
Supplement 1 (S1): Original data and research context (full description) 

Purpose for using this dataset 

We have specifically revisited data from Fanchini et al. [1], which was also used in a subsequent 

study [2]. The data availability statement for this subsequent study stated, “data cannot be shared since 

there is no permission from the team owning the data, but sharing of a synthetic dataset may be 

considered upon request.” In the current study, we intended to create a synthetic dataset to provide 

enough information relevant to replicate the findings of the GEE model reported in both studies [1, 2]. 

As such, the present study provided a secondary data analysis of original training load and injury 

observations examined from the original study by Fanchini et al. [1].  

Original dataset 

From a general standpoint, the term “load” is typically referred to as the amount of physical 

training quantified in terms of running distances covered (at various speeds) during training and match, 

and/or other alternative surrogate determined using relevant psychometric measurement instruments [3, 

4]. Specifically, Fanchini et al. [1] examined prospective data collected from a sample of 34 professional 

football players on the same team over 3 consecutive competitive seasons. Internal training load was 

assessed using session duration (minutes) and ratings of perceived exertion (RPE) using a level-

anchored semi-ratio CR-10 Borg scale (Borg CR10®), with session duration x RPE (sRPE) as proxy 

measurement of interest (i.e., as a cumulative measure of exposure) [1, 5]. Weekly or acute training 

load was calculated as the most recent 7-day sRPEs period. Uncoupled chronic training loads were then 

calculated as 2-week, 3-week, and 4-week rolling averages. The original study of Fanchini et al. [1] 

also explored the relationship between training load and non-contact injury occurrence based on acute 

load (numerator) divided by the previous weeks’ chronic load periods (denominator) as a simple ratio 

index defined as the acute-to-chronic (uncoupled) workload ratio [1, 6]. All injuries during the data 

collection period were classified based on Fuller et al. [7]’s criteria, and defined as a binary outcome 

(yes injury=1, no injury=0). The present study retained the consideration of this simple ratio index for 

pure educational purposes even though there is lack of empirical support underpinning its calculation 

for research and applied purposes [8, 9]. As such, the synthetic dataset will contain five variables: 



1. WeekID: A numeric variable specifying the week to which the observation belongs. WeekID 

ranges between 1 and 120 for each player. Each week must be a positive integer, i.e., the 

specific week in the testing period.   

2. PlayerID: A dummy nominal variable outlining a specified player ID, ranging from 1 to 34. 

3. Acute Load: a variable serving as a proxy for each player’s weekly training load. 

4. Chronic Load: a variable serving as a proxy for each player’s 4-week chronic load for each 

week. Chronic load was uncoupled.   

5. Injury: A binary variable indicating whether a player was injured during that week (yes=1, no 

=0). 

Original analysis 

Notwithstanding the different methods relevant to the analysis of repeated-measures data of predictor 

variables for clinical risk prediction [10-12], Fanchini et al. [1] explored the association between load 

and noncontact injury using a generalized estimating equations (GEE) approach. In the original work, 

the model included a logit link function and an exchangeable working correlation matrix based on 

lower quasi-likelihood under the independence model criterion [13]. This was attended to in all GEE 

analysis applied to synthetic data as part of the replication objectives. 

  



Supplement 2 (S2): Synthetic Data Generation Process using Synthpop 

For a comprehensive description of Synthpop’s process for generating synthetic data please see 

[14]. But briefly to summarize from Nowok [14], when replicating a dataset with Synthpop, we assume 

the observed data is a random sample from a population. We can estimate the population's parameters 

using the sample, and then simulate a synthetic dataset based on those parameters. The process of 

simulating a synthetic dataset using synthpop depends on first defining distributions, where the joint 

distribution being synthesised is defined using a series of conditional distributions. First, a set of 

columns (i.e. variables) that are not to be synthesised are specified, with these referred to a zobs. These 

form the initial set of possible variables that can be used as predictors in defining conditional 

distributions for variables being synthetically generated but will not be generated synthetically 

themselves. xobs are ALL predictors used in the estimation of a conditional distribution for a given 

synthetic variable (therefore initially zobs = xobs). The process of generating synthetic data follows a 

sequential variable-by-variable process. In each instance the variable being estimated is referred to as 

yobs. For the first variable yobs_1, the selected xobs columns are used to predict the distribution of yobs_1. 

