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ABSTRACT 
Purpose: Muscle hypertrophy may be influenced by biological differences between males 
and females. This meta-analysis investigated absolute and relative changes in muscle size 
following resistance training (RT) between males and females and whether measures of 
muscle size, body region assessed, muscle fibre type, and RT experience moderate the 
results. Methods: Studies were included if male and female participants were healthy (18-50 
years old) adults that completed the same RT intervention, and a measure of pre- to post-
intervention changes in muscle size was included. Out of 2720 screened studies, 29 studies 
were included in the statistical analysis. Bayesian methods were used to estimate a 
standardised mean difference (SMD) and log response ratio (lnRR) with exponentiated 
percentage change (Exp. % Change of lnRR) for each outcome. Results: Absolute increases 
in muscle size slightly favoured males versus females [SMD = 0.19 (95% HDI: 0.11 to 0.28)], 
however, relative increases in muscle size were similar between sexes [Exp. % Change of lnRR 
= 0.69% (95% HDI: – 1.50% to 2.88%)]. Outcomes were minimally influenced by the measure 
of muscle size and not influenced by RT experience of participants. Absolute hypertrophy of 
upper-body but not lower-body regions was favoured in males. Type I muscle fibre 
hypertrophy slightly favoured males, but Type II muscle fibre hypertrophy was similar 
between sexes. Conclusion: Our findings indicate that females have a similar potential to 
induce muscle hypertrophy as males (particularly when considering relative increases in 
muscle size from baseline) and findings of our secondary analyses should inform future 
research investigations.  
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1. INTRODUCTION 
Resistance training (RT) promotes increases in muscle fibre and ultimately whole-muscle 
cross-sectional area, known as skeletal muscle hypertrophy [1]. The magnitude of muscle 
hypertrophy with resistance training may vary between individuals [2], and importantly, may 
be influenced by biological differences between males and females arising after puberty [3]. 
For example, postpubescent males have approximately tenfold higher endogenous 
testosterone levels compared with typical postpubescent females [4]. This difference in basal 
testosterone is believed to be the primary factor explaining greater average muscle mass in 
adult males versus females. For example, in untrained and resistance-trained individuals, 
biceps brachii and quadriceps cross sectional area (CSA) of females is ~50-60% and ~70-80% 
of CSA in males, respectively [5]. The proportion of type II muscles fibres, which undergo 
greater hypertrophy than type I fibres [6], is also greater in males than females [7]. This 
difference in muscle mass and fibre type distribution may contribute to females having ~50-
60% and ~60-70% of male upper-body and lower-body strength, respectively (at the group 
level) [5].  
 
It has been postulated that males experience greater muscle hypertrophy following RT 
compared to females, potentially due to factors relating to gene expression [8] or the higher 
levels of testosterone in males versus females, on average [4]. A previous meta-analysis 
compared muscle hypertrophy outcomes between young to middle-aged males and females 
[9] and found no statistically significant differences in pre- to post-intervention changes in 
muscle size; however, this meta-analysis did not differentiate absolute (i.e., raw change in 
muscle size) and relative (i.e., percentage increase in muscle size from baseline) changes in 
muscle size. Considering the marked differences in baseline muscle size between males and 
females [5], exploring both absolute and relative changes in muscle size is important. For 
example, another meta-analysis [10] of studies in older adults (>50 years of age) found 
absolute increases in muscle size following RT favoured males versus females, with no 
statistically significant difference in relative muscle hypertrophy. Furthermore, other studies 
have noted the possibility for sex differences in fibre type-specific muscle hypertrophy [11, 
12], but previous meta-analyses [9, 10] have not investigated muscle fibre cross sectional 
area (fCSA) as an outcome. It is also unclear if the RT experience of participants and the 
assessment of muscle size (e.g., body region assessed, type of measurement) used influence 
sex differences in muscle hypertrophy.  
 
This Bayesian systematic review with meta-analysis aimed to extend previous meta-analytic 
findings by investigating i) differences in absolute and relative changes in muscle size 
following RT between young to middle-aged males and females, and ii) whether key variables 
(i.e., method of muscle size assessment and individual characteristics) moderate the 
influence of sex on muscle hypertrophy. We employed a Bayesian approach to data analysis 
to improve the interpretation of the effect estimate, directly model its uncertainty, and enable 
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the results to be presented with posterior probabilities allowing for meaningful and intuitive 
inferences [13].   
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2. MATERIALS & METHODS 
A systematic review and meta-analysis were performed in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [14]. The 
PRISMA checklist can be found in Online Resource 6. The original protocol was registered 
with Open Science Framework on the 1st of June 2023 (https://osf.io/trz3y/).  

2.1 Research Question(s) 

The research question(s) were defined using the participants, interventions, comparisons, 
outcomes, and study design (PICOS) framework, as follows. The primary research question 
was: “What is the estimated difference in muscle hypertrophy following RT between young to 
middle-aged males and females, in both absolute and relative (%) terms?”. To facilitate the 
interpretation of this research question, we also investigated whether the assessment of 
muscle size (i.e., body region assessed, type of measurement used, muscle fibre type) or 
participant RT experience (years) had a moderating effect on the overall outcome of the 
meta-analysis. 

2.2 Literature Search Strategy 

The literature search followed the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) guidelines [14]. Original literature searches of the PubMed, SCOPUS and 
SPORTDiscus databases were started in May 2023 and completed in June 2023. However, an 
updated systematic search was conducted in August 2024 returning two studies [15, 16]. The 
following search terms were used and adapted for each individual database: “resistance 
training” OR “resistance exercise” OR “strength training” AND “gender” OR “women” OR 
“woman” OR “female” OR “sex” OR “sex difference” AND “muscle hypertrophy” OR “muscle 
size” OR “muscle growth” OR “muscle mass” OR “muscle thickness” OR “cross-sectional area”. 
Search terms were added using the NOT term to reduce the number of irrelevant studies 
according to exclusion criteria (e.g., older, elderly, sarcopenia, cancer). The reference list of 
previous meta-analyses [9, 10] and the retrieved articles were manually searched, and six 
additional studies [17-22] that met the inclusion criteria were identified and subject to the 
screening process, with full-text review confirming eligibility for inclusion (Fig 1). Only studies 
conducted in humans were included. 

