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Abstract 

Synthetic data represent alternative data sources generated using mathematical procedures to 

address specific issues in research and practice. Synthetic data has emerging applications in clinical and 

medical data contexts and may assist in overcoming privacy issues to help support open science 

practice. The present study discusses the applicability of an established synthetic data generation 

process using sequential tree-based algorithms (Synthpop package in R) in the context of athlete 

monitoring data in sport. We provide an educational primer and discussion for potential application of 

these methods when exploring issues in the field sports and exercise sciences via the application of 

Synthpop in seven simulation examples applied to a professional football dataset. Although sequential 

tree-based algorithms can create synthetic data using our reference dataset, we provide considerations 

for and highlight limitations when constructing synthetic data. To summarize, three types of models 

can be conceptualised for generating synthetic data: 1) models used for analysis of the original data 

(answering specific research questions); 2) models used to generate synthetic data, and; 3) models that 

represent the true generation process for the original data. Misalignments in the specifications of these 

models might introduce biases that can compromise the utility of synthetic data no matter the purpose. 

As synthetic data do not constitute a direct replacement of real data from conceptual and empirical 

standpoints, we believe that researchers embracing this practice must include sufficient documentation 

concerning the synthetic data generation process purpose, the predictors and model used, and the 

potential boundary conditions for using the synthetic data in future investigations in sports and other 

fields.  
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Synthetic data for sharing and exploration in high performance sport: Considerations for 

application. 

 

1. Introduction 

Recently there have been calls for open science practices and rigor in sports science [1], 

including increased transparency and improved quality of evidence for greater impact and translation. 

One core goal of open science efforts is to facilitate “findable, accessible, interoperable and reusable” 

(FAIR) data, study registrations, study protocols, analysis plans, and code [2]. For example, open 

science practices in sports sciences could circumvent common sample size issues by collating data from 

individual sports teams, single small organizations, or leagues. Likewise, these collated datasets could 

support research efforts that incentivize experimental and methodological rigour [1].  

Barriers in sports science, particularly in high-performance environments, can prevent 

researchers from embracing an open and FAIR data framework due to reasons that are beyond the 

researchers’ control. Data can sometimes be viewed as a commodity in sport given the potential for 

competitive advantage over other teams or clubs and possible commercial opportunities [3]. Moreover, 

potential data re-identification remains a substantial risk, stifling open science culture in sport research. 

Accordingly, in alignment with improving open science in sport, there is a need for the development of 

strategies allowing for basic demographics, exposure, and a minimal set of relevant measures to be 

shared in high performance sports research, without sports clubs losing any competitive advantage and 

while protecting the identity of individual athletes [1].  

Issues challenging open science and FAIR data principles are not unique to sport. In healthcare, 

electronic health records (or as a part of clinical experiments) contain highly sensitive information, and 

gaining access to these datasets can be costly and time-consuming [4]. Anonymisation is one method 

to facilitate data sharing practices [5]. Another method is to create synthetic data [6]. Synthetic data 

resembles the data from the actual study but includes (1) some differences so that individuals cannot be 

identified, and (2) enough similarities so that the results match the results from the true data. 

 

1.1 What is a synthetic dataset? 
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Synthetic data is data that has been generated, or in simpler terms simulated, using purpose 

built mathematical models or algorithms, with the aim of solving data science tasks [7]. Synthetic data 

facilitates open science practices [8], can be used for developing code or generating and testing 

hypotheses before deployment on real datasets, and for facilitation of training in handling complex 

medical data [9].  

Synthetic data generation can use “process-driven methods” or “data-driven methods” 

depending on the objective [6]. Process-driven methods derive synthetic data from computational or 

mathematical models of an underlying physical data-generating process per se. These are typically 

based on physical laws or other mechanistic models describing the data generating process. The 

methods are generally useful if the underlying “true” or at least putative mechanisms underpinning 

synthetic data generation (i.e., rules or distributions) are known or can be accurately estimated. 

Examples include numerical simulations, agent-based modelling, and discrete-event simulations. Agent 

based models have contributed to synthetic data generation in urban disaster research [10] and physics 

based systems and numerical simulations have been used to generate synthetic data using information 

regarding fluid flow and solute transport in water resource research [11].  

Data-driven methods are useful for generating synthetic data that accurately resembles some 

aspect(s) of a specific sample of data. The process uses generative models based on relationships 

observed within the original data without necessarily relying on a deep understanding of the 

mechanisms that generated it. Since our objective is to create shareable datasets, we always refer to 

data driven methods when we use the term synthetic data in the rest of this manuscript. Data-driven 

synthetic data has received particular attention for over 30 years [12], with its utility being of strong 

interest in healthcare and medicine [6]. In the context of making previously observed data available, we 

attempt to preserve as much of the statistical patterns from the original data as possible. Real 

observations are replaced with synthetic observations, ensuring enough variation from the original data 

so that individual data records do not reflect any one individual. These data driven synthetic datasets 

can be implemented using a range of software packages (e.g., for R and Python) [8-10]. One R package, 

synthpop [13], is growing in popularity with applications in prenatal healthcare [14], cancer [8], and 

biobehavioural data contexts [15]. Recently, synthpop has made its way into sport science, with a 
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demonstration on two open datasets [16] and the construction of a dashboard for synthetic data 

generation (https://assetlab.shinyapps.io/SyntheticData/).  

In addition to this growth in synthetic data application, there is also interest in exploiting these 

synthetic datasets for new (or secondary) research explorations. This would involve leveraging the 

information embedded within synthetic datasets to gain new insights and generate new hypotheses that 

could be tested as a part of future studies. For example, Vaden et al. [17] synthesized neuroimaging, 

demographic, and behavioural data to (among other things) advance scientific discovery in 

neuroscience [17]. This desire to explore synthetic data is also common in other forms of clinical 

research, administrative data, and other longitudinal population-based studies [18].  

 

1.3 Present study 

Given the potential to improve open science and FAIR data principles in sport through the 

integration of synthetic data, and the construction of the relatively user-friendly synthpop package in R, 

and the application of synthpop in sport [16], our objective is to explore and scrutinize the process of 

generating representative synthetic data using a previously published athlete monitoring dataset [19]. 

