. 670 

Whether such observation extends to measures of brain health, given the moderating role of 671 

the acute and chronic density of PA is considered, is a promising area for further investigations. 672 

In this regard, we would like to acknowledge that all activities of the 24-hour activity cycle (i.e., 673 

PA, sedentary behavior, and sleep) should be considered for a more nuanced understanding 674 

of the dose-response relationship between PA and health in general [185, 186] and brain 675 

health in particular [81, 92, 191, 192]. In the context of acute and chronic density, we reiterate 676 

that the characteristics that define the work bout(s) and rest bout(s) must be considered when 677 

analyzing density (i.e., type of activity, intensity, and duration). This assumption is supported 678 

by emerging evidence showing that the characteristics of activities that are primarily involved 679 

in the rest bout(s) can influence brain health differentially. More specifically, there is evidence 680 

that the type of SB can moderate the effects of SB on brain health because cognitively active 681 

SB (e.g., reading) is positively associated with brain health, whereas cognitively passive SB 682 

(e.g., watching TV) did not confer such benefits [81, 103, 314, 338]. 683 

In addition, from a public health perspective, a key distinction is made between active and 684 

passive (sedentary) occupations [339]. In this context, analyzing the influence of acute and 685 

chronic density on measures of brain health might be especially relevant for health-related 686 

research in individuals with professions that require performing substantial occupational PA at 687 

higher intensities in relatively short time intervals (e.g., construction workers, or farmers) 688 

versus desk-based workers. Considering density in addition to traditional exercise variables 689 

(e.g., FITT-VP principle) may enhance our understanding of the “physical activity paradox” 690 

(i.e., occupational PA has less clear or no health benefits compared to leisure-time PA) [340–691 

344] and the identification of “sweet spots” (e.g., individualizing leisure time PA 692 

recommendations by considering occupational PA levels) [187] which in turn can help to better 693 

inform future public health interventions. The latter assumption is reinforced by the fact that 694 

individuals with a lower socioeconomic position (i.e., lower educational qualifications, 695 

occupational class, income, or living in a deprived area), as compared to those with a higher 696 

socioeconomic position, showed different characteristics concerning their 24-hour activity 697 

cycle since they spent more time standing, moving, and walking but less time sitting during 698 

weekdays while on weekends these patterns were reversed [345]. Notably, those with higher 699 

socioeconomic positions engaged in higher levels of physical exercise-like activities (i.e., 700 

running, cycling, and inclined walking) and less time lying regardless of the day of the week. 701 

These findings suggest that socioeconomic disadvantages are mirrored in 24-hour activity 702 

cycle patterns [345]. Such an observation is of particular relevance for future studies on PA 703 

and brain health given that in adults a lower socioeconomic position is negatively associated 704 



with different markers of brain health (e.g., lower cognitive function and higher cognitive decline 705 

[346–356], higher dementia risk [355, 357–360], less favorable brain structure outcomes [353, 706 

354, 360, 361]). Future well-designed research is needed for more robust conclusions in this 707 

direction [362, 363] and may benefit from considering the 24-hour activity cycle [191] including 708 

the density of PA. 709 

6.2 Intervention studies 710 

In addition to the examination of density in observational studies, we also recommend that 711 

acute and chronic density should be considered in the prescription of PA intervention studies 712 

to improve the standardization of reporting, the determination of the dose, and the 713 

comparability across studies. Although there is evidence that a higher frequency (i.e., 5-7 PA 714 

sessions per week), which is probably also mirrored in a higher chronic density, is more 715 

beneficial for improving cognitive performance in adults older than 50 years (i.e., double the 716 

effect size; 0.69 vs 0.32) than a lower frequency (i.e., 1-2 PA sessions per week) [27], providing 717 

information on acute and chronic density can be especially relevant for interventions with lower 718 

levels of direct supervision (e.g., home- and technology-based interventions using 719 

exergames). For example, in home-based studies using exergames and providing only general 720 

supervision, partial direct supervision, or even no supervision (for more information on 721 

supervision please see [364, 365]), older adults are typically instructed to achieve a certain 722 

duration of physical exercise over a week but are often allowed to self-select the frequency of 723 

the acute PA bouts [366–373]. Such studies have documented that older participants who are 724 

highly motivated can exceed the recommended training frequency and/or perform multiple 725 

acute PA bouts throughout the day [368, 373–375]. This may result in insufficient rest time, 726 

which is perhaps less than optimal for the materialization of adaptation processes (i.e., 727 

consolidation). The above theoretical assumption is supported by (i) an experimental study 728 

showing that in younger adults too much consecutive computer-based training can be 729 

detrimental to learning performance (i.e., accuracy of motion discrimination) [376] and (ii) a 730 

systematic review observing that cognitive performance declines when endurance athletes are 731 

overreached or overtrained [377]. These latter findings support the assumption that acute and 732 

chronic density should be considered when prescribing and monitoring physical exercise 733 

interventions aimed at promoting brain health. 734 

In particular, acute and chronic density are important variables in the organization of physical 735 

exercise, namely the periodization and programming of physical exercise sessions, because 736 

they characterize the dose by defining the duration of rest bout(s) within a single bout of 737 

physical exercise or between successive bouts of physical exercise (i.e., work bouts). Whereas 738 

periodization is the temporal organization (i.e., macro-management) of the characteristics of 739 

physical exercise sessions (e.g., purposeful adjustment of variables such as exercise intensity 740 

and volume for progression) and application of training principles [37, 40, 128, 378–380], 741 



programming is defined as the micro-management of physical exercise that includes, but is 742 

not limited to, the organization of exercise and training variables (e.g., type of physical 743 

exercise, exercise intensity, exercise duration, and acute and chronic density) [40, 378, 380]. 744 