2.3 Study Selection 

Covidence software (Veritas Health Innovations, Melbourne, Australia) was used to manage and 
conduct the systematic study selection process, including the removal of duplicates and the 
exclusion of ineligible studies at each stage of the screening process. An overview of the article 
identification process is shown in Fig 1. The article identification process was completed 
independently (to reduce any bias during this process) by two authors (MR and JF) with any 
disagreement resolved by discussion. Finally, the authors (MR and JF) reviewed the full text to 

https://osf.io/trz3y/
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determine eligibility for inclusion based on the inclusion criteria. If any studies were added 
through reference checking or manual searching, they were subjected to the same screening 
process as if they were found in the initial database search. 

2.4 Inclusion Criteria 

Studies were included if: 1) participants were apparently healthy young to middle-aged (18-
50 years old) adults of any RT experience, 2) the experimental comparison involved male and 
female participants completing the same RT intervention (e.g., set volume, load, frequency, 
exercises, proximity-to-failure), and 3) one of the following measures of pre- to post-
intervention changes in muscle size were included; a) muscle thickness, b) whole-limb or 
muscle CSA or volume, c) muscle fCSA, or d) lean body/fat free mass via dual x-ray 
absorptiometry (DXA) or bioelectrical impedance analysis (BIA). Only original research articles 
(English language) in peer reviewed journals were included. Articles that did not meet these 
criteria were excluded. 

2.5 Data Extraction 

Data extraction was carried out by the principal investigators (MR and JF) to capture key 
information in a table format (Table 1). The following participant characteristics were 
extracted: 1) RT status (i.e., untrained, or resistance-trained), 2) age, and 3) sex. The following 
article characteristics were also extracted: 1) first author, 2) sample size, 3) publication date, 
4) intervention groups/protocol outlines and duration, and 5) key findings (i.e., percentage 
increase in muscle size from pre- to post-intervention and an indication of whether any 
muscle hypertrophy was statistically different between sexes). Raw data from pre- and post-
intervention for muscle hypertrophy outcomes were extracted for meta-analysis [if figures 
were used instead of numerical data, those data were extracted using Web Plot Digitizer 
(Version 4.6, California, USA)]. Studies were classified as recruiting ‘resistance-trained’ 
participants if the participants had any level of RT experience immediately prior to study 
commencement, whereas studies that involved a RT prohibitory period (e.g., “no RT 6-months 
prior to study commencement”) were classified as recruiting untrained participants. 
Considering the absence of detail regarding training status in some studies further 
classification of training status (e.g., “beginner”, “intermediate”, “advanced”, “highly advanced”) 
with multiple criteria [23] is difficult. Several studies prescribed loads based on repetition 
maximum (RM) rather than as a percentage of 1-RM, with adjustments made throughout the 
RT intervention. This variation made it challenging to determine an accurate load for data 
analysis. Similarly, in some studies, the number of sets per muscle group per week was 
adjusted across the RT intervention, and due to vague reporting, accurately extracting these 
values was difficult. Furthermore, set termination methods were often ambiguously 
described, and given the inconsistencies in the definitions of set failure within the RT 
literature [24], we refrained from classifying studies based on proximity-to-failure. 
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Consequently, and despite the methods stated in our pre-registration (https://osf.io/trz3y/), 
we decided to omit  RT characteristics (i.e., load, set volume, proximity-to-failure) from our 
sub-group analyses to ensure our results were not confounded by inaccurate data 
extraction. 

2.6 Methodological Quality Assessment 

Evaluation of methodological study quality (including risk of bias) was conducted (by MR) 
using the tool for the assessment of study quality and reporting in exercise (TESTEX) scale 
[25]. Any ambiguities in methodological quality assessment were resolved by discussion 
between MR and JF.  The TESTEX scale is an exercise science-specific scale used to assess the 
quality and reporting of exercise training trials. The scale contains 12 criteria that can either 
be scored a ‘one’ or not scored at all; 1, eligibility; 2, randomisation; 3, allocation concealment; 
4, groups similar at baseline; 5, assessor blinding; 6, outcome measures assessed in 85% of 
patients (3 possible points); 7, intention-to-treat; 8, between-group statistical comparisons (2 
possible points); 9, point-estimates of all measures included; 10, activity monitoring in control 
groups; 11, relative exercise intensity remained constant; 12, exercise parameters recorded. 
The best possible total score is 15 points.  

2.7 Statistical Analysis 

To provide a more flexible modelling approach and enable results to be interpreted intuitively 
through reporting of probabilities [13], we carried out a Bayesian meta-analysis using the 
“brms” (Bürkner, 2023) package in R (v 4.0.2; R Core Team, https://www.r-project.org/). 
Detailed statistical analysis procedures can be found on the Open Science Framework 
(https://osf.io/trz3y/). Posterior draws were extracted using “tidybayes” (Kay, 2023) and effect 
estimates calculated using “emmeans” (Lenth, 2023).  The absolute (mean and standard 
deviation) changes in muscle size from pre- to post-intervention for both male and female 
participants were extracted from each study. Standardised mean differences were calculated 
using the pooled standard deviation of baseline values as the denominator [via the “escalc” 
function in the “metafor” (Viechtbauer, 2010) package] to provide a more balanced estimate 
of variability between males and females [26]. Pooling the standard deviations accounts for 
variability in both groups and avoids bias from using group-specific standard deviations. This 
method ensures a more robust comparison, especially when baseline variability differs 
between groups. Converting absolute values to relative changes for SMD calculation may not 
be statistically efficient [27] so we therefore calculated the log response ratio (lnRR) for an 
interaction effect of group x time factorial design [28]. To enhance practical interpretation, 
we exponentiated the lnRR values with a correction factor for transformation bias [29], 
thereby converting them to percentage change scores (Exp. % Change of lnRR). Positive 
values indicate greater muscle size increases in males, and negative values indicate greater 
increases in females. The Bayesian hierarchical analysis accounted for nested observations 

https://osf.io/trz3y/
http://www.r-project.org/)
https://osf.io/trz3y/
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and used “shrinkage” to adjust study-level effects towards the overall mean [13]. Shrinkage-
adjusted effect estimates are presented, with raw estimates available in Online Resource 4. 
Due to the lack of reported correlations between pre- and post-test measures, we assumed 
a correlation coefficient of r = 0.87 from a recent meta-analysis [10] and conducted sensitivity 
analyses using r values from 0.7 to 0.99 (Online Resource 1). Non-informative priors were 
used, and inferences were drawn from posterior distributions via Hamiltonian MCMC and 
highest density intervals (HDI). Interpretations were based on the size of the mean effect 
estimate [30], HDI limits [30], and the posterior probability (ranging from 50% to 100%) that 
an effect estimate goes in a particular direction (pd) [31]. Publication bias was visually 
assessed using funnel plots.   
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3. RESULTS 