The original dataset has been used in studies investigating the relationship between training load and 

injuries—an area that is featured in numerous publications [20, 21] yet not without methodological 

shortcomings and inconsistencies [22-25]. Creating open and shared synthetic datasets would enable 

the replication and reanalysis of previously collected data, allowing further exploration and 

investigation of previous studies’ methods.  

Despite synthpop’s potential, generating a synthetic training load and injury dataset has 

challenges beyond the synthpop package and standard default settings, requiring careful thought 

regarding the specifications for how the synthetic data is to be generated. It is important to document 

these decisions and acknowledge the limitations and constraints of the resulting synthetic datasets [26]. 

Therefore, we discuss how to approach these decision points and how the decisions might affect the 

validity of analyses that are conducted using the synthetic data.  

We began with the intention of sharing the synthetic dataset, but this is not a straightforward 

process. It is easy to generate synthetic data, especially when accessibility for generation of such 

https://assetlab.shinyapps.io/SyntheticData/
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datasets have been improved through the development of applications (such as the Shiny application 

made for sport researchers). We wanted to provide a picture of the challenges that scientists may face, 

when making synthetic datasets, the necessary expertise required, and the limitations associated with 

making synthetic data. This is to limit misuse and the proliferation of available datasets that are used 

beyond their limitations.  

 

2. Methods 

2.1 Synthetic data generation 

2.1.1 Original dataset  

Fanchini et al. [19] examined prospective data collected from a sample of 34 professional 

football players on the same team over 3 consecutive competitive seasons. A comprehensive review of 

these data and the original research context is available in Supplement 1 (S1). We revisited a synthetic 

dataset based on these data that was created for a subsequent study [27].  

 

2.1.2 Variables to be synthesised 

Within the current study, each synthetic dataset to be generated contains five variables from the 

original data in Fanchini et al. [19]: 

1. WeekID: A numeric variable specifying the week to which the observation belongs. WeekID 

ranges between 1 and 120 for each player. Each week must be a positive integer, i.e., the 

specific week in the testing period.   

2. PlayerID: A dummy nominal variable outlining a specified player ID, ranging from 1 to 34. 

3. Acute Load: a variable serving as a proxy for each player’s weekly training load (during the 

current week, or T). 

4. Chronic Load: a variable serving as a proxy for each player’s 4-week chronic load for each 

week (from week T, through to the 4th week). Chronic load was uncoupled [28].   

5. Injury: A binary variable indicating whether a player was injured during that week (yes=1, no 

=0). 
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2.1.3 Original analysis 

Fanchini et al. [19] explored the association between load and noncontact injury using generalized 

estimating equations (GEE). The original model included a logit link function and exchangeable 

working correlation matrix being selected based on lower quasi-likelihood under the independence 

model criterion [29]. These specifications and outcomes were replicated for each synthetic dataset that 

was generated. 

 

2.1.4 Synthetic data generation process  

We used the synthpop package in R to generate synthetic data [13]. A full description of 

synthpop and the processes for generating synthetic data using this package can be found in Supplement 

2 (S2). A range of different model frameworks for generating synthetic data (parametric and non-

parametric) are available within Synthpop. Given the lack of research conducted into generating and 

using synthetic data in sport, the default method of non-parametric generation, classification and 

regression trees (CART) was used to create each synthetic dataset. Synthetic data generation from 

Fanchini [19] involved using different combinations of the five variables [19] as predictors for synthetic 

data generation. These combinations were specified through a series of simulation conditions (see 

below). For each simulation condition, 500 synthetic datasets were generated. We assessed if each 

synthetic dataset resembled the characteristics of the original dataset. Metrics for assessing how well 

each dataset resembled the original dataset (or its “performance”) will be discussed in more detail 

further (see sections 2.2.1 and 2.2.2). 

 

2.1.5 Simulation conditions 

We followed an exploratory approach to examine how synthetic data quality and properties can 

change across different simulation conditions (i.e., specifications for how and which variables are 

generated). Table 1 provides details of each simulation condition, including the variables being 

synthetically generated (Yobs) and the predictors used to generate those variables (Xobs).  

Conditions 1 to 4 synthetically generated only two variables (acute load and chronic load). 

These simulation conditions aimed to preserve possible temporal structures of the original training load 
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data, particularly information related to data patterns at the individual player (PlayerID) and repeated 

measures (WeekID) levels. These four conditions provided insight into how different predictor 

specifications change the properties of synthetic data generated from longitudinal athlete monitoring 

datasets—a common context in sport research.  

In simulation condition 1 (Base), only PlayerID, acute load, chronic load, and injury were used 

as predictors, with these being the original variables involved in the GEE model in Impellizzeri et al. 

[27]. In simulation condition 2 (Base_week), WeekID was added as a predictor as one method for 

capturing temporal structures across weeks within each player. In condition 3 (Time_Lag_1wk), we 

created an autoregressive (i.e., time-lagged) variable based on 1 time-step backward for acute load 

(AL_Lag(1-step)) and chronic load (CL_Lag(1-step)), using the original acute load and chronic load 

data for lagged predictors. Similarly, in condition 4 (Time_Lag_3wks), we created three lagged 

variables, akin to an AR(3) model (1, 2, and 3 weeks backward for acute load (AL_Lag(1-step); 

AL_Lag(2-step); AL_Lag(3-step) and chronic load (CL_Lag(1-step); CL_Lag(2-step); CL_Lag(3-

step)). These newly created variables were included as additional predictors for synthetic data 

generation for different simulations (Table 1).  

Simulation conditions 5 and 6 (Time_Lag_Injury; Injury_Time_Lag) used some of the 

specifications to handle the temporal structures of acute load and chronic load across simulation 

conditions 1–4 while generating new synthetic injury locations in the dataset. This was necessary since 

the date and location of an injury could potentially re-identify an athlete, presenting possible privacy 

concerns. Simulation condition 7 (No_PlayerID) was identical to time_lag_injury but removed the 

variable PlayerID. 

