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Abstract 

Due to problems of low statistical power in sport science with pre-post randomised controlled trials (RCTs), future studies 

may seek to conduct high frequency data collection to achieve adequate statistical power with feasible sample sizes. 

Increasing frequency of data collection requires more sophisticated statistical analyses that may have to account for 

increased complexity in variance-covariance structures. The purpose of this simulation study was to investigate the effects 

of misspecifying variance-covariance structures when fitting linear mixed models (LMMs) to realistic data generated across 

a range of intervention durations and measurement frequencies.  

 

Simulated data were created to compare two interventions across either eight or sixteen weeks, with measurements made 

either once, twice or three times per week. Data were generated according to four models with different variance-

covariance structures and fixed effects held constant. The data generating models included: 1) random intercept only; 2) 

correlated random intercepts and slopes; 3)&4) correlated random intercepts and slopes with autoregressive level one 

residuals (𝜑=0.3, or 𝜑=0.6). The effects of both underspecifying and overspecifying variance-covariance structures with 

fitted LMMs were investigated focusing on type I errors of the average treatment effect when set to zero, and statistical 

power of the average treatment effect when set to a small but non-zero value. Statistical power of likelihood ratio tests to 

distinguish variance-covariance structures was also estimated. Monte Carlo simulations were performed across the different 

conditions with 5000 iterations included in each analysis.   

 

The results showed that underspecifying the variance-covariance structure by fitting a random intercept LMM when more 

complex structures existed created a high percentage of type I errors that ranged from ~7 to 40%. Percentages of type I 

errors increased with greater amounts of data from both a longer intervention and increased number of measurements per 

week. Results also demonstrated that statistical power decreased when the true data generating mechanism included 

autoregressive level one residuals compared to just correlated random intercepts and slopes. The decline in statistical power 

was influenced by both the amount of data available and the degree of autocorrelation. Statistical power dropped to its 

lowest (~0.55) when combining the least amount of data (e.g. eight weeks with one measurement per week) and highest 

autocorrelation (𝜑=0.6). Statistical power of likelihood ratio tests to correctly identify the existence of random slopes was 

influenced by intervention duration, with low statistical power (0.22 to 0.44) for a short intervention, and high statistical 

power (>0.99) for a long intervention.  
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In conclusion, correct specification of the variance-covariance structure is likely to be important for future RCTs in sport 

science conducted with high frequency measurements. Complex variance-covariance structures particularly with correlated 

level one residuals may require substantive increases in the number of participants recruited to obtain high statistical power. 

Researchers should be cautious of omitting random slopes where required given high percentages of type I errors this may 

cause. Caution is also required when testing for random slopes particularly with relatively small amounts of data that may 

be achieved with short interventions.  

  

https://doi.org/10.31236/osf.io/y7sk6


Doi: 10.51224/SRXIV.388 SportR𝜒iv Preprint version 1 

 

 

Introduction 
 
Attempts to identify the most effective training interventions represents a prominent area of research in sport science. 

Given the volume of studies and the trial-and-error practices of athletes, researchers are often aware of several 

interventions that are highly effective. Randomised controlled trials (RCTs) are considered the gold standard for 

investigating dose-responses and teasing out the most effective interventions.1 A major challenge with this approach, 

however, is that the average treatment effect (ATE) between two successful interventions is likely to be small.2 For pre-post 

RCTs where a single measurement is made at baseline and post-intervention, a small ATE requires large sample sizes to 

reliably identify differences between groups.3 Other factors including the length of an intervention, treatment response 

heterogeneity, and measurement error can also strongly influence the number of participants required.3 A recent large meta-

analysis in applied sport science identified that 90% of RCTs included sample sizes of 20 or less per group.2 Multiple other 

studies have reported similar descriptions of extremely small sample sizes across different areas of research in sport 

science.4,5  

 

In a recent simulation study generating realistic data for exercise interventions, I demonstrated the effect of plausible 

changes to intervention duration, interindividual heterogeneity and measurement error on sample size requirements.3 In the 

worst-case scenario to obtain statistical power of 0.8 for a pre-post RCT with small ATE, short intervention, large 

interindividual heterogeneity and large measurement error, over 1500 participants per group may be required.3 The 

limitation of pre-post RCTs to investigate small but potentially meaningful effects has been highlighted in sport science and 

other disciplines.3,6 One potential strategy to increase statistical power with realistic sample sizes (e.g. 20 to 50 per group) is 

to collect high-frequency outcome data.7 In sport science there are situations where outcomes such as body mass, or 

vertical jump height could be measured with high frequency and not interact with the intervention.7 Similalrly, there are 

situations where the training intervention itself could be used to generate high-frequency outcome data potentially through 

prediction methods. Whilst predictions can result in increased measurement error, collection of high-frequency data has the 

potential to make up for the additional noise and ultimately reduce the number of participants required to obtain the 

desired statistical power.7  

 