3.1 Search Results and Study Characteristics 

A total of 30 studies met the inclusion criteria. A PRISMA diagram of the systematic literature 
search and study selection process is displayed in Fig 1. Data from one study [32] could not 
be retrieved; the remaining 29 studies were systematically reviewed and meta-analysed. 
Visual inspection of funnel plots (Online Resource 2) identified no publication bias. A total of 
1278 male and 1537 female data points were included in the meta-analysis, with the mean 
age of males being 26 ± 4 (range: 20 to 42) and females also 26 ± 4 (range: 19 to 41) years. 
Six [15, 16, 32-35] out of the 29 studies involved participants with some RT experience, with 
the remainder of the studies involving participants with either i) no RT experience (n = 4), or 
ii) no RT experience 5-years (n = 1), 1-year (n = 7), 8-months (n = 1), 6-months (n = 7), and 3-
months (n = 2) prior to study commencement. However, in some cases the exact RT 
experience (years) of the ‘resistance-trained’ participants was vaguely described and 
therefore unclear (Table 1). In total, 68 muscle hypertrophy outcomes were extracted, with 
some studies reporting numerous direct outcomes: i) muscle CSA using magnetic resonance 
imaging (MRI) [2, 32, 36, 37], ultrasound [19, 21, 34, 38], or computed tomography (CT) [35, 
39, 40], ii) muscle fCSA using biopsy samples [11, 12, 16, 20, 22, 38, 41], iii) muscle 
physiological CSA using ultrasound [42], iv) muscle volume using MRI [18, 36, 43], and v) 
muscle thickness using ultrasound [19, 33, 41, 44-47], and other studies using indirect 
outcomes: i) lean mass using DXA [15-17, 20, 44, 48], and ii) estimated skeletal muscle mass 
using bioelectrical impedance analysis (BIA) [49]. Most of the muscle hypertrophy outcomes 
were assessed in the lower body (69% of outcomes [11, 12, 16, 18-22, 32-34, 36, 38, 39, 41, 
42, 44-46, 48]; quadriceps and hamstrings) versus the upper-body (22%  of outcomes [2, 19, 
33, 35, 37, 39, 40, 43, 44, 47]; biceps, triceps, and chest), with 9%  of outcomes [15-17, 20, 44, 
49] assessing lean mass of the upper- and lower-body combined (i.e., total body lean mass). 
In some instances, studies were excluded from sub-group analyses because i) outcome 
measures were only employed in one study (e.g., pCSA [42] and skeletal muscle mass via BIA 
[49]), and ii) measures of lean mass were not separated into upper- or lower-body [15-17, 
20, 49]. The duration of the RT interventions ranged from six to 24 weeks, with a mean of 11 
weeks. For a comprehensive summary of other RT characteristics, see Table 1. 
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Figure 1. PRISMA flow chart. Summary of systematic literature search and article selection process.  
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Table 1. Summary of data extraction. Summary of studies included comparing changes in muscle size from pre-to post-intervention between males and females. 
Data presented as mean ± SD. 
Abbreviations: BB, barbell; BFR, blood flow restriction; BIA, bioelectrical impedance analysis; CSA, cross-sectional area; CT, computed tomography; EF, elbow flexor; 
fCSA, fibre cross-sectional area; MRI, magnetic resonance imaging; pCSA, physiological cross-sectional area; RF, rectus femoris; Reps, repetitions; RM, repetition 
maximum; RT, resistance training; sessions/week, sessions per muscle group per week; VeL, velocity loss; VL, vastus lateralis; ↑ = increased; ↓ = decreased; ↔ = no 
difference between sexes; * = results of statistical comparison between sexes not reported; ^ = relative load estimated from repetitions at % of 1-RM chart; # = 
mean number of muscle fibres analysed for each participant across timepoints. 

 
 
 
 
 
 
 

Study Participants 
Age 
(years)  RT protocol  

Duration 
(sessions
/week) 

Outcome measure 
(device; muscle) Key findings 

Abe et al. 
2000 [44] 

Males (n = 17) 
Females (n = 20) 
à Untrained: No 
RT 1 year prior 

37.7 ± 7.2 
41 ± 4.1 

3 sets x 8-12 reps 
à 60-70% 1-RM 

Exercises: Leg 
extension, leg curl, 
chest press, 
horizontal row, 
biceps curl, triceps 
extension 

12 weeks 
(3/week) 

Lean mass (DXA; total 
body) 
 
Muscle thickness 
(ultrasound; biceps, 
triceps, chest, quadriceps, 
hamstrings) 

↔	Total body lean mass between males 
(+2.6%) and females (+1.7%) 
 
↔ Muscle thickness between males 
(+10.3%) and females (+10.8%) for all 
muscle groups measured 

Abou Sawan 
et al. 2021 
[12] 

Males (n = 10) 
Females (n = 10) 
à Untrained: No 
RT 3-months prior 

23 ± 4 
23 ± 5 

4 sets x 10-12 reps 
à 75% 1-RM 

Exercises: Leg press, 
leg extension 

8 weeks 
(3/week) 

Muscle fCSA (biopsy + 
histochemistry; VL) 
# Type 1 = 84 
# Type II = 92 

­ Type I VL fCSA observed in males 
(+21.1%) versus females (+5.6%) but ↔ 
Type II VL fCSA between males (+18%) and 
females (+27.5%) 

Abou Sawan 
et al. 2022 
[45] 

Males (n = 10) 
Females (n = 10) 
à Untrained: No 
RT 3-months prior 

23 ± 4 
23 ± 5 

4 sets x 10-12 reps 
à 75% 1-RM 

Exercises: Leg press, 
leg extension 

8 weeks 
(3/week) 

Muscle thickness 
(ultrasound; VL) 

↔	VL thickness between males (+10.7%) 
and females (+8.2%)  

Alway et al. 
1992 [35] 

Males (n = 5) 
Females (n = 5) 
à Trained: ≥5 
years of RT 
experience 

32.8 ± 4.5 
34.8 ± 2.7 

3-5 sets x 6-14 reps 
à 60-85% 1-RM^ 

Exercises: Biceps 
curl (multiple 
variations) 

24 weeks 
(2/week) 

Muscle CSA [CT; biceps, 
flexor (brachialis + 
biceps)] 

Biceps and flexor CSA ­ for both males 
(+5.6%) and females (+3.1%) * 

Coratella et 
al. 2018 [46] 

Males (n = 13) 
Females (n = 13) 

21.2 ± 2.6 
20.8 ± 3 

4 sets x 10 reps 
à 120% 1-RM 

8 weeks 
(2/week) 