 

2.1.6 Scenarios for creating synthetic chronic load 

 Across all 7 simulation conditions, two scenarios were tested for generating synthetic chronic 

load data. In the first instance, the chronic load was “independently generated” (scenario 

CL_independent) and treated as an independent variable to be synthesised. In the second instance, 

synthetic chronic load was “calculated from the synthetic AL” (scenario CL_calculated) (calculated 

identically to the original data across a 4-week period). This comparison was performed because of the 
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mathematical coupling that exists between acute and chronic workload [28], which is a salient yet 

problematic characteristic compromising this area of research.  

 

Table 1. Description of each simulation condition. The first four conditions focus specifically on generating synthetic 

data for acute load and chronic load only. Conditions five to seven involved the addition of injury as a variable to be 

synthetically generated in new datasets. 

  

Variables 

for Xobs 

Variable

s for Yobs 

Visit Sequence of 

Predictors Description & Rationale 

Synthetic data for AL and CL 

Simulation 

Condition 1 

(Base) 

Injury; 

PlayerID. 

Acute 

load; 

Chronic 

load. 

Injury; PlayerID; Acute load; 

Chronic load. 

Predictors consisted of the same 

variables used in the original GEE 

analysis (i.e., PlayerID as the ID 

variable, injury as an independent 

variable, and the Acute-Chronic 

Training Load ratio (ACLR) being 

calculated using both AL and CL).  

Rationale: A simple set of 

specifications for synthetic data 

generation, designed to provide a 

dataset that reports similar outcomes 

to the GEE model applied to the 

original data. 

Simulation 

Condition 2 

(Base_week) 

 

Injury; 

PlayerID; 

WeekID. 

Acute 

load; 

Chronic 

load. 

Injury; PlayerID; WeekID; 

Acute load; Chronic load. 

The same predictors from Condition 

1 were used, with the addition of 

WeekID, entered after PlayerID.  

Rationale: WeekID was added to the 

specifications of condition 1, to 

capture any temporal structures in the 

data across weeks. This was not 

possible with condition 1 

specifications. 

Simulation 

Condition 3 

(Time_Lag_1wk) 

Injury; 

PlayerID; AL 

Lag (1-step); 

CL Lag (1-

step). 

Acute 

load; 

Chronic 

load. 

Injury; PlayerID; AL_Lag(1-

step); CL_Lag(1-step); Acute 

load; Chronic load. 

WeekID was replaced in preference 

of two lagged variables, with each 

being 1- time step backwards for 

acute and chronic load respectively.  

Rationale: This allowed for any 

auto-regressive trends in acute and 

chronic load (captured 1- time 

backwards) to be captured as a part of 

the synthetic data generation process.  

Simulation 

Condition 4 

(Time_Lag_3wks) 

Injury; 

PlayerID; AL 

(1-step); AL 

Lag (2-step); 

AL Lag (3-

step); CL 

Lag (1-step); 

CL Lag (2-

step); CL 

Lag (3-step). 

Acute 

load; 

Chronic 

load.  

Injury; PlayerID; AL_Lag(1-

step); AL_Lag(2-step); 

AL_Lag(3-step); CL_Lag(1-

step); CL_Lag(2-step); 

CL_Lag(3-step); Acute load; 

Chronic load. 

Used the specification template as 

condition 3, with the exception that 

three lagged variables (1-, 2- and 3- 

time steps backwards) for acute and 

chronic load were constructed and 

used as predictors for acute and 

chronic load.  

Rationale: this was similar to 

condition 3, but testing whether 

temporal autoregressive structures 

exist further back in time than just the 

week before the current data point. 
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Synthetic data for AL, CL and injury 

 

Simulation 

Condition 5 

(Time_Lag_Injury) 

PlayerID; AL 

(1-step); AL 

Lag (2-step); 

AL Lag (3-

step); CL 

Lag (1-step); 

CL Lag (2-

step); CL 

Lag (3-step). 

Acute 

load; 

Chronic 

load.; 

Injury 

PlayerID; AL_Lag(1-step); 

AL_Lag(2-step); AL_Lag(3-

step); CL_Lag(1-step); 

CL_Lag(2-step); CL_Lag(3-

step); Acute load; Chronic 

load; Injury. 

In condition 5, the same predictors 

were used as condition 4, with Injury 

being added as a variable to be 

synthetically generated. Injury was 

placed at the end of the visit 

sequence, so that acute and chronic 

load could be used in the prediction 

of injury (in addition to other 

predictors).  

Rationale: Injury was added at the 

end of the visit sequence as a variable 

to be generated to allow for the acute 

and chronic load variables to be used 

in its generation. This was necessary 

given the direction of assumed 

relationship between acute and 

chronic load data (i.e. predictors) and 

injury in the original study (i.e. the 

use of the GEE model for assessing 

the effect of acute-chronic training 

load ratio on injury outcomes).  

Simulation 

Condition 6 

(Injury_Time_Lag) 

PlayerID; AL 

(1-step); AL 

Lag (2-step); 

AL Lag (3-

step); CL 

Lag (1-step); 

CL Lag (2-

step); CL 

Lag (3-step). 

Acute 

load; 

Chronic 

load.; 

Injury  

Injury (random sample); 

PlayerID; AL_Lag(1-step); 

AL_Lag(2-step); AL_Lag(3-

step); CL_Lag(1-step); 

CL_Lag(2-step); CL_Lag(3-

step); Acute load; Chronic 

load. 

Injury was repositioned at the start of 

the visit sequence as a random 

sample, with all other variables being 

fitted around injury. The remainder 

of the visit sequence stayed 

consistent with the above conditions. 

Rationale: Injury was repositioned 

and entered as a random sample, due 

to the computational cost of 

generating synthetic data noted in 

Condition 5 (please see results). This 

was to test whether adding injury as a 

random sample could improve the 

time taken computationally to 

construct synthetic data. 

Simulation 

Condition 7 

(No_PlayerID) 

AL (1-step); 

AL Lag (2-

step); AL 

Lag (3-step); 

CL Lag (1-

step); CL 

Lag (2-step); 

CL Lag (3-

step). 