Once the distribution of yobs_1 is predicted, it is added to the set of xobs. Then the next variable is selected, 

and its distribution is estimated conditional on the current set of xobs (which now includes the estimated 

yobs_1). The distribution of subsequent variables (subsequent yobs_n) follows this pattern, with every future 

variable being estimated conditional on initial xobs and all previous columns of predicted yobs. As such, 

variables within the synthetic datasets are predicted sequentially as they appear in the original dataset 

unless otherwise specified.  

Within synthpop, it is possible to specify different model generation frameworks for each 

variable, including parametric (e.g., linear regression) and non-parametric approaches (e.g., 

classification and regression trees (CART), random forest models, etc). A full outline of the possible 

model generation frameworks can be found in synthpop’s documentation [15]. In the present study, 

only CART was explored for generating each variable in each dataset, as this was the simplest non-

parametric method and synthpop’s default. Within synthpop, the variable synthesis order is 

determined by the visit.sequence parameter and the synthesising model’s predictors are determined by 

the predictor.matrix parameter. Importantly, the visit sequence limits predictor variable choices since 



the model cannot condition on variables that have not yet been generated. Therefore, one should 

introduce important predictors early in the sequential process so they can be used to define the 

conditional distributions of future, less informative variables. 

  



Supplement 3 (S3): Metrics for exploring synthetic data 

 

What is utility? 

 There are two broad ways to assess the quality, or utility, of synthetic data. Firstly 

“global utility” assesses the overall similarity of the distributions of the specified variables 

within the synthetic data to the original data, independent of any specific research question. 

Alternatively, “specific utility” assesses the ability of the synthetic data to answer a specific 

research question or replicate the results of a specific analysis.  

 

Global utility 

 Three common global utility metrics use a prediction model (the default in synthpop 

being a logistic regression, which was used in the present study) to determine whether data 

originated from the source dataset or the synthetic dataset. These metrics employ the use of a 

propensity score [16, 17], which represents the probability of each observation being real or 

synthetic. “High” global utility implies that the datasets are indistinguishable. These three 

metrics are as follows: 

pMSE: A propensity score is estimated for each of the rows of the combined data, as 

the probability of classification for an indicator variable denoting whether the observation 

belonged to the real or synthetic dataset. The mean-squared difference between these estimated 

probabilities and the true proportion of records from the synthetic data in the combined data 

(denoted by c; usually 0.5) gives the utility statistic (1/N)Σ(pi – c)2, which can then be used to 

calculate the propensity score mean-squared error pMSE [17]. A value close to 0 indicates 

strong global utility. 

s-pMSE: the standardized pMSE is calculated to assess the distributional similarity 

between the distribution of the observed data and the model used to generate the synthetic data. 



It is calculated as the difference of the pMSE from its null expectation in units of the estimated 

null standard deviation. The s-pMSE an expectation of 0 and a standard deviation of 1 in the 

null case, with increased values of these statistics being expected if correct synthesis does not 

hold [17].  

 PO50: is the percentage of the observations correctly predicted over 50%, where the 

majority of observations in each grouping are in agreement with the original category (real or 

synthetic) of the observation [18]. Lower PO50s have a better global utility. In other words, 

the statistical model cannot reliably discern original observations from synthetic ones.  

 

Specific utility 

 Specific utility refers to measures used to evaluate whether analyses using synthetic 

data replicate a specific analysis performed on the original data. In the present study specific 

utility was looked at in terms of replication of GEE outcomes from the original work of 

Impellizzeri et al. [2]. For the replication of GEE outcomes, three metrics were evaluated.   

 MAE of GEE estimate: MAE was calculated comparing the Acute-Chronic (4-week) 

training load ratio GEE parameter estimate in the synthetic and original datasets, mirroring the 

analysis in Fanchini et al. [1] for creating this metric.  

MAE of GEE SE: MAE was calculated comparing the Acute-Chronic (4-week) training 

load ratio GEE parameter’s standard error (SE) in the synthetic and original datasets, mirroring 

the analysis applied in Fanchini et al [1]. 

MAE of GEE p-values: MAE was calculated as the average difference between p-values 

from the GEE fitted on the original data, and equivalent p-values fitted on the synthetic data. 

For assessing how well temporal structures were preserved in the synthetic workload 

data, specific error metrics were calculated for load variables.   

 



Additional metrics 

Computation time: Although not a metric used to assess the quality of the synthetic 

data, it was included to assess the feasibility for using a given set of specifications for 

generating synthetic data. Computation time is the time taken to run the synthetic data 

generation script for a single dataset.  