Muscle thickness 
(ultrasound; VL) 

↔ VL muscle thickness between males 
(+11.1%) and females (+13%) 
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à Untrained: No 
RT 6-months prior 

Exercise: Leg 
extensions 
(eccentric only) 

Cureton et 
al. 1988 [39] 

Males (n = 7) 
Females (n = 9) 
à Untrained: No 
RT 6-months prior 

24.7 ± 2.1 
25.5 ± 2.3 

1-3 sets x n reps 
à 70-90% 1-RM 

Exercises: Multiple 
exercises targeting 
all primary muscle 
groups 

16 weeks 
(3/week) 

Muscle CSA (CT; biceps, 
quadriceps) 

↔ Biceps and quadriceps CSA between 
males (+9.5%) and females (+13.1%) for 
both RT protocols 

Fernandez-
Gonzalo et 
al. 2014 [48] 

Males (n = 16) 
Females (n = 16) 
à Untrained: No 
RT 6-months prior 

23 ± 4.8 
24 ± 4.9 

4 sets x 7 reps 
à 83% 1-RM^ 

Exercise: Supine 
squat (flywheel) 

6 weeks 
(2-
3/week) 

Lean mass (DXA; thigh) ↔	Thigh lean mass between males (+4.6%) 
and females (+5.4%) 

Grandperrin 
et al. 2024 
[15] 

Males (n = 12) 
Females (n = 12) 
à Trained: 
Unknown years of 
RT experience 

27.4 ± 4 
29 ± 6 

4 sets x 10 reps 
à 70% 1-RM 
Exercises: Multiple 
exercises targeting 
all primary muscle 
groups 

16 weeks 
(3/week) 

Lean mass (DXA; total 
body) 

↔ Total body lean mass between males 
(+1.9%) and females (+2%) 

Hakkinen et 
al. 1998 [21] 

Males (n = 10) 
Females (n = 11) 
à Untrained: No 
RT experience 

42 ± 2 
39 ± 3 

3-6 sets x 3-15 reps 
à 50-80% 1-RM 

Exercises: Leg press, 
leg extension 

24 weeks 
(2/week) 

Muscle CSA (ultrasound; 
quadriceps) 

Quadriceps CSA ­ for both males (+5.4%) 
and females (+9.3%) * 
 

Hakkinen et 
al. 2001 [22] 

Males (n = 10) 
Females (n = 11) 
à Untrained: No 
RT experience 

42 ± 2 
39 ± 3 

3-6 sets x 3-15 reps 
à 50-80% 1-RM 

Exercises: Leg press, 
leg extension 

24 weeks 
(2/week) 

Muscle fCSA (biopsy + 
histochemistry; VL) 
# Type I = 41 
# Type II = 37 

VL fCSA ­ for both males (Type I = +18.9%, 
Type II = +3.3%) and females (Type I = 
+22.5%, Type II = +39.2%) * 

Hammarströ
m et al. 2020 
[32] 

Males (n = 16) 
Females (n = 18) 
à Trained: 
Unknown years of 
RT experience 

23.6 ± 4.1 
22 ± 1.3 

Group A: 1 set x 7-
10 reps 
à 75-83% 1-RM^ 

Group B: 3 sets x 7-
10 reps 
à 75-83% 1-RM^ 

12 weeks 
(2-
3/week) 

Muscle CSA (MRI; 
quadriceps) 

Quadriceps CSA ­ for both males (+4.4%) 
and females (+4.2%) * 
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Exercises: Leg press, 
leg extension, leg 
curl 

Hubal et al. 
2005 [2] 

Males (n = 243) 
Females (n = 342) 
à Untrained: No 
RT 1 year prior 

24.8 ± 6.2 
23.9 ± 5.5 

3 sets x 6-12 reps 
à 70-85% 1-RM^ 

Exercises: Biceps 
curl (multiple 
variations) 

12 weeks 
(2/week) 

Muscle CSA (MRI; biceps) ­ Biceps CSA observed in males (+19.7%) 
versus females (+17.6%) 

Hurlbut et 
al. 2002 [17] 

Males (n = 10) 
Females (n = 9) 
à Untrained: No 
RT 6-months prior 

25 ± 3.2 
26 ± 3 

1-3 sets x 12-15 
reps 
à 60-70% 1-RM^ 

Exercises: Multiple 
exercises targeting 
all primary muscle 
groups 

24 weeks 
(3/week) 

Lean mass (DXA; total 
body) 

↔	Total body lean mass between males 
(+2.9%) and females (+3.5%) 

Ivey et al. 
2000 [18] 

Males (n = 11) 
Females (n = 11) 
à Untrained: No 
RT 6-months prior 

25 ± 1 
26 ± 1 

5 sets x 5-20 reps 
à ≤85% 1-RM^ 

Exercise: Leg 
extension 

9 weeks 
(3/week) 

Muscle volume (MRI; 
quadriceps) 

­ Quadriceps muscle volume observed in 
males (+12.1%) versus females (+6.3%) 

Kojic et al. 
2021 [19] 

Males (n = 9) 
Females (n = 9) 
à Untrained: No 
RT 8-months prior 

24.7 ± 2.1 
23.3 ± 0.5 

3-4 sets x n reps 
à 60-70% 1-RM 

Exercises: Biceps 
curl, Back squat 

7 weeks 
(2/week) 

Muscle thickness 
(ultrasound; biceps) 
 
Muscle CSA (ultrasound; 
RF, VI, VM, VL) 

↔	Biceps muscle thickness between males 
(+13.7%) and females (+21.2%) 
 
↔	Quadriceps CSA between males (+3.9%) 
and females (+5.9%) 

Kosek et al. 
2006 [20] 

Males (n = 13) 
Females (n = 11) 
à Untrained: No 
RT 5 years prior 

26.2 ± 5 
27.9 ± 3.6 

3 sets x 8-12 reps 
à 80% 1-RM 

Exercises: Back 
squat, leg press, leg 
extension 

16 weeks 
(3/week) 

Lean mass (DXA; total 
body) 
 
Muscle fCSA (biopsy + 
histochemistry; VL) 
# Type I = 60 
# Type II = 63 

Lean mass ­ for both males (+1.7%) and 
females (+1.7%) * 
 
VL fCSA Both males (Type I = +25.6%, Type 
II = +31.5%) and females (Type I = +8.8%, 
Type II = +22.9%) ­ VL fCSA * 

Lundberg et 
al. 2019 [36] 