Acute 

load; 

Chronic 

load.; 

Injury. 

AL_Lag(1-step); AL_Lag(2-

step); AL_Lag(3-step); 

CL_Lag(1-step); CL_Lag(2-

step); CL_Lag(3-step); Acute 

load; Chronic load; Injury. 

PlayerID was removed from the visit 

sequence and injury was used as the 

final variable to be synthetically 

generated.  

Rationale: The computational time 

to generate synthetic data improved 

substantially in Condition 6, 

indicating that adding injury to the 

generation process as a variable to be 

generated did substantially increase 

the complexity of the generation 

process. This led to a compromise in 

Condition 7, dropping PlayerID as a 

predictor to allow for Injury to be 

generated, and predicted relative to 

all acute and chronic load related 

variables.  

 

2.2 Metrics for assessing synthetic data 
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There are two broad ways to assess the quality, or utility, of synthetic data. Firstly, “global 

utility” assesses the overall similarity of the synthetic data to the original data across all specified 

variables, independent of any specific research question [30]. Essentially, this assesses if the different 

variables’ value distributions match across the original and synthetic datasets. However, even if the 

overall marginal distributions are similar, any relationship between variables in the synthetic data may 

differ from those in the original set if the model choices for synthetic data generation did not match the 

true data generating process of the original observed data. If the relationships differ, analyses related to 

specific research questions would likely be biased. Therefore, another type of metric, “specific utility”, 

assesses the ability of the synthetic data to replicate the original dataset’s answer to a specific research 

question or outcome [30]. 

 

2.2.1 Global utility 

 Three common global utility metrics use a prediction model (the default in synthpop being a 

logistic regression, which was used in the present study) to discriminate between the source and 

synthetic datasets. These metrics employ the use of a propensity score [30, 31], which represents the 

probability of each observation being either real or synthetic (0 or 1, respectively). “High” global utility 

implies that the datasets are indistinguishable. From this logistic regression model, the propensity score-

weighted mean squared error (pMSE); standardized mean squared error (s-pMSE), which is z-scored 

relative to a null distribution; and the percentage of the observations correctly predicted over 50% 

(PO50) were derived and used as global utility metrics [30, 32]. Lower values for each metric imply 

better global utility (Supplement 3, S3).  

 

2.2.2 Specific utility and additional metrics 

 Specific utility refers to measures evaluating how well synthetic data-based analyses replicate 

original data-based analyses. In the present study, we investigated specific utility by replicating the 

GEE outcomes from the work of Impellizzeri et al. [27]. For this, we calculated the mean absolute errors 

(MAE) of (1) the GEE parameter estimates, (2) the GEE standard errors and (3) the GEE p-values for 

acute-chronic workload ratio at 4 weeks by comparing 500 synthetic datasets’ results with the original 
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dataset’s (with a log odds model being used). Lower values for each of these metrics imply greater 

specific utility (i.e., greater closeness of the synthetic data to the original data), and these metrics, along 

with some of secondary interest, are explained in detail in Appendix C. In addition to measures of 

specific utility, computation time was measured for each synthetic dataset being constructed. An MAE 

between the original and synthetic values of acute and chronic loads was calculated to understand better 

whether temporal training load trends were retained at the individual player level.  

Finally, for simulation conditions 1–4, the variability of the underlying data generation process 

within each simulation condition was compared across all synthetic datasets generated. This involved 

comparing synthetic datasets as a series of adjacent pairs (i.e., dataset 1 and dataset 2, dataset 2 and 

dataset 3, and so on). For each set of adjacent pairs, the same metrics were calculated for each pair of 

synthetic datasets (i.e., MAE was calculated using the absolute error between pairs of synthetic 

datasets), providing an indication of whether a simulation condition was likely to be more inconsistent, 

regardless of its performance for specific utility when assessed relative to the original data. The results 

for this test are provided as supplementary information in Supplement 4 and briefly discussed within 

relative to the general results of specific utility for these four simulation conditions.  

All materials and code for running through these demonstrations is available at: 

https://github.com/johnwarmenhoven/SynthData_in_Sport/tree/main.  

  

3. Results 

Descriptive statistics for “global utility” and “specific utility” metrics are presented in Table 2.  

 

3.1 Global Utility 

The global utility was high across all simulation conditions, with the largest values of pMSE 

and s-pMSE across all simulations and simulation conditions being less than 0.01 and 1.20, respectively, 

indicating a strong level of overall similarity between the original and synthetic datasets. Measures of 

s-pMSE improved as more temporal predictors were added across simulation conditions 1–4, with these 

remaining consistent with conditions 5–7, where temporal predictors were also used as a part of the 

generation process.    

https://github.com/johnwarmenhoven/SynthData_in_Sport/tree/main
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Table 2. Results for measures of global utility, computation, and specific utility for the first four simulation conditions, focused on generating synthetic data for the two workload variables (acute and chronic) in simulation 

conditions 1-4, and the two workload variables and injuries in simulation conditions 5-7.  

    Synthetic Training Load Data Simulations 

    

          

Base (1) Base_Week (2) Time_Lag_1wk (3) Time_Lag_3wks (4) 
Time_Lag_Injury 

(5) 

Injury_Time_Lag 

(6) 
No_PlayerID (7) 

    Mean (SD) Mean (SD) Mean SD) Mean (SD)       

Global Utility       

  

pMSE <.01 (<.01) <.01 (<.01) <.01 (<.01) <.01 (<0.1) - <.01 (<.01) <.01 (<.01) 

s-pMSE 1.2 (0.44) 1 (0.37) 1.14 (0.43) 0.85 (0.27) - 0.86 (0.29) 0.93 (0.32) 

PO50 0.74 (0.46) 0.65 (0.47) 0.57 (0.45) 0.45 (0.39) - 0.49 (0.41) 0.48 (0.43) 

Specific Utility (MAE)       

Chronic load 

simulated as 

"independent 

variable" 

GEE Estimate  0.37 (0.27) 0.37 (0.26) 0.48 (0.29) 0.75 (0.32) - 0.91 (0.42) 0.61 (0.41) 