MAE of acute load and chronic load observations: Given that the data were panel (i.e., 

a large number of repeated measures for each individual across weeks), mean absolute error 

(MAE) measures were calculated as the distance between the original and synthetic datasets 

for acute load and chronic load (across all observations). This was only conducted in the first 

4 simulation conditions, given that injury remained fixed and did not have new synthetic data 

generated. As such, MAE served as a general measure of fit to evaluate how much Acute Load 

and Chronic Load variables varied at the observation level, across a range of varying 

experimental specifications in the first four simulation conditions. Larger MAE indicate that 

the temporal structure within each individual was not well preserved and possessed less utility 

from the perspective of preserving temporal structures.  

  



Supplement 4 (S4): Exploring the variability of the data generation processes 

For simulation conditions one to four, the variability of the underlying data generation process 

within each simulation condition was compared across all synthetic datasets generated. This involved 

comparing synthetic datasets as a series of adjacent pairs (i.e. dataset 1 and dataset 2, dataset 2 and 

dataset 3, and so on). For each set of adjacent pairs, the same metrics were calculated for each pair, 

providing an indication of whether a simulation condition was likely to be more inconsistent, regardless 

of its performance for specific utility when assessed relative to the original data.  

The results for this series of tests are presented alongside the results of specific utility for the 

same four simulation conditions, with both being presented below in Table S1 (original specific utility 

and additional metrics results relative to the original data), and Table S2 (specific utility and additional 

metrics relative to the error between pairs of synthetic datasets).  

 

Table 1. Original specific utility and additional metric MAEs compared to original data.  

    Synthetic Training Load Data Simulations 

    
      

Base (1) Base_Week (2) Time_Lag_1wk (3) Time_Lag_3wks (4) 

    MAE (SD) MAE (SD) MAE SD) MAE (SD) 

Specific Utility (MAE) 

Chronic load 

simulated as 

"independent 

variable" 

GEE Estimate  0.37 (0.27) 0.37 (0.26) 0.48 (0.29) 0.75 (0.32) 

GEE SE 0.1 (0.06) 0.11 (0.07) 0.11 (0.07) 0.14 (0.07) 

p-value 0.03 (0.07) 0.12 (0.20) 0.36 (0.28) 0.57 (0.27) 

Chronic load 

calculated from 

synthetic acute load 

GEE Estimate 0.33 (0.27) 0.75 (0.40) 0.83 (0.35) 1.16 (0.34) 

GEE SE 0.13 (0.08) 0.13 (0.07) 0.12 (0.07) 0.1 (0.06) 

p-value 0.11 (0.17) 0.48 (0.28) 0.55 (0.27) 0.49 (0.29) 

Acute load Observation level 462.57 (6.82) 365.65 (6.40) 330.59 (6.10) 295.02 (5.62) 

Chronic load  

simulated 
Observation level 272.26 (4.42) 208.28 (3.82) 142.12 (2.63) 126.03 (2.50) 

Chronic load 

calculated 
Observation level 257.05 (5.77) 196.81 (4.49) 194.92 (4.35) 180.86 (4.19) 

      
  



      

Table 2. Original specific utility and additional metric MAEs compared to between pairs of synthetic data.  

    Synthetic Training Load Data Simulations 

    
      

Base (1) Base_Week (2) Time_Lag_1wk (3) Time_Lag_3wks (4) 

    MAE (SD) MAE (SD) MAE SD) MAE (SD) 

Specific Utility (MAE) 

Chronic load 

simulated as 

"independent 

variable" 

GEE Estimate  0.40 (0.32) 0.50 (0.35) 0.34 (0.28) 0.37 (0.29) 

GEE SE 0.09 (0.06) 0.09 (0.06) 0.08 (0.06) 0.09 (0.07) 

p-value 0.05 (0.09) 0.17 (0.22) 0.30 (0.24) 0.29 (0.22) 

Chronic load 

calculated from 

synthetic acute load 

GEE Estimate 0.50 (0.37) 0.46 (0.35) 0.39 (0.28) 0.38 (0.28) 

GEE SE 0.1 (0.08) 0.09 (0.07) 0.08 (0.06) 0.08 (0.06) 

p-value 0.15 (0.19) 0.32 (0.24) 0.30 (0.22) 0.34 (0.23) 

Acute load Observation level 462.58 (8.07) 366.4 (7.49) 331.49 (6.57) 295.2 (5.93) 

Chronic load  

simulated 
Observation level 273.04 (4.70) 222.17 (4.49) 142.94 (3.04) 129.08 (2.96) 

Chronic load 

calculated 
Observation level 257.06 (5.78) 196.8 (4.49) 194.91 (4.35) 180.87 (4.19) 

 

 

Even though specific utility was best in simulation condition one (when calculating chronic 

load from acute synthetic load) for error in the GEE estimate when compared to the original data, the 

variability of the GEE estimate error when calculated relative to adjacent synthetic dataset pairs was 

the worst (i.e. highest) for simulation condition one. This trend was reversed for simulation condition 

four, with the GEE estimate error being the highest when calculated relative to the original data, but the 

lowest when calculating the error relative to adjacent pairs of synthetic data.  