Males (n = 8) 
Females (n = 8) 
à Untrained: 
Recreationally 
active 

~26 ± 4 Group A: 4 sets x 8-
12 reps 
à 70-80% 1-RM^ 

8 weeks 
(2-
3/week) 

Muscle CSA (MRI; 
quadriceps) 
 
 

Quadriceps CSA ­ for both males (+6.9%) 
and females (+8.5%) for both RT protocols 
* 
 
Quadriceps (proximal and distal) muscle 
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Group B: 4 sets x 7 
reps (flywheel) 

Exercise: Leg 
extension 

Muscle volume (MRI; 
Quadriceps) 

volume ­ for both males (+7.7%) and 
females (+7.9%) for both RT protocols * 

McMahon et 
al. 2018 [42] 

Males (n = 8) 
Females (n = 8) 
à Untrained: No 
RT 1 year prior 

20 ± 2.8 
19 ± 8.5 

3-4 sets x 8-10 reps 
à 70% 1-RM 

Exercises: Back 
squat, leg press, leg 
extension, lunge, 
split squat 

8 weeks 
(3/week) 

Muscle pCSA (ultrasound; 
VL) 

↔	VL pCSA between males (+22.5%) and 
females (+30%) 

Moesgaard 
et al. 2022 
[11] 

Males (n = 12) 
Females (n = 12) 
à Untrained: No 
RT 1 year prior 

28 ± 7 
27 ± 7 

3 sets x 8-12 reps 
à 70-80% 1-RM^ 

Exercises: Leg press, 
leg extension 

8 weeks 
(3/week) 

Muscle fCSA (biopsy + 
histochemistry; VL) 
# Type I = 191 
# Type II = 166 

­ Type I VL fCSA observed in males 
(+22.7%) versus females (+6.3%) but ↔	
Type II VL fCSA between males (+29%) and 
females (+25.8%) 

Nunes et al. 
2020 [47] 

Males (n = 25) 
Females (n = 10) 
à Untrained: No 
RT 6-months prior 

~23.7 ± 
5.3 

3 sets x 8-12 reps 
à 70-80% 1-RM^ 
 
Exercises: Biceps 
preacher curl 

10 weeks 
(3/week) 

Muscle thickness 
(ultrasound; biceps) 

Biceps thickness ­ for both males (+10.5%) 
and females (+8%) * 

O'Hagan 
1995 [40] 

Males (n = 6) 
Females (n = 6) 
à Untrained: No 
RT experience 

21.2 ± 1.2 
20 ± 0.8 

3-5 sets x 8-12 reps 
à 70-80% 1-RM^ 

Exercises: Biceps 
curl variations 

20 weeks 
(3/week) 

Muscle CSA [CT; flexor 
(brachialis + biceps)] 

↔	Flexor CSA between males (+13.8%) and 
females (+26.9%) 

Peterson et 
al. 2010 [43] 

Males (n = 43) 
Females (n = 40) 
à Untrained: No 
RT 1 year prior 

~25.1 ± 
5.5 

3 sets x 6-12 reps 
à 70-85% 1-RM^ 

Exercises: Biceps 
curl (multiple 
variations) 

12 weeks 
(2/week) 

Muscle volume (MRI; 
biceps) 

­ Biceps muscle volume observed in 
males (+15.2%) versus females (+12.1%) 

Psilander et 
al. 2019 [41] 

Males (n = 9) 
Females (n = 10) 
à Untrained: No 
RT experience 

~25 ± 1 3 sets x 5-12 reps 
à 70-85% 1-RM 

Exercises: Leg press, 
leg extension 

12 weeks 
(3/week) 

Muscle thickness 
(ultrasound; VL) 
 
Muscle fCSA (biopsy + 
histochemistry; VL) 
# Type I = 198 
# Type II = 374 

VL thickness ­ for both males (+9.8%) and 
females (+9.5%) * 
 
VL fCSA ­ for both males (+15.1%) and 
females (+22.6%) * 
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Reece et al. 
2023 [38] 

Males (n = 14) 
Females (n = 16) 
à Untrained: No 
RT 1 year prior 

21.5 ± 2.3 
22.1 ± 3.6 

Group A: 3 sets x 8-
12 reps 
à 80% 1-RM 

Group B: 3 sets x n 
reps (BFR) 
à 30% 1-RM 

Exercise: Leg 
extension 

6 weeks 
(3/week) 

Muscle CSA (ultrasound; 
VL) 
 
 
Muscle fCSA (biopsy + 
histochemistry; VL) 
# Type I = 38 
# Type II = 55 

VL CSA ­ for both males (+5.3%) and 
females (+7.1%) for both RT protocols * 
 
VL fCSA ­ for both males (Type I = +18.9%, 
Type II = +17.3%) and females (Type I = 
+11.3%, Type II = +21.3%) for both RT 
protocols * 

Ribeiro et al. 
2014 [49] 

Males (n = 30) 
Females (n = 34) 
à Untrained: No 
RT 6-months prior 

22.7 ± 4.4 
22.7 ± 4.1 

3 sets x 8-12 reps 
à 70-80% 1-RM^ 

Exercises: Multiple 
exercises targeting 
all primary muscle 
groups 

16 weeks 
(3/week) 

Skeletal muscle mass (BIA; 
total body) 

↔	Skeletal muscle mass between males 
(+4.2%) and females (+3.9%) 

Rissanen et 
al. 2022 [34] 

Males (n = 23) 
Females (n = 22) 
à Trained: ≥1 year 
of RT experience 

26.4 ± 3.9 
25.5 ± 3.8 

Group A: 2-5 sets x 
20% VeL 
à 65-75% 1-RM 

Group B: 2-5 sets x 
40% VeL 
à 65-75% 1-RM 

Exercise: Back squat 

8 weeks 
(2/week) 

Muscle CSA (ultrasound; 
VL) 

↔	VL CSA between males (+17.1%) and 
females (+21.5%) for both RT protocols  
 

Schwanbeck 
et al. 2020 
[33] 

Males (n = 15) 
Females (n = 21) 
à Trained: >2 year 
of RT experience 

~22.5 ± 
3.5 

Group A: 3-4 sets x 
4-10 reps (free 
weights) 
à 75-90% 1-RM^ 

Group B: 3-4 sets x 
4-10 reps 
(machines) 
à 75-90% 1-RM^ 

Exercises: Biceps 
curl variations, back 
squat, lunge 

8 weeks 
(1/week) 

Muscle thickness 
(ultrasound; biceps, 
quadriceps) 