GEE SE 0.1 (0.06) 0.11 (0.07) 0.11 (0.07) 0.14 (0.07) - 0.09 (0.07) 0.14 (0.09) 

p-value 0.03 (0.07) 0.12 (0.20) 0.36 (0.28) 0.57 (0.27) - 0.49 (0.29) 0.39 (0.31) 

Chronic load 

calculated from 

synthetic acute load 

GEE Estimate 0.33 (0.27) 0.75 (0.40) 0.83 (0.35) 1.16 (0.34) - 0.93 (0.44) 1.05 (0.50) 

GEE SE 0.13 (0.08) 0.13 (0.07) 0.12 (0.07) 0.1 (0.06) - 0.14 (0.08) 0.15 (0.08) 

p-value 0.11 (0.17) 0.48 (0.28) 0.55 (0.27) 0.49 (0.29) - 0.50 (0.29) 0.47 (0.30) 

Acute load Observation level 462.57 (6.82) 365.65 (6.40) 330.59 (6.10) 295.02 (5.62) - - - 

Chronic load  

simulated 
Observation level 272.26 (4.42) 208.28 (3.82) 142.12 (2.63) 126.03 (2.50) - - - 

Chronic load 

calculated 
Observation level 257.05 (5.77) 196.81 (4.49) 194.92 (4.35) 180.86 (4.19) - - - 

Computation Time (s) 0.08 (0.02) 0.1 (0.03) 0.15 (0.04) 0.21 (0.02) 22.16 mins 0.1 (0.03) 0.15 (0.04) 
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3.2 Specific Utility 

Across simulation conditions 1–4, where only acute load and chronic load variables were 

synthetically generated, the Base model (1) provided the best overall specific utility relative to the MAE 

of the GEE parameter estimate (GEE estimate MAE = 0.37 for simulating synthetic chronic load and 

0.33 for calculating synthetic chronic load). It also provided the lowest MAE of the GEE p-values (MAE 

= 0.03 for simulating synthetic chronic load, MAE = 0.11 for calculating synthetic chronic load), 

indicating that simulating synthetic chronic load provided accurate replication of outcomes in the 

original GEE analysis. Despite this the MAE for the GEE SE was poorer than other simulation 

conditions when chronic load was calculated from synthetic acute load.  

These trends for specific utility outcomes to be poorer when temporal predictors were used in 

the synthetic data generation process were also shown across simulation conditions 5–7, where temporal 

predictors were used. Given that simulation condition 1 most closely resembled specifications similar 

to the original GEE model, this suggests that as the synthetic data generation model moves further away 

from the GEE model, specific utility outcomes were likely to be poorer. 

 

3.3 Additional metrics 

3.3.1 MAE of Acute load & Chronic load 

These metrics were only calculated for simulation conditions 1–4. The results when we 

preserved the overall temporal structures were the opposite of the GEE results. The Base simulations 

had the worst (i.e., highest) MAE for both acute load (MAE = 462.57) and chronic load (MAE simulated 

chronic load = 272.26; MAE calculated chronic load = 257.05). Conversely, the simulation where we 

included time-lag variables for the previous 3 weeks (Time_Lag_3wks, simulation 4) provided the best 

outcomes for MAE of both acute load and chronic load (for both simulated and calculated chronic load 

scenarios).  
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Figure 1. The above figure demonstrates GEE outcomes and individual player data for simulation condition one. A) GEE 

results from scenario one for calculating synthetic chronic load. These are GEE p-values, GEE estimate, and GEE upper 

(conf.high) and lower (conf.low) coefficients for the 500 simulated synthetic datasets. The same outcomes from the original 

dataset are shown by the large black dot in each plot. B) Same results as A, but for the second scenario for constructing 

synthetic chronic load. C) Examples of acute load for 4 exemplar participants. Original data trace is displayed in blue, original 

injury locations are displayed as vertical red lines, and 95% percentiles across the 500 synthetic data simulations are displayed 

in grey. D) Examples of the same 4 exemplar participants for scenario one of calculating chronic load. Properties of these 

graphs are the same as C. E) examples of the same 4 exemplar participants for scenario two of calculating chronic load.  
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Figure 2. The above figure demonstrates GEE outcomes and individual player data for simulation condition four. A) GEE 

results from scenario four for calculating synthetic chronic load. These are GEE p-values, GEE estimate, and GEE upper 

(conf.high) and lower (conf.low) coefficients for the 500 simulated synthetic datasets. The same outcomes from the original 

dataset are shown by the large black dot in each plot. B) Same results as A, but for the second scenario for constructing 

synthetic chronic load. C) Examples of acute load for 4 exemplar participants. Original data trace is displayed in blue, original 

injury locations are displayed as vertical red lines, and 95% percentiles across the 500 synthetic data simulations are displayed 

in grey. D) Examples of the same 4 exemplar participants for scenario one of calculating chronic load. Properties of these 

graphs are the same as C. E) examples of the same 4 exemplar participants for scenario two of calculating chronic load.  
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This indicated that the inclusion of auto-regressive terms improved the ability of the synthetic 

data to hold temporal characteristics of acute load and chronic load at the individual player level.  

 

 

Figure 3. A demonstration of the trade-off between levels of error between the synthetic data and original data for replicating 

the original acute (i) and chronic (ii) variables for each player, and being able to replicate the same statistical outcomes (log-

transformed p-values) from the GEE model (iii) .   
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This is demonstrated in Figure 1, where large confidence bands (across the 500 synthetic 

datasets) can be seen around four exemplar players for simulation condition 1, despite the positive 

results in replicating GEE outcomes that were consistent with the original dataset. Figure 2 is 

representative of the same four players in simulation condition 4 where three auto-regressive variables 

were used for synthetic data generation. The confidence bands across the 500 synthetic datasets have 

narrowed substantially, but with much poorer GEE replication outcomes.  

As more temporal predictors were added across simulation conditions 1–4 (Figure 3), the GEE 

outcomes (i.e., specific utility) were poorer even though the MAE of the acute and chronic load 

variables improved.  