What this indicates is that despite having a synthetic data generation process, which provides 

better specific utility, like simulation condition one, there is still a possibility that the data generation 

process may be highly variable and inconsistent from synthetic dataset to synthetic dataset, despite 

centring around an average error that indicates good specific utility.  

Despite this occurring for specific utility in simulation condition one, the trend for acute load 

error and chronic load errors to descend in magnitude across the simulation conditions (being highest 

in simulation condition one) held consistently when calculating error relative to adjacent synthetic 

dataset pairs. This indicated that the variability of the synthetic data generation processes decreased as 

more temporal predictors were added into data generation processes.  



Supplement 5 (S5): Example of synthetic datasets being generated and released 

Synthetic datasets for two simulation conditions were generated from the original dataset used in the 

present study and released openly. These are available for use at: 

https://github.com/johnwarmenhoven/SynthData_in_Sport/tree/main/R-

Code/Example%20Synthetic%20Datasets. For these two simulation conditions, there are different 

specifications for the generation of synthetic data. Each set contains 10 datasets. This number of datasets 

per simulation conditions was selected to allow for repeated testing across a number of datasets within 

a condition, while being a small enough number that it mitigated against the risk of identifying the 

original observations by pooling the synthetic datasets together. Details of these datasets are below. 

 

Table 1. Simulation condition specifications for the two sets of synthetic data that has been released on GitHub. Table follows 

a similar layout to Table 1 in in the main manuscript. 

  Variables 

for Xobs 

Variables 

for Yobs 

Visit Sequence of 

Predictors 

Description & Rationale 

Simulation 

Condition A 

 

Injury; 

PlayerID; 

Acute load; 

Chronic load; 

Injury. 

Acute 

load; 

Chronic 

load; 

Injury 

Injury; PlayerID; Acute load; 

Chronic load. 

This is the same as simulation 

condition one in the main 

manuscript, but with the exception 

that this also simulates injuries (not 

just workload variables).  

Rationale: This is a simple set of 

specifications for synthetic data 

generation, designed to provide a 

dataset that reports similar outcomes 

to the GEE model applied to the 

original data. So if for example a new 

researcher wanted to verify the 

analysis and code on this synthetic 

data for the original GEE model, or 

make a minor modification to the 

GEE model (e.g. a different link 

function), these datasets would be 

appropriate for this.  

Simulation 

Condition B 

 

Injury; 

PlayerID; 

WeekID; 

Acute load; 

Chronic load; 

Injury 

Acute 

load; 

Chronic 

load; 

Injury 

AL_Lag(1-step); AL_Lag(2-

step); AL_Lag(3-step); 

CL_Lag(1-step); CL_Lag(2-

step); CL_Lag(3-step); Acute 

load; Chronic load; Injury. 

This is the same as simulation 

condition seven in the main 

manuscript. PlayerID was removed 

from the visit sequence and injury 

was used as the final variable to be 

synthetically generated.  

Rationale: this simulation condition 

allows researchers an ability to look 

at any autoregressive features leading 

into injuries, given that 

autoregressive variables were 

included in the generation process. 

These 10 datasets are however 

unlikely to provide outcomes for the 

GEE that are consistent with the 

original dataset. 

https://github.com/johnwarmenhoven/SynthData_in_Sport/tree/main/R-Code/Example%20Synthetic%20Datasets
https://github.com/johnwarmenhoven/SynthData_in_Sport/tree/main/R-Code/Example%20Synthetic%20Datasets


For any intentions using these synthetic datasets, outside of the applications specified in the table above, 

the results are likely to be erroneous. Additionally, even though details on these specifications are 

provided above, and guidance in what these datasets can be used for is also provided, there is still likely 

to be inconsistencies in the outcomes of models applied to these datasets, given the large amount of 

variability demonstrated in the data generation processes highlighted in Supplement 4.  

 

As such, all findings on these datasets must be verified on the original data, under the direction and 

guidance of the original custodians of the data (being the research team on the current project).  
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