↔	Biceps and quadriceps muscle 
thickness between males (+5.4%) and 
females (+4.5%) for both RT protocols 
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Sterczala et 
al. 2024 [16] 

Males (n = 19) 
Females (n = 14) 
à Trained: 
Unknown years of 
RT experience 

28 ± 4 
26 ± 5 

3-5 sets x 3-10 reps 
à 64-88% 1-RM 

Exercises: Multiple 
exercises targeting 
all primary muscle 
groups 

12 weeks 
(3/week) 

Lean mass (DXA; total 
body) 

Muscle fCSA (biopsy + 
histochemistry; VL) 
# Type I = N/A 
# Type II = N/A 

Lean mass ­ for both males (+3.5%) and 
females (+3.4%) 

­ VL fCSA in males (Type I = +14.2%, Type II 
= +7.9%) versus females (Type I = –6%, 
Type II = –4.2%) 

Walsh et al. 
2009 [37] 

Males (n = 280) 
Females (n = 412) 
à Untrained: No 
RT 1 year prior 

~24.8 ± 9 
~24 ± 6 

3 sets x 6-12 reps 
à 65-90% 1-RM 

Exercises: Biceps 
curl (multiple 
variations) 

12 weeks 
(2/week) 

Muscle CSA (MRI; biceps) Biceps CSA ­ for both males (+19.7%) and 
females (+17.7%) * 
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3.2 Methodological Quality 

A detailed overview of the methodological quality of included studies using the TESTEX scale [16] 
can be found in Online Resource 3. Study quality scores ranged from 9 to 12 (out of a possible 
15), with mean and median scores of 10. Although each study had some risk of bias, many 
studies lost points due to i) no activity monitoring, ii) no ‘intention-to-treat’ analysis of participants 
who had withdrawn, and iii) no reporting of adverse incidents or compliance rate of participants. 
Overall, a total of 19 out of 29 (66%) studies scored highly (>10) on the TESTEX scale and visual 
inspection of methodological quality results revealed no impact of study quality on the effect 
size estimates generated. Considering that all included studies involved a comparison between 
males and females, no randomisation procedures were required, allocation concealment was 
not possible, and muscle size differed at baseline, thus, criterion ‘2’ (i.e., “randomisation 
specified”), criterion ‘3’ (i.e., “allocation concealment”), and criterion ‘4’ (i.e., “groups similar at 
baseline”) were given one point for every study. Although randomisation of participants into 
groups was not necessary in the studies included in this systematic review with meta-analysis, 
studies that involved different RT groups for each sex, and/or a control group, did employ 
appropriate randomisation procedures [33, 34, 36, 38, 40-42, 44, 47].  

3.3 Meta-Analysis Results 

Meta-analysis (including all 68 outcomes) of absolute changes in muscle size from pre- to post-
intervention (Fig 2) estimated a 100% probability of superior absolute muscle hypertrophy in 
males versus females [SMD = 0.19 (95% HDI: 0.11 to 0.28)]. The HDI covers ESs that suggest a 
negligible to small effect (favouring males), with low to moderate between-study variance 
identified [τ = 0.09 (95% HDI: 0.01 to 0.20)]. Additionally, meta-analysis (including all 68 
outcomes) of lnRR to assess relative changes in muscle size from pre- to post-intervention (Fig 
3) estimated similar muscle hypertrophy in males and females [lnRR = 0.01 (95% HDI: – 0.01 to 
0.03); pd = 74%]. The HDI covers ESs that suggest a negligible effect, with negligible between-
study variance identified [τ = 0.01 (95% HDI: 0.00 to 0.03)]. Exponentiated percentage changes 
calculated from lnRR also showed similar muscle hypertrophy between males and females [Exp. 
% Change of lnRR = 0.69% (95% HDI: – 1.50% to 2.88%)]. Results of secondary sub-group 
analyses are displayed in Table 2 and Online Resource 5. Raw SMD and Exp. % Change of lnRR 
of meta-analysed studies are displayed in Online Resource 4.  
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Fig 2. Meta-analysis of standardised mean differences to assess absolute changes in muscle size from 
pre- to post-intervention between males and females. Positive values favour greater increases in muscle 
size for male participants. Point (mean) estimates and 95% high density credible intervals are shown by 
the point and interval line below each posterior distribution. Red vertical lines represent the point estimate 
(solid) and width of the highest density credible interval (dotted) for the pooled effect size. Standardised 
mean differences shown are adjusted towards the overall mean, known as shrinkage.   

0.11 [−0.17, 0.28]

0.14 [−0.08, 0.29]

0.16 [−0.03, 0.31]

0.16 [−0.09, 0.35]

0.16 [−0.06, 0.34]

0.17 [−0.02, 0.32]

0.17 [−0.03, 0.34]

0.17 [−0.05, 0.35]

0.17 [−0.02, 0.34]

0.17 [−0.05, 0.37]

0.17 [−0.06, 0.37]

0.18 [−0.04, 0.37]

0.18 [−0.06, 0.39]

0.18 [−0.06, 0.38]

0.18 [−0.01, 0.36]

0.19 [−0.04, 0.39]

0.19 [−0.03, 0.39]

0.19 [0.01, 0.38]

0.19 [0.11, 0.28]

0.2 [−0.03, 0.43]

0.21 [−0.02, 0.44]

0.21 [0.01, 0.44]

0.22 [0.04, 0.42]

0.22 [0.07, 0.37]

0.22 [0.02, 0.45]

0.22 [0.03, 0.45]

0.23 [0.05, 0.43]

0.26 [0.1, 0.45]

0.28 [0.11, 0.5]

0.3 [0.14, 0.5]

Pooled Effect

Hakkinen (2001)

Kojic (2021)

Reece (2023)

Hakkinen (1998)

Psilander (2019)

Lundberg (2019)

Hammarström (2020)

Fernandez−Gonzalo (2014)

Schwanbeck (2020)

Grandperrin (2024)

Hurlbut (2002)

Cureton (1988)

O'Hagan (1995)

Coratella (2018)

Peterson (2010)

Rissanen (2022)

Alway (1992)

Ribeiro (2014)

McMahon (2018)

Abou Sawan (2022)

Nunes (2020)

Moesgaard (2022)

Abe (2000)

Ivey (2000)

Abou Sawan (2021)

Kosek (2006)

Hubal (2005)

Sterczala (2024)

Walsh (2009)

−0.50 −0.25 0.00 0.25 0.50 0.75
Standardised Mean Difference
(Positive Value Favours Males)



 19 

 
Fig 3. Meta-analysis of log response ratios (converted to exponentiated percentage changes) to assess 
relative changes in muscle size from pre- to post-intervention between males and females. Positive 
values favour greater increases in muscle size for male participants. Point (mean) estimates and 95% high 
density credible intervals are shown by the point and interval line below each posterior distribution. Red 
vertical lines represent the point estimate (solid) and width of the highest density credible interval (dotted) 
for the pooled effect size. Exponentiated log response ratios are adjusted towards the overall mean, 
known as shrinkage.   
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Table 2. Secondary sub-group analyses of body region, assessment of muscle hypertrophy, and 
resistance training experience, and muscle fibre type. Effect estimates displayed as standardised mean 
difference or exponentiated percentage change of log response ratio. Positive values indicate larger 
increases in muscle size for male participants.  HDI, highest density credible interval; Obs, observations; pd, 
probability of direction. 
 