 

3.3.2 Computation time 

Computation time was relatively consistent across all simulation conditions, ranging on average 

from 0.9 to 0.26 seconds per generated dataset, demonstrating high computational feasibility for 

generating many datasets and running testing across all simulation conditions. The only simulation 

condition not deemed feasible was when we added Injury as the final simulated variable in the time-lag 

simulations (simulation condition 5), which required 22.16 minutes to generate a single dataset; for this 

reason, we did not evaluate 500 replications and subsequently did not report on global and specific 

utility metrics across the 500 replications in Table 2. This will be discussed further in the discussion.  

 

4. Discussion 

The current study serves as an educational primer exploring the strengths and limitations of 

using data-driven synthetic datasets to address open science and FAIR data principles in sports and 

exercise sciences. Through a series of simulation conditions, we highlighted important considerations 

for a typical data context in sports and demonstrated how to assess and interpret the results. When the 

synthetic data generating process more closely aligned with the original GEE model in terms of the 

predictors used to generate synthetic data (i.e., simulation condition 1, Base), the synthetic data 

performed well at replicating GEE outcomes and thus provided better specific utility for the GEE related 

research question. However, as the synthetic data generation process moved further away from the GEE 
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model through the inclusion of temporal predictors, the synthetic data’s ability of the synthetic data to 

replicate GEE outcomes was poorer. Given this divergence in the specific utility across simulation 

conditions and the apparent ease of implementing packages such as synthpop, researchers need to 

understand a synthetic dataset’s characteristics and potential constraints to use them properly. 

 

4.1 Consideration 1: How synthetic data are generated predicates for what they can be used for.  

As noted in Snoke et al. [30], results from models applied to synthetic data will only align with 

the same results applied to the original data, if the models used to synthesize the data correspond to 

those that generated the original data. Our results confirm and illustrate that if synthetic data are shared 

for reproducibility purposes alone, they will likely yield appropriate results if the model employed for 

generating the data is aligned with the research question and analytical models used in the original 

study. However, if the synthetic data are shared for additional exploration beyond the research questions 

and analytical models used in the original study, they will likely yield results that could be inconsistent 

with the original data. This is shown in the current investigation across the first four simulation 

conditions through replication of the same outcomes from the GEE model originally applied to the data 

in Fanchini et al., [19] serving as the test of specific utility for this study. Simulation conditions 1–4 

were simple in their design, generating synthetic data for only two variables, acute load and chronic 

load, and “fixing” all other variables (while still allowing these variables to be used as predictors for 

acute load and chronic load).  

The synthetic data from the Base simulations aligned most closely with the original GEE 

analysis. This was because the data generation specifications aligned most closely to the original GEE 

model, using the same predictors for the synthetic data generation as the original GEE, despite 

leveraging a different generation framework. More specifically, we generated the synthetic data using 

classification and regression trees, and PlayerID was incorporated as a predictive variable in the 

generation process rather than an identification variable in the GEE. Although the majority of the 

specific utility outcomes from the GEE were best with the Base model, any temporal trends present 

within individual players’ load trajectories were lost in the Base simulations (large percentile bands in 

Figure 1 for the four exemplar players).  
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As temporal variables were added across the next three simulation conditions (Base_week, 

Time_Lag_1wk, Time_Lag_3wks), replication of GEE outcomes became poorer, but replication of the 

original temporal trends of acute load and chronic load improved (see Figure 3). This illustrates that as 

more temporal predictors were added to the synthetic data generation process, the ability to replicate 

similar GEE outcomes became less possible. A simple explanation for this is that if the GEE is assumed 

to be the process that generated the original data, the Base simulation condition most closely aligns to 

the specifications of the GEE and it will most likely provide outcomes consistent with those found in 

the original GEE. As more temporal predictors are added across the next three simulation conditions, 

the data generation process moves further away from GEE model used in the original study.  

The specifications of a synthetic data generation process (i.e. predictors used to generate data) 

govern what “can” be explored in a synthetic dataset. The Base simulation would allow for accurate 

replication of the original GEE analysis across the majority of the 500 datasets but would likely provide 

erroneous results if an independent research group used a different analytical approach to test the 

temporal characteristics of training load data leading up to the injury. Conversely, Time_Lag_3wks 

provides far fewer datasets that show comparable statistical outcomes to the original GEE analysis, but 

this condition provides 500 datasets that better represent the participant-level temporal trends embedded 

in the original data if temporal analyses were desirable.  

Take-home message: researchers must clearly state (1) how the data were synthetically 

constructed (i.e., which predictors were used to generate the synthetic data); (2) the limitations of any 

released synthetic datasets, especially in terms of how they should be explored given the constraints of 

the synthetic data generating model; and (3) the global and specific utility metrics used to evaluate the 

generated synthetic data, providing a rationale and justification for each metric. This will explicitly 

clarify what people can expect from using synthetic data once it is made open and what is possible with 

its use.  

 

4.2 Some variables shouldn’t be synthetically generated. 

 In the present study, two scenarios were used in each simulation condition to construct synthetic 

training load data. In the first scenario, synthetic chronic training load data were simulated from the 
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data generation model, assumed to be independent of acute load. This relied on modelling conditional 

distributions to simulate new observations of synthetic chronic training load data. In the second 

scenario, chronic training load was derived directly from the new synthetic acute training load data, as 

an average of acute workload across a 4-week period. Except for the Base simulation, specific utility 

outcomes from the GEE models (i.e., estimate MAE between synthetic and original GEE analyses) were 

better when chronic load was viewed as an independent variable. Additionally, simulating chronic load 

independently had a lower MAE compared to calculating chronic load from acute synthetic load, across 

the first four simulation conditions. Despite the apparently promising outcomes when chronic load is 

simulated, these synthetic datasets yield datasets with undesirable statistical properties because they 

ignore the inherent mathematical deterministic relationship let alone the coupling between acute load 

and chronic load. When chronic load is simulated directly, this deterministic relationship no longer 

holds, and this may introduce important biases when conducting analyses or making inferences from 

the results. These findings also indicate that errors in constructing newly derived variables from the 

synthetic data may propagate forward. This should be explored further in more detail when derived 

variables are of interest for specific research questions.  