When conducting RCTs with high frequency data, appropriate statistical methods are required. One option that is well 

suited and has been recommended by some authors to be the default statistical approach to analyse experimental data is 

linear mixed models (LMMs)8. LMMs include fixed effects and random effects, the former represent population-level (i.e., 
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average) trends that should be persistent across experiments, and the latter represent the extent to which these trends vary 

across some grouping factor such as participants.9 LMMs are linear in their parameters but can include non-linear variables 

such as time from baseline allowing curvilinear changes over an intervention to be modelled.10 LMMs can also include a 

range of parameters to model complex structures that can emerge within high frequency data. Conceptually, we can 

consider some features of an LMM to model changes in the mean and others the variance-covariance of the data 

generated.11 For changes in the mean, we are primarily interested in the group mean slopes representing the expected 

magnitude of change expressed within a suitable timescale (e.g. per week) and whether these slopes are different. For many 

interventions we may also expect that there is interindividual variability such that some individuals improve more than 

others. This variability can be captured by including a random effect term for slope. Typically, this is described by a normal 

distribution with the zero value representing the group mean change, and amount of variability described by a standard 

deviation (𝜎𝑏1). To model variance-covariance we consider two main features including variance between participants and 

covariance of model residuals from the same participant. 11 Typically, a random intercept for each participant is included in 

the LMM to describe consistent variation between participants that will exist throughout an intervention. That is, 

participants that enter an intervention with a high outcome score will typically leave the intervention with a similar relative 

high outcome score. As with the random effect for slope, we typically model random intercepts with a normal distribution 

with zero mean and standard deviation (𝜎𝑏0) describing the variation between participants (e.g. the baseline variation). 

Within an LMM we can model random intercepts and slopes from a multivariate normal distribution and allow the effects 

to correlate (𝜌). In many interventions we may expect a negative correlation between random intercepts and slopes such 

that those with higher baseline values experience lower magnitude change due to ceiling effects or simply being further 

along their potential progression.12  

 

The addition of random effect terms combines with level one residuals (e.g. 𝜎𝑒) and creates assumptions around structure 

of the variance-covariance in the data. With addition of only a random intercept, a LMM assumes compound symmetry 

(see Appendix) such that the variance is constant across time points and correlation between time points is the same 

regardless of the lag between measurements.13 The addition of both random intercepts and slopes creates a more complex 

variance-covariance structure (see Appendix). This latter model assumes that total variance will change in a quadratic form 

due to the contribution of time, and correlations are likely to change between different sets of time points. The inclusion of 

these random effects describes between-person variation in the data and does not explain outcome variation, but partitions 

variation into between- and within-person categories. As a result, inclusion of random effects may eliminate within-
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participant dependencies that would have existed in residuals when failing to model constant offsets (intercept) or 

differences in magnitude of change (slopes). Whilst the inclusion of random slopes enables correlations between 

participants to change across time, like the inclusion of a random intercept, the model assumes that the remaining within-

person variation described by the level one residuals are not correlated across time.11 With longitudinal measurements, 

particularly with high-frequency data this assumption is unlikely to be correct and we may expect residuals to be correlated 

such that the magnitude decays with increasing time lag.14 Models to account for remaining dependencies in level one 

residuals after including random effects terms are commonly referred to as alternative covariance structures.11 The most 

common structure used for longitudinal data is the first order autoregressive structure (AR1) that includes two parameters, 

𝜁𝑒 that assumes constant standard deviation in residuals across time points, and 𝜑 that sets the correlation between two 

adjacent time points, such that 𝜑𝑛 describes the correlation of residuals for time points separated by 𝑛 intervals. A range of 

more complex alternative covariance structures can be included that allow for heterogeneous variance in residuals and 

greater control over decay in correlation across time periods of different length.15 

 

When conducting RCTs, the primary interest is in interpretation of fixed effects and in particular, group differences in 

change. Failure to account for variance-covariance structure in the data may have little effect on estimates of the fixed 

effects but can greatly influence standard errors that may lead to invalid inferences.16 Where the covariance structure 

specified by the LMM and the actual covariance structure are different, we refer to this situation as misspecification. Kwok 

et al.17 identified three types of misspecification including underspecified, overspecified, and general-misspecification. 

Under- or overspecified cases occur when the variance-covariance matrix fitted is simpler or more complex than the true 

matrix but are nested within each other, respectively.17 Specifying an AR1 structure when the true structure is compound 

symmetry would be an example of overspecification. General-misspecification occurs when the specified and true 

covariance matrix are not nested within each other. As researchers in sport science consider spending additional resources 

to collect high-frequency data to address problems with low statistical power, it is important to identify the effects of 

potential issues such as misspecification of variance-covariance structures on inferences made. The current simulation study 

was conducted to build on recent research and explore analysis of high-frequency data in the context of applied sport 

science. Simulating different data structures and applying likely LMMs of increasing complexity, the effects of the different 

structures and potential misspecification on required samples sizes and errors in inference were investigated.     
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Methods 

 
Approach to the problem 

This study builds upon previous simulation work investigating the use of high-frequency data to obtain sufficient statistical 

power with realistic sample sizes in RCTs of exercise interventions.7 The purpose of this study was to generate realistic data 

with different plausible variance-covariance structures and assess the effects of under- and over-specification on statistical 

power and inferential errors. As with the previous simulation work,7 a case-based approach generating realistic data 

informed by the findings from recent large scale meta-analyses was conducted. The data were developed to recreate a RCT 

investigating the ATE between a “reference” resistance training intervention known to be successful and a new “testing” 

resistance training intervention hypothesised to be superior in improving maximum strength. The primary outcome 

measure was the 1RM bench press, which could be predicted using individualised load-velocity relationships.18-20 

Simulations were organised into three broad categories where data were generated with 1) random intercepts; 2) correlated 

random intercepts and slopes; and 3) correlated random intercepts and slopes with autocorrelation of level one residuals 

(AR(1) with either 𝜑=0.3 or 𝜑=0.6). Percentage of Type I errors (zero ATE) and statistical power (small ATE) were 

calculated for interventions of eight or sixteen weeks, and for data collection comprising one, two, or three measurements 

per week.  

 

Data generating and statistical model 

In statistical notation, data for the random outcome variable 𝑌 were generated for 2𝑛 participants (𝑛 per group) and across 

the given time points 𝑡 according to the model  

𝑌𝑡𝑖 = 𝛽0 + 𝛽1𝐺𝑟𝑜𝑢𝑝𝑖 + (𝛽2 + 𝛽3𝐺𝑟𝑜𝑢𝑝𝑖 + 𝑏1𝑖)𝑡 + 𝑏0𝑖 + 𝜖𝑡𝑖, where 𝐺𝑟𝑜𝑢𝑝𝑖 is an indicator variable set to 0 for standard 

intervention, and 1 for the test intervention, 𝛽0 is the mean of the standard intervention group at baseline (𝑡 = 0), 𝛽1 is the 

offset of the test intervention group at baseline and was set to zero, 𝛽2 is the mean change in the standard intervention group 

per week, and 𝛽3 represents the ATE. All simulations included random intercepts 𝑏0𝑖. When generating data with random 

intercepts and slopes, 𝑏0𝑖 and 𝑏1𝑖 were simulated from a multivariate normal distribution with standard deviations 𝜎𝑏0 and 

𝜎𝑏1, and correlation 𝜌=-0.2. These two data generating mechanisms included independent normally distributed level one 

residuals with standard deviation 𝜎𝜖. Finally, data were generated from the same random intercept and slope model but with 

level one residuals expressed as 𝜖𝑡𝑖 = 𝜑𝜖𝑡−1𝑖 + 𝜁𝑖, with 𝜑 set to either 0.3 or 0.6, mean of 𝜁𝑖 set to zero and variance set 

dependent on 𝜑 to ensure the total variance of level one residuals was the same across all models.  
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Data were simulated for a total of forty-eight conditions (4*2*2*3) comprising: 1) four different data generating models; 2) 

two levels of ATE (zero and small effect); 3) two intervention lengths (eight and sixteen weeks); and 4) three data collection 

frequencies (one, two, and three times per week). When data were generated according to the random intercept only model, 

proportion of Type I errors and statistical power were investigated from the overspecified cases fitting LMMs with random 

intercepts and slopes, either with or without autoregressive level one residuals. Data generated with correlated random 

intercepts and slopes model were investigated from both underspecified (random intercept) and overspecified cases (inclusion 

of AR1 level one residuals). Finally, data generated from random intercepts and slopes with autoregressive level one residuals 

were investigated from underspecified cases.  

 

Data generation with correlated random intercepts and slopes with independent level one residuals was considered the base 

model for the simulations. As such, the number of participants simulated in each condition was set to achieve statistical power 

of 0.8 within this base model. Simulating the same number of participants within each condition across data generating models 

provided a means of easily comparing the effects of model misspecification on proportion of Type I errors and statistical 

power. For each simulation, point estimates for all fitted parameters were collected, and likelihood ratio tests performed to 

assess significant differences in fit of the three different classes of LMM. Simulations were performed in R,21 with the 

doParallel package22 used to conduct parallel computation comprising 5000 iterations per condition. Parameter values and 

group sample sizes for simulations are presented in Table 1 and R code presented in the appendix. 

 

Table 1: Parameter values and group sample sizes used for simulations 

 Fixed effects Random effects 

Parameters   

 𝛽0=100, 𝛽1=0, 𝛽2=5/12, 𝛽3=0.3   𝜎𝑏0=15, 𝜎𝑏1=0.25, 𝜌=-0.2, 𝜎𝜖=5, 

𝜑=0.3 or 0.6,  𝑠𝑑(𝜁)=√𝜎𝜖
2(1 − 𝜑2) 

Sample size   

Measurement frequency Intervention length: 8 Weeks Intervention length: 16 Weeks 

1 time per week 𝑛=84 𝑛=21 

2 times per week  𝑛=54 𝑛=17 

3 times per week 𝑛=41 𝑛=15 
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Results 

 

Proportion of Type I errors 

Proportion of Type I errors obtained for ATE across the different conditions are presented in Figure 1. Results show 

that overspecification of the variance-covariance structure had minimal influence on percentage of Type I errors, 

which remained close to five percent. In contrast, underspecifcation with regards to including only random intercepts 

substantially increased percentage of Type I errors that ranged from ~7 to 40%. Percentages increased with greater 

amounts of data obtained from both longer intervention and increased number of measurements per week (Figure 1). 

Percentages also increased with the magnitude of underspecification, such that the greatest percentage of Type I 

errors were obtained when fitting a random intercept only model when data were generated with correlated intercepts 

and slopes, and strongly correlated (𝜑=0.6) autoregressive level one residuals (Figure 1). Underspecification by 

including correlated random intercepts and slopes but not including autoregression in level one residuals had minimal 

effect on percentage of Type I errors.   

 

Statistical Power 

Statistical power was elevated beyond 0.8 for the correctly specified random intercept only model due to powering 

sample sizes based on data generated from the more complex correlated random intercepts and slopes structure. 

Statistical power increased with both longer intervention and greater measurement frequency, with values ranging 

between ~0.85 to 1.0 (Figure 2). Statistical power remained elevated beyond 0.8 with the same patterns for 

intervention duration and measurement frequency when underspecifying with the intercept only model for more 

complex variance-covariance structures (Figure 2). In contrast, statistical power reduced when data were generated 

with autoregressive level one residuals. The magnitude of the decrease in statistical power was not influenced by 

whether the variance-covariance structure fitted was correctly specified or underspecified by omitting autoregressive 

level one residuals (Figure 2). The reduction in statistical power was influenced by measurement frequency and 

magnitude of the autocorrelation, with the greatest reductions obtained with only one measurement per week and for 

larger autocorrelations (Figure 2).  
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Figure 1: Percentage of Type I errors for average treatment effect across the different simulated conditions (rows) 

and analysed with different linear mixed models (columns).  

 

Each row represents data generated from a different model (M1: random intercepts only; M2: correlated random 

intercepts and slopes; M3A: correlated random intercepts and slopes with autoregressive level one residuals (𝝋=0.3); 

M3B: correlated random intercepts and slopes with autoregressive level one residuals (𝝋=0.6). Each column represents 
fitting of the different models. Hence, M3A:M2 shows percentage of Type I errors for data generated from correlated 

random intercepts and slopes with autoregressive level one residuals (𝝋=0.3) but analysed with LMM with only 
correlated random intercepts and slopes. Red lines denote standard percentage of Type I errors targeted in studies.    
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Figure 2: Statistical power for average treatment effect across the different simulated conditions (rows) and analysed 

with different linear mixed models (columns).  

 

Each row represents data generated from a different model (M1: random intercepts only; M2: correlated random 

intercepts and slopes; M3A: correlated random intercepts and slopes with autoregressive level one residuals (𝝋=0.3); 

M3B: correlated random intercepts and slopes with autoregressive level one residuals (𝝋=0.6]). Each column 
represents fitting of the different models. Hence, M3A:M2 shows percentage of Type I errors for data generated from 

correlated random intercepts and slopes with autoregressive level one residuals (𝝋=0.3) but analysed with LMM with 
only correlated random intercepts and slopes.  Red lines denote standard statistical power targeted in studies.  
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Use of likelihood ratio test to determine data generating model 

The percentage of Type I errors obtained from likelihood ratio tests for overspecification when data were generated 

with random intercepts only, ranged from 2.0 to 2.7% when fitting correlated random intercepts and slopes, and 2.3 

to 3.0% when fitting correlated random intercepts and slopes with autoregressive level one residuals. A slight increase 

in percentage of Type I errors ranging from 4.8 to 5.5% were obtained from likelihood ratio tests for 

overspecification when data were generated from correlated random intercepts and slopes but fitting models that 

included autoregressive level one residuals. In contrast, large variation in statistical power was seen when conducting 

the likelihood ratio test with underspecification for data generated with correlated random intercepts and slopes. With 

measurements made over an eight-week intervention, statistical power ranged from 0.22 (once per week) to 0.44 

(three per week). Much greater statistical power was obtained with measurements made over a sixteen-week 

intervention with values ranging from 0.80 (once per week) to 0.99 (three per week). For data generated with the 

inclusion of autoregressive errors statistical power was greater than 0.99 for all conditions and comparisons.  

 

Estimation of variance-covariance parameters 

Analysis of point estimates of variance-covariance parameters was conducted under correctly specified LMMs and are 

presented in Figure 3. In general, results show greater accuracy and reduced uncertainty when increasing the amount 

of data available, with the greatest improvements obtained when moving from eight to a sixteen-week intervention. 

The correlation between random intercepts and slopes showed the greatest uncertainty that was likely to be 

meaningful in practice.  
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Figure 3: Quartile plots illustrating estimation of variance-covariance parameters using correctly specified models 

across different conditions.  

 

Top row: Estimates of standard deviation of random slopes and correlation between random intercepts and slopes. 

Bottom row: Estimates of correlation between autoregression of level one residuals. Red lines denote true parameter 

values.   
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  Discussion 
 

The results from this study show that misspecification of the variance-covariance structure when analysing high frequency 

RCT data with LMMs can have substantial effects on inferences made. The most serious problems with inferences 

occurred when underspecifying the variance-covariance structure. Most importantly, failure to include random slopes where 

required increased the percentage of Type I errors to unacceptable levels. Additionally, the results show that 

underspecifying the variance-covariance structure when determining sample size can reduce statistical power limiting the 

ability to correctly identify potentially meaningful ATEs.   

 

The results from the simulations are consistent with previous research showing that excluding random effects structure 

such as random slopes inflates the risk of Type I errors.23,24 The cause of this inflation is overestimating degrees of freedom, 

sometimes referred to as pseudoreplication, where observations are treated as independent such that residuals are falsely 

assumed to be independent.25 The extent to which pseudoreplication increases Type I errors has been shown to be 

influenced by the statistical test applied.25 Different approximations to degrees of freedom are available that are influenced 

by unbalanced data, which may be extensive in RCTs where high frequency data is sought. The extent to which missing 

data influences statistical power and validity of inferences is an important area for future research of RCTs comprising high 

frequency data.  

 

Previous research also highlights multiple contrasting perspectives to specify the variance-covariance structure of high 

frequency data. One common perspective contrasts theoretical with data-driven approaches.24,25 Another common 

perspective contrasts maximal versus parsimonious models.24,25 In the simulations conducted in the present study, 

limitations of the data-driven approach to determine variance-covariance structure were highlighted. Statistical power to 

identify random slopes varied considerably depending on the amount of data available. When only one measurement per 

week was conducted over eight-weeks, the statistical power to return a significant difference in the likelihood ratio test of 

random intercepts, versus random intercepts and slopes was 0.22. The statistical power increased to 0.99 when three 

measurements were made per week over sixteen-weeks. In contrast, the statistical power to accurately determine the 

existence of an autoregressive parameter was greater than 0.99 for all conditions and correlation values. Further research is 

required to determine the statistical power for autoregression with a smaller correlation, and more complex alternative 

covariance structures with greater numbers of parameters.  
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Given the importance of including random slopes in the data investigated, and the potential low statistical power of the 

likelihood ratio test, a more theory driven approach at least for inclusion of random effects may be appropriate. It is 

common in sport science to assume that individuals respond differently to interventions.26 This difference can be expressed 

by including random slopes. Over longer duration interventions researchers may choose to model changes in an outcome 

with non-linear methods including entering time as a polynomial. Random slopes can then be added to the different 

polynomial time coefficients, further increasing the complexity of the model.10 Regardless of the method used, it is 

important to note the differences between heterogeneity in observed changes versus the recent interest in interindividual 

response heterogeneity.27,28 With the former, no consideration is made to the cause of the heterogeneity with factors both 

external and internal to the training stimulus combined. External factors potentially include nutrition, sleep, and additional 

exercise performed outside the intervention, whereas internal factors describe interactions of the exercise intervention with 

for example training experience and genetic variants. Recent studies have attempted to parse these sources of variation by 

comparing changes across an intervention between an exercise group and a non-exercise control.28 Many of the studies 

conducted including meta-analyses have been unable to identify additional variability of the exercise group beyond the 

control.29-31 The results of these studies have been interpreted as showing a lack of interindividual response variability (e.g., 

additional variation in change score in the intervention group caused by interactions of participants characteristics and the 

exercise stimulus). However, when multiple exercise groups are compared in an RCT, the inclusion of random slopes does 

not distinguish between sources of variability and it should be expected that variability in change occurs and as such the 

effect included in the LMM.  

 

In contrast to theory leading the inclusion of random effects, the ability to theorise which is the best alternative covariance 

structure may be less clear. The most appropriate structure for level one residuals after inclusion of random effects may be 

influenced by a range of factors including the frequency of the data and the outcome selected. The higher the frequency of 

the data the more likely complex alternative covariance structures with many parameters will be required. Similarly, some 

tests that may be considered feasible for high-frequency data collection could exhibit more or less complex variance-

covariance structures depending on the outcome selected. For example, the vertical jump is frequently performed by 

athletes’ multiple times per week to monitor both fatigue and improvements in physical capacity.32,33 However, research 

shows that the same vertical jump height that is caused by the product of force and velocity can be achieved by a range of 

different jumping strategies potentially masking fluctuations caused by factors such as fatigue.34 In contrast, force-time 

variables such as time to peak force may be sensitive to acute fluctuations 35 such that residuals from a statistical model 
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display a more complex structure. Given the range of factors that may influence relationships between residuals in 

longitudinal data collected in sport science, it seems that some use of data driven approaches is required for the alterative 

covariance structure with a view to achieving a degree of parsimony. Research employing timeseries approaches to 

investigate covariance structures within participants is required to better understand the complexity of structures that are 

likely to exist within the data and the most influential factors. This research will be important as the present study highlights 

that more complex structures modelled within longitudinal data will require greater sample sizes to achieve appropriate 

statistical power for ATEs. Given the context of RCTs with high frequency data as a means of achieving appropriate 

statistical power with manageable resources, overspecifying covariance structures may inflate sample size calculations and 

deter studies that may ultimately be feasible.   

 

In addition to estimating the ATE, other parameters of an LMM can be estimated to address research questions and 

test specific hypotheses. For example, variability in response may be of interest to both researchers and practitioners. 

Interventions that produce relatively homogenous changes such that most participants experience similar meaningful 

improvements may be more desirable than interventions where heterogenous changes occur such that some 

experience large improvements, but many do not experience any improvement. The variability of random slopes 

provides a measure of heterogeneity and should be reported in studies that include an LMM. In the present study the 

results from the simulations identified that the standard deviation of the random slopes could be estimated 

appropriately. Precision, however, was influenced strongly by the amount of data, with study duration the most 

influential factor (Figure 3). Researchers and practitioners have also shown interest in quantifying potential 

relationships between baseline value and magnitude of change.12 The research designs and statistical approaches 

commonly used, however, have been shown to be limited and influenced by regression to the mean effects. Whilst 

adjustment estimates are available,36 the use of LMMs and the correlation between random intercepts and slopes has 

been identified as a more sophisticated approach to address the question and provide the opportunity to control for 

other variables where appropriate.37 The results from this simulation study, however, highlight that uncertainty in the 

correlation parameter may be quite large and remained consistent across different study lengths and measurement 

frequencies, such that estimates for relatively small values as that used here (𝜌=-0.2) do not provide clear 

interpretations. This finding highlights the limited advantage of additional longitudinal data and the need for greater 

numbers of participants to obtain precise estimates for some parameters.    
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In conclusion, the results of the present study show that correct specification of the variance-covariance structure is likely 

to be important for future RCTs in sport science conducted with high frequency measurements. For these designs it is 

recommended that random slopes are included in models based on a theoretical perspective rather than a data-driven 

approach. It is important for researchers to be aware that complex variance-covariance structures particularly with 

correlated level one residuals may require substantive increases in the number of participants to obtain high statistical 

power. Future research should apply time series analyses to longitudinal data to assess which variance-covariance structures 

are likely to exist within high frequency data in sport science and investigate how structures are influenced by measurement 

frequency and other factors including the specific outcome.   
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Appendix  
 
Linear mixed model overview 
 
 
A typical longitudinal linear mixed model (LMM) can be expressed as  

𝑌𝑡𝑖 = 𝑋𝑡𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜖𝑡𝑖 ,  

where 𝑌𝑡𝑖 is the response variable at time 𝑡 nested within the 𝑖-th individual. 𝑋𝑡𝑖 is an 𝑛𝑖 by 𝑝 design matrix of covariates for the fixed 

effects, where 𝑛𝑖 is the total number of observations for the 𝑖-th individual and 𝑝 is the number of covariates included in the model. 𝑍𝑡𝑖 is 

the design matrix for the random effects and is commonly formed from a subset of columns from 𝑋𝑡𝑖 . The 𝑏𝑖 are the random effects and 

are unique for each individual but constant across time for each individual. Finally, 𝜖𝑡𝑖 are the level one residuals and represent deviations 

from the individual growth curves.  

 

 

We assume that the random effects 𝑏𝑖 are independent across individuals, arise from a multivariate normal distribution with mean 𝟎, and 

covariance matrix 𝑮. Often, the level one residuals are assumed to be independent. However, more complex level 1 residuals can be 

included and sometimes it is useful to have 𝜖𝑖 = 𝜖(1)𝑖 + 𝜖(2)𝑖 , where 𝜖(1)𝑖 represents measurement error and 𝜖(2)𝑖 represents serial 

correlation, which usually describes a random process within an individual that decreases as the time lag increases.  

 

In matrix form we have  

𝒀𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝒃𝒊 + 𝝐,  

and so  

Var(𝒀𝒊) = 𝒁𝒊𝐕𝐚𝐫(𝒃𝒊)𝒁𝒊
𝑻 + 𝜎𝜖

2𝑰𝑛𝑖
+ 𝜏2𝑯𝑖 ,  

where 𝐕𝐚𝐫(𝒃𝒊) = 𝑮, 𝑰𝑛𝑖
 is the identity matrix with 𝑛𝑖 rows and columns, 𝜏2𝑯𝑖  expresses the serial correlation such that 𝑯𝑖  is a 𝑛𝑖 × 𝑛𝑖 

matrix where the (𝑗, 𝑘) element is the correlations between the two time points within an individual. The variance can be considered easily 

through simulation (see below in R code). Simply simulate 𝑛 data points according to the model formula with random effects held constant 

and serial correlations between time points (e.g. 𝑯𝑖) held constant for that iteration. Then in a loop simulate (𝑚 − 1) ∗ 𝑛 more data points 

allowing the random effects to change across iterations according to 𝑮. 
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The first model that we consider is the random intercepts model 

𝑌𝑡𝑖 = 𝛽0 + 𝛽1𝐺𝑟𝑜𝑢𝑝𝑖 + (𝛽2 + 𝛽3𝐺𝑟𝑜𝑢𝑝𝑖)𝑡 + 𝑏0𝑖 + 𝜖𝑡𝑖,  𝑏0𝑖~𝑁(0, 𝜎𝑏0
2 ),  𝜖𝑡𝑖~𝑁(0, 𝜎𝑒

2), 

where 𝐺𝑟𝑜𝑢𝑝𝑖 is an indiciator variable which takes the value 0 for standard intervention, and 1 for the test intervention. This 

means that 𝛽0 represents the mean of the standard intervention group at baseline (𝑡 = 0), 𝛽1 is the offset of the test 

intervention group at baseline, 𝛽2 is the change in standard intervention group mean per unit of time (e.g. per week), and 𝛽3 is 

any difference in the change in mean of the test intervention group relative to the standard intervention group per unit of time. 

Here we have 𝑮 = 𝜎𝑏0
2 , 𝒁𝒊 = 𝟏𝑛𝑖

, and so if 𝑛𝑖 = 4, then we have  

Var(𝒀𝒊) =

[
 
 
 
 𝜎𝑏0

2 + 𝜎𝜖
2 𝜎𝑏0

2 𝜎𝑏0
2 𝜎𝑏0

2

𝜎𝑏0
2 𝜎𝑏0

2 + 𝜎𝜖
2 𝜎𝑏0

2 𝜎𝑏0
2

𝜎𝑏0
2 𝜎𝑏0

2 𝜎𝑏0
2 + 𝜎𝜖

2 𝜎𝑏0
2

𝜎𝑏0
2 𝜎𝑏0

2 𝜎𝑏0
2 𝜎𝑏0

2 + 𝜎𝜖
2]
 
 
 
 

  

The correlation between two time points is then 
𝜎𝑏0

2

𝜎𝑏0
2 +𝜎𝜖

2. 

 

The second model that we consider is the random intercepts and slopes model 

𝑌𝑡𝑖 = 𝛽0 + 𝛽1𝐺𝑟𝑜𝑢𝑝𝑖 + (𝛽2 + 𝛽3𝐺𝑟𝑜𝑢𝑝𝑖 + 𝑏1𝑖)𝑡 + 𝑏0𝑖 + 𝜖𝑡𝑖,  
𝑏0𝑖

𝑏1𝑖
~ℕ([

0
0
] , [

𝜎𝑏0
2 𝜌𝜎𝑏0𝜎𝑏1

𝜌𝜎𝑏0𝜎𝑏1 𝜎𝑏1
2 ]) , 𝜖𝑡𝑖~𝑁(0,𝜎𝜖

2). 

Here we have 𝒁𝒊 = 𝑐(𝟏𝑛𝑖
, 𝒕𝑛𝑖

), 𝑮 = [
𝜎𝑏0

2 𝜌𝜎𝑏0𝜎𝑏1

𝜌𝜎𝑏0𝜎𝑏1 𝜎𝑏1
2 ], so if 𝑛𝑖 = 4, then we have  

Var(𝒀𝒊) =

[
 
 
 
1 𝑡0
1 𝑡1
1 𝑡2
1 𝑡3]

 
 
 

[
𝜎𝑏0

2 𝜌𝜎𝑏0𝜎𝑏1

𝜌𝜎𝑏0𝜎𝑏1 𝜎𝑏1
2 ] [

1 1 1 1
𝑡0 𝑡1 𝑡2 𝑡3

] +

[
 
 
 
 
𝜎𝜖

2 0 0 0

0 𝜎𝜖
2 0 0

0 0 𝜎𝜖
2 0

0 0 0 𝜎𝜖
2]
 
 
 
 

=  

[
 
 
 
 

𝜎𝑏0
2 + 2𝑡0𝜌𝜎𝑏0𝜎𝑏1 + 𝑡0

2𝜎𝑏1
2 + 𝜎𝜖

2 𝜎𝑏0
2 + (𝑡0 + 𝑡1)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡0𝑡1𝜎𝑏1

2 𝜎𝑏0
2 + (𝑡0 + 𝑡2)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡0𝑡2𝜎𝑏1

2 𝜎𝑏0
2 + (𝑡0 + 𝑡3)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡0𝑡3𝜎𝑏1

2

𝜎𝑏0
2 + (𝑡0 + 𝑡1)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡0𝑡1𝜎𝑏1

2 𝜎𝑏0
2 + 2𝑡1𝜌𝜎𝑏0𝜎𝑏1 + 𝑡1

2𝜎