Categorical Variable Effect Estimate HDI pd Obs. 

Absolute Change in Muscle Size (Standardised Mean Difference)  
Body Region     
Lower Body 0.17 0.056 to 0.29 100% 47 
Upper Body 0.30 0.14 to 0.44 100% 15 
Assessment of Muscle Hypertrophy 
Lean Mass 0.02 – 0.19 to 0.23 60% 6 
Muscle CSA 0.19 0.04 to 0.34 99% 21 
Muscle fCSA 0.29 0.11 to 0.47 100% 16 
Muscle Thickness 0.19 – 0.02 to 0.39 97% 17 
Muscle Volume 0.19 – 0.08 to 0.45 92% 6 
Muscle Fibre Type 
Type I 0.39 – 0.03 to 0.81 97% 8 
Type II 0.10 – 0.33 to 0.52 70% 8 
Resistance Training Experience 
Resistance-Trained 0.20 0.01 to 0.38 98% 13 
Untrained 0.19 0.09 to 0.29 100% 54 
Relative Change in Muscle Size (Exponentiated Percentage Change) 
Body Region     
Lower Body 1.04% – 2.03 to 4.2% 75% 47 
Upper Body 0.60% – 2.97 to 4.18% 63% 15 
Assessment of Muscle Hypertrophy  
Lean Mass 0.02% – 5.12 to 5.32% 50% 6 
Muscle CSA 0.45% – 3.23 to 4.19% 59% 21 
Muscle fCSA 6.03% – 2.55 to 15.4% 91% 16 
Muscle Thickness 0.35% – 3.25 to 3.93% 58% 17 
Muscle Volume 2.29% – 8.58 to 14.5% 64% 6 
Muscle Fibre Type 
Type I 12.7% – 6.84 to 34.9% 90% 8 
Type II – 2.29% – 19.2 to 16.7% 62% 8 
Resistance Training Experience 
Resistance-Trained 0.87% – 3.46 to 5.4% 65% 13 
Untrained 0.66% – 1.79 to 3.07% 71% 54 
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3.4 Sensitivity Analysis 

Sensitivity analysis of r values from 0.7 to 0.99 found SMDs between 0.17 and 0.22 (meta-analysis 
result = 0.19). The primary analysis was conducted with an a priori assumption that the 
correlation coefficient between pre-test and post-test measures was r = 0.87; this is a reasonable 
assumption that was obtained from previous literature [10], with sensitivity analyses indicating 
little impact of different correlation coefficient values on the pooled SMD. As such the results of 
our meta-analysis may be interpreted with increased confidence. Results of sensitivity analysis 
are displayed in Online Resource 1.  
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4. DISCUSSION 

4.1 Absolute and Relative Changes in Muscle Size 

This systematic review with meta-analysis extends previous findings with a total of 29 included 
studies (versus 10 in a previous meta-analysis [9]), providing an up to date synthesis of the 
current literature investigating biological sex differences in both absolute and relative muscle 
hypertrophy following RT. We found absolute increases in muscle size following RT slightly 
favoured males versus females (SMD = 0.19), however, the relative increase in muscle size 
(percentage increase from baseline) following RT was similar between sexes (Exp. % Change of 
lnRR = 0.69%). Inherent differences in testosterone levels between sexes [5] are known to be 
responsible for larger baseline muscle size in males versus females on average (e.g., out of 68 
observations extracted from reviewed studies, only two showed larger baseline muscle size in 
females). Therefore, differences in absolute muscle hypertrophy observed between sexes are 
likely due to differences in baseline muscle size, whereas relative muscle hypertrophy is based 
on the proportional increase from baseline size. For example, since females state with less 
muscle mass on average, the absolute increase will be smaller even if the proportional change 
(i.e., relative muscle hypertrophy) is similar to that of males (Fig 6). Considering the similar relative 
increases in muscle size observed between sexes, physiological signals (e.g., mechanical tension 
mediated anabolic signalling, metabolic stress [50]) other than sex-specific hormonal balance 
may play the primary role in promoting muscle hypertrophy following RT [50]. Supportive of our 
findings is research highlighting i) the anabolic properties of estradiol that may contribute to 
muscle hypertrophy [51-53], ii) the positive association between androgen receptor content with 
muscle hypertrophy [54], iii) similarities in post-exercise protein synthesis and molecular 
signalling between sexes that triggers muscle hypertrophy [55, 56], and iv) the acute post-
exercise elevation in anabolic hormones does not play a major role in stimulating muscle protein 
synthesis [57]. Taken as a whole, our data suggest RT is likely to induce slightly greater absolute 
increases in muscle size in males versus females, but similar relative increases in muscle size 
from baseline, which suggests comparable muscle hypertrophic potential between males and 
females following RT. 
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Fig 6. Graphical overview of absolute and relative changes in muscle size (including muscle fibre cross 
sectional area) following resistance training for males and females. To depict changes in absolute 
muscle size, the mean value of all muscle size outcomes (independent of the units of measurement) was 
calculated and described as “absolute muscle size in arbitrary units”.  
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4.2 Moderators of Absolute and Relative Changes in Muscle Size 

Sub-group analyses were conducted to assess possible variability in muscle hypertrophy 
outcomes across measures and body regions. Absolute differences in muscle hypertrophy 
between sexes were more evident with direct measures (i.e., muscle volume, muscle thickness, 
and muscle CSA and fCSA) versus indirect measures (i.e., lean mass). However, measures of lean 
mass should be interpreted with caution as they can be influenced by fluid alterations and may 
be less accurate versus other direct measures used [58]. Nonetheless, relative changes in 
muscle size between sexes were similar across all measures employed. Although sex differences 
in relative hypertrophy slightly favoured muscle fCSA versus other measures, the very wide HDIs 
suggests high variability in the response. We categorised body regions measured into either 
upper- or lower-body and found relative changes in muscle size between sexes were similar 
independent of the body region assessed. However, absolute changes in muscle size of the 
upper-body slightly favoured males (SMD = 0.30 versus 0.17), likely due to larger baseline 
differences in muscle size between sexes in the upper- versus lower-body [5]. Overall, these data 
suggest i) sex differences in absolute and relative muscle hypertrophy do not appear to depend 
on the measurement of muscle size, and ii) males experience slightly greater absolute muscle 
hypertrophy versus females in body regions where larger baseline differences are evident (i.e., 
in upper-body versus lower-body muscles). 
 