Take home message: Researchers should preserve mathematical (or deterministic) 

relationships that exist between variables when generating synthetic data, especially if independent 

researchers will be using the synthetic data for exploration. Researchers should also explore how errors 

are propagated across the newly derived variables of interest.  

 

4.3 Computational burden vs. accuracy 

We included simulation conditions 5–7 given the timing at which injuries occurred (i.e., 

specific WeekID location) could potentially be used to identify athletes. Other datasets may have 

similarly identifiable information, especially when individual teams are analysed, and players have a 

public profile and injury data is public information. Thus, it was desirable to test circumstances where 

injury time was synthetically generated in addition to the two training load variables. This immediately 

led to computational problems for simulation Time_Lag_Injury—a single run of synthetic data took 

more than 22 minutes to complete. As a result, 500 simulations would take the same standard computer 
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close to 1 week to finish computation before results could be inspected. For all intents and purposes, 

this is intractable for most practitioners, scientists, and researchers looking to test the generation of 

synthetic data using a set of conditions with similar computational demands similar to Time_Lag_Injury 

simulations across a range of datasets.  

The length of time required for simulations could have occurred due to the number and type of 

predictors used or the number of variables generated. The synthpop documentation indicates that there 

may be some difficulty when using predictors that have more than 20 factor levels [33]. In the current 

study, “PlayerID” had 34 factor levels and “WeekID” had up to 120 factor levels. PlayerID was used 

as a predictor in Time_Lag_Injury simulations. It is possible that the addition of another variable to 

synthesise may have led to generation models (through CART) that were difficult to build given the 

depth of factor levels in the predictors.  

To address this issue, we added injury as a random variable to be generated in Injury_Time_Lag 

simulations (condition 6), with the synthetic training load data being re-fitted around the locations of 

the random sample of injury locations. This was more computationally efficient but was less consistent 

with an intuitive understanding of the causal relationships between load and injury outcomes. Within 

the iterative synthpop process, data used as a random sample must be entered into the synthesis process 

first, indicating that injury times were specified before the synthetic training load data. However, the 

true data-generating process is that both (1) training load causes injuries, and (2) injuries can lead to a 

reduction in training load later on (0 load in the case of a time-loss injury). If one is interested only in 

injury prediction using synthetic data generated this way, there is no bias relative to the direction of the 

effect between injury and load. However, if one is interested in causal effects, these temporal effects 

must be accounted for in the synthetic data or else biases may be introduced depending on the research 

question.  

If it was still desirable to have injury entered after training load (insinuating that load leads to 

injury), it would be necessary simplify the model for synthetic data generation, due to the computational 

time issues with having injury sit later in the variable visit sequence. To explore this issue, PlayerID 

was dropped as a predictor for synthetic data generation in the No_PlayerID simulations (condition 7). 

This reduced the number of variables with many factors, making it much faster to produce 500 datasets. 
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These datasets’ specific utility was also better than Injury_Time_Lag simulations (Table 2). This comes 

at a cost: no player information or week information was used in the predictions, so the synthetic data 

will not reflect any likely trends for whether injuries will occur for specific players or weeks in the 

season. Despite this, No_PlayerID simulations preserved the relationships between the original training 

load and injury and the temporal autocorrelations between training load and injury (i.e., training load 

changes in the lead into an injury). Thus, the locations of these injuries relative to training load are 

“fictitious” within each player but provide a possible avenue for further exploration of temporal trends 

and injury outcomes.  

Take home message: When constructing synthetic datasets, there may be a compromise 

between computational feasibility and accuracy in capturing the relationships between variables in a 

dataset. Sport practitioners, scientists, and researchers need to think carefully about what relationships 

should be preserved in synthetic data and if compromises are required due to computational costs. 

Information regarding these relationships should be clarified and provided in documentation to future 

users of the synthetic datasets.  

 

4.4 Improving transparency with synthetic data generation 

4.4.1 Documentation that accompanies the synthetic data  

The present study used the common method of sequential tree-based methods to construct data 

for each variable in a synthetic dataset [34, 35], where a variable is synthesized by using the values 

earlier in the sequence as predictors. As such, sequential synthesis processes are similar to modelling 

multiple outcome variables using classifier chains (i.e. assigning observations to more than one 

classification for a given variable) [36] and regressor chains (i.e. predicts a continuous value, or 

regression output, for a specific label independently) [37]. This is different from deep learning methods 

for generating synthetic data (e.g., generative adversarial networks [38]), which require very large 

datasets [6]. Sequential tree-based methods tend to work well for smaller datasets, such as traditional 

clinical trial datasets with heterogeneous variable types [39]. Providing information on the model 

framework used, a rationale for its selection and any testing of other model frameworks is desirable to 

ensure transparency around synthetic data generation. Additionally, future users of open synthetic data 
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will need access to the data-generating model (and associated software and code) to evaluate the 

synthetic data and know which variables can be appropriately analysed [40]. 

4.4.2 Providing multiple synthetic datasets 

The synthpop documentation [13] encourages users to assess model performance across many 

synthetic datasets to determine whether the model for the synthetic data sufficiently captures salient 

features of the real data. In many instances using synthpop, synthetic data were deemed accurate and 

reflective of the relationships present in the original data [8, 14, 15]. These studies, however, evaluated 

only 1 or 2 synthetic datasets per context. Sharing such a small number of synthetic datasets is likely 

insufficient for truly understanding whether a synthetic generation process was well suited to the 

underpinning goals of a simulation study or a study releasing a particular dataset.  

Releasing many synthetic datasets rather than just one synthetic dataset provides one avenue 

for testing exploratory research questions on synthetic data. If many datasets are released and estimates 

from new models applied to these datasets show consistent outcomes when the results are pooled, this 

may be indicative of a new trend captured in the original data [17]. However, there are two challenges. 