Thus, acute density is especially relevant for programming acute physical exercise sessions 745 

in which the physical exercises are performed in interval mode or a set structure because acute 746 

density defines the rest duration between the work bouts (e.g., also referred to as intervals or 747 

repetitions), between interval series or sets, or between different physical exercises [80, 227, 748 

379]. As shown in Figure 1, acute density can be manipulated to alter the acute PA stimulus 749 

by decreasing or increasing the duration of rest between successive work bouts.  750 

From the perspective of PA promotion, density can also complement newer approaches to 751 

foster PA, such as “vigorous intermittent lifestyle physical activity” (VILPA) [381, 382] and 752 

“exercise snacks” [381–384]. While VILPA has been empirically defined as vigorous bouts of 753 

incidental PA lasting up to 1 or 2 minutes [119, 121], the term “exercise snacks” has been more 754 

loosely defined as single planned bouts of physical exercise that typically (i) lasts ≤ 1 minute, 755 

(ii) occur multiple times throughout the day, and (iii) are performed at a vigorous intensity [382–756 

384]. Regarding the VILPA and “exercise snacks” concepts, the variable density as a 757 

characteristic defining the dose can help to more precisely elucidate the influence of different 758 

rest durations between the short work bouts (e.g., performed at the vigorous intensity and 759 

conceptualized in the VILPA and “exercise snacks” approach or at other intensities in the 760 

context of free-living PA such as light- or moderate-intensity PA) on health-related parameters 761 

(e.g., brain health). However, it is worth noting that for a purposeful modification of density, the 762 

interrelation with other exercise variables needs to be considered (e.g., implementation of 763 

passive or active rest periods, exercise intensity, and duration of work and rest bouts) [37, 38, 764 

40, 71, 80]. 765 

 766 

7. Limitations 767 

In this article, we advocate the extension of the FITT-VP principle from a physiological 768 

perspective by proposing density as an additional variable that allows for a more fine-grained 769 

characterization of the dose of PA. However, the following limitations need to be 770 

acknowledged. First, it should be noted that others have already advocated for complementing 771 

FITT from a psychological perspective by integrating an additional “F” representing “fun” as an 772 

umbrella term for psychological factors such as affective valence and enjoyment of PA [385] 773 

to reflect that these factors are important determinants of engagement and adherence to PA 774 

[386–391]. Second, although we provide in this article a strong theoretical rationale that 775 

complementing FITT-VP by the variable density will improve our understanding of the dose-776 

response relationship between PA and health-related outcomes, we wish to emphasize that 777 



the precise characterization or prescription of a specific PA dose will remain a considerable 778 

challenge because of the myriad of (i) non-modifiable factors (e.g., age, sex, genetics), (ii) 779 

potentially modifiable non-PA-related factors (e.g., diet, sleep, stress, environmental 780 

conditions), and (iii) modifiable PA-related factors (e.g., type of PA, intensity, duration, 781 

movement frequency), which include but are not limited to setting (e.g., home-based or center-782 

based, and indoor or outdoor), method of delivery (e.g., in-person or online), level of 783 

supervision (e.g., no supervision, general supervision, direct supervision) and social interaction 784 

(e.g., individual or group-based), that can influence the dose and individual 785 

psychophysiological response(s) to PA [37, 38, 40, 45, 54, 71, 364]. In other words, adding 786 

density to FITT-VP is another piece of the puzzle to better characterize the dose of PA and, in 787 

turn, disentangle its influence on specific health-related outcomes. 788 

 789 

8. Conclusions 790 

In summary, we have provided an overview of the implications and the potential of addressing 791 

the density of PA as a variable that has been under-recognized when studying the relationship 792 

between PA and health-related outcomes, using the field of brain health as an example. In 793 

view of an increasing interest in understanding the dose of PA including but not limited to 794 

“micropatterns” assessed using high-resolution wearable data [119, 120, 392], density is a 795 

variable that can complement the traditional concept (i.e., the FITT-VP principle) by 796 

considering an additional element - the temporal distribution of PA stimuli within a single bout 797 

of PA or between successive bouts of PA relative to the time spent resting. We propose a 798 

definition for density and approaches for operationalizing it which, in turn, may allow for a more 799 

precise determination of the dose of PA for improved health effects and the prevention and 800 

treatment of chronic disease. Considering that an explicit focus on the density variable has 801 

been largely absent from research to date, investing greater effort in understanding it will add 802 

fruitful nuance to identifying the dose-response relationship between PA and health-related 803 

outcomes (e.g., brain health), and thus has the potential to provide important information on 804 

the optimal and minimal beneficial doses of PA.  805 
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