A total of seven studies (n = 170) using histochemical analysis of skeletal muscle biopsies to 
determine fCSA [11, 12, 16, 20, 22, 38, 41] were meta-analysed. Similar to previous findings  [11, 
12], we observed a >90% probability of absolute (SMD = 0.39) and relative (Exp. % Change of 
lnRR = 12.7%) type I muscle fibre hypertrophy favouring males versus females, providing further 
support males have a greater capacity to hypertrophy type I muscle fibres than females. 
However, the 95% HDIs covered wide effect estimates for both absolute and relative type I 
muscle fibre hypertrophy, suggesting considerable uncertainty in outcomes. Conversely, we 
estimated a negligible difference in i) relative hypertrophy of type II muscle fibres favouring 
females versus males (Exp. % Change of lnRR = – 2.29 %; pd = 62%), and ii) absolute hypertrophy 
of type II muscle fibres between sexes, despite larger baseline mean muscle fCSA for males (4616 
± 713µm2) versus females (3652 ± 621µm2) across all studies included in our meta-analysis. 
These findings support the possibility for sex-specific differences in muscle fibre type 
hypertrophy. Nonetheless, despite all studies assessing muscle fCSA with histochemical analysis 
of skeletal muscle biopsies, variability in the number of muscle fibres chosen and subsequently 
analysed per participant (range = 37 to 374), and how studies reported type II muscle fCSA based 
on the combination of type IIa and IIx values (which differ in size at baseline and in their 
physiological response to chronic exercise [38]), may have influenced our findings. As such, due 
to the intricate nature of measuring muscle fCSA in research and the uncertainty and variability 
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in responses observed (Online Resource 4), our findings should be interpreted with caution and 
used to inform future research that compares muscle fibre type-specific hypertrophy between 
males and females. 
 
The RT experience of participants did not seem to influence sex differences in absolute and 
relative muscle hypertrophy following RT. Previous research has indicated that long-term RT 
experience alters the physiological response to RT [59] and may also cause muscle fibre type 
transitions that could influence sex-specific muscle hypertrophy [60]. For example, a study in 
high-level competitive weightlifters (i.e., World/Olympic and National level) found years 
competing in weightlifting influences the proportion of type II muscle fibres more than biological 
sex per se, with females having a higher abundance of type II muscle fibres than males [61]. 
Whether a higher proportion of type II muscle fibres in highly trained females would influence 
sex differences in whole muscle and muscle fibre type-specific hypertrophy remains to be 
explored. Given only six of the 29 studies included in the meta-analysis involved resistance-
trained participants, further research investigating sex differences in muscle hypertrophy within 
resistance-trained samples is encouraged.  
 

4.3 Limitations 

Although most (66%) of the included studies were of ‘high’ quality, a brief overview of key findings 
in Table 1 suggests that results are consistent across both low and high quality studies. Our sub-
group analysis investigating hypertrophy of type I and type II fibres only involved seven studies 
with a total of 170 participants, and the wide HDIs highlight the variability in outcomes. Although 
interpretations about muscle fibre type-specific hypertrophy were based on data from 170 
participants, it is possible that a larger pool of evidence may strengthen or weaken the findings. 
Only six out of 29 studies were conducted in resistance-trained participants, however, in some 
cases the RT experience (years) of the ‘resistance-trained’ participants was vaguely described 
and therefore unclear (Table 1). Future research should investigate sex differences in muscle 
hypertrophy amongst resistance-trained samples and clearly report RT status of participants 
(e.g., years of experience). Finally, considering exact correlation coefficient values (between pre-
test and post-test measures) could not be retrieved from individual studies, we used an a priori 
assumption of r = 0.87 to calculate SMDs. However, sensitivity analyses showed minimal impact 
of varying correlation coefficients on the pooled SMD, supporting the robustness of our meta-
analysis results. 
 



 26 

4.4 Practical Applications 

Our findings suggest healthy adult males and females have comparable muscle hypertrophic 
potential following RT, and thus, may experience similar benefits associated with RT-induced 
muscle hypertrophy. For example, i) low skeletal muscle mass index is associated with an 
increased risk of all-cause mortality [62], and ii) some physiological characteristics important for 
athletic performance (e.g., force production, rate of force development, fatigue resistance) may 
be influenced by muscle size [63, 64]. Considering we found minimal evidence of a moderating 
effect of RT experience on sex differences in muscle hypertrophy, RT may be prescribed similarly 
between both untrained and resistance-trained males and females, with primary differences in 
RT prescription based on long-term goals (e.g., aesthetics or performance-based goals) and 
individual characteristics (e.g., enjoyment, perceptions of discomfort, preferences, stress 
tolerance, etc.). However, potential sex differences in short-term responses to RT, such as 
neuromuscular fatigue and muscle damage, may be greater in males versus females [65-67] and 
should be considered in RT prescription.   
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5. CONCLUSION 
This systematic review with Bayesian meta-analysis investigated differences in muscle 
hypertrophy following RT between healthy adult males and females. The evidence suggests 
absolute increases in muscle size following RT slightly favour males, however, relative changes 
in muscle size are similar between sexes. These results were not influenced by different 
measures of muscle size or the RT experience (i.e., untrained or resistance-trained) of 
participants. Further, differences in absolute muscle hypertrophy favouring males over females 
were larger in the upper- versus lower-body regions. Although there were possible sex 
differences in muscle-fibre type specific hypertrophy, with greater type I muscle fibre 
hypertrophy in males versus females, our findings should be interpreted with caution due to the 
intricate nature of measuring muscle fCSA in research and the variability in responses observed. 
Our primary analyses strengthen the understanding that females have a similar potential to 
induce muscle hypertrophy as males (particularly when considering relative increases in muscle 
size from baseline) and findings of our secondary analyses should inform future research that 
investigates sex differences in highly trained participants and muscle fibre type-specific 
hypertrophy. 
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