First, this would need to be verified on the original data as it could simply reflect bias arising from 

synthetic data model misspecification. Second, there is a trade-off in the benefits of generating many 

datasets. Some scientists and researchers may want to release more synthetic datasets to account for 

larger amounts of variance introduced to the synthetic data during different data generation processes 

[41]. This is relevant in the current study given the contrasting results of data generation processes 

having higher specific utility and more variability in their data generation processes (see S1). 

Generating more datasets to account for the heterogeneity of a data generation process is problematic 

though, given that observations across multiple synthetic datasets can be used to refine guesses of the 

original data [35, 42], making athletes potentially re-identifiable, defeating the point of using synthetic 

data in the first place. In these circumstances, careful consideration must be used on balancing the 

benefits of releasing multiple synthetic datasets, relative to the risk of re-identification for specific 

variables. Additionally, if the data generation process has a higher level of heterogeneity, and only a 

small number of synthetic datasets are produced, it is possible that an outlier dataset may be released. 
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Such a dataset could lead to inappropriate inferences being made on synthetic data, further reinforcing 

the care that should be taken with selecting and releasing synthetic datasets openly.  

Take home message: Any synthetic data released publicly must be accompanied by 

documentation outlining its possible use, the processes underpinning its generation and software or code 

for how it was generated (for an example of this see S5). If researchers want to avoid inappropriate 

inferences, conclusions and recommendations, they should also test their model frameworks for 

synthetic data generation across multiple datasets and data contexts to better understand synthetic data 

generation processes. It is important for future development, research, and practice within the statistics 

and data science communities to focus on establishing guidelines and transparency for the use of 

synthetic data. This will assist scientists who are looking to generate or utilize the potential of synthetic 

data. 

 

4.6 Limitations 

 Although this is one of the first studies to explore the potential of synthetic data in sport, results 

from the present study carry some limitations. Only one method of synthetic data generation was 

explored in the present study, i.e., a sequential tree-based approach for generating new synthetic 

variables. Synthpop has an array of other parametric and non-parametric model frameworks that were 

not trialled in this study. Beyond the model frameworks available in synthpop, there are several methods 

that can be used to construct synthetic data, including mixture of product of multinomials (Mom), 

categorical latent Gaussian processes (CLGP), and generative adversarial networks (GAN) [6]. Future 

research should explore the potential of other model frameworks across different data contexts.  Use of 

these alternative models without prior validation poses obvious risks.  

There are some potential limitations to using the synthpop package’s sequential tree approach. 

The “visit.sequence” and variable ordering used when applying a sequential tree-based generation 

process can lead to greater computational issues when variables with a larger range of values are 

synthesised first [43, 44] (particularly those with continuous domains or many factors). Within a 

sequential generation process, the synthesized values will likely have low utility if the preceding 

variables are weak predictors of subsequent variables. Further, synthesis errors will propagate, and 
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potentially be amplified, through the chain [45]. Some authors have tried to minimize error propagation 

by modelling variable dependence or using algorithmic approaches like particle swarm optimization for 

identifying variable permutations that ensure consistent data utility [45]. The present study did not 

consider these more complex factors and how they may have affected the data generation process across 

all seven simulation conditions.  

There are also potential limitations regarding the hierarchical (i.e., panel data) structures within 

the original dataset used for synthetic data generation. One example relates to using an alternative 

synthetic data generation method (i.e., differential privacy) for identifying input features for “machine 

learning” methods synthetic algorithms. This showed limited usability for more complex datasets with 

non-independent and identically distributed data (i.e. when hierarchies/repeated measures are present 

in the data) [46]. In the current context, the dataset's complexity, resulting from the combination of 

repeated measures and independent variables, may have posed a challenge for standard CART processes 

to model and construct synthetic data. Unfortunately, at present there are few packages and tools that 

capture both longitudinal data patterns as well as relationships between independent variables when 

constructing synthetic datasets.  

From a practical standpoint, our educational primer also illustrated challenges and perils of 

embracing synthetic data generation of variables formulated as simple ratio statistics in sports and 

exercise sciences [47, 48]. While retained for illustrative purposes, the conceptual and statistical 

inconsistency of acute-to-chronic workload ratio variable [24, 49] might have contributed to introducing 

undesired noise and errors in synthetic data generation processes that implicitly hindered and limited 

any replication of the original study outcomes [19]. The fact that alternative statistical approaches for 

clinical prediction model development could have been more suitable for exploring the association 

between training load and non-contact injury occurrence also deserves attention, although our 

educational primer attempted to explore the ability of synthetic data to replicate statistical outcomes 

from the models used in the original study [19].  
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5. Conclusion 

We provided the first primer exploring opportunities and challenges relevant to generating 

synthetic data to address questions of interest in sports and exercise sciences. The value and information 

of synthetic data generation are contingent on researcher-based decisions and satisfying specific 

assumptions that are plausibly realistic and consistent with the context sought to be examined. In 

practice, the actionability of synthetic data generation is generally prone to whether the generation 

process of synthetic data was practically anchored to the statistical models used for specific types of 

analysis and exploration of synthetic data. In short, and for sport science and medicine the following 

steps can be recommended: 

1. A synthetic dataset’s goal should be clearly communicated. If the goal is to generate synthetic data 

generation that can be tested and analysed for specific types of utility, then an appropriate 

generation process should be selected that maps to the specific utility of the dataset. If the goal is 

to maximise participant privacy while still making data open, consideration should be given to how 

synthetic data is generated and how it is released publicly.  

2. Synthetic data should be accompanied by documentation its generation process, including the 

predictors used, the model framework used for generation, and the potential limitations associated 

with this in terms of how the synthetic data could be explored as a part of future research;  

3. As a community, we should develop appropriate processes for improving transparency around 

synthetic data generation for open release. Additionally, sport researchers looking to generate fit-

for-purpose synthetic datasets should look to partner with relevant expertise (from data-science and 

statistics) to ensure that datasets made public can serve their intended purpose.   

4. If a synthetic dataset is made available, researchers who are revisiting that data to make any claims 

must verify any outcomes from explorations on the real original dataset. In this sense, synthetic 

data should only be used to frame subsequent hypotheses, which can be tested on the original data, 

rather than making these inferences using the synthetic data itself.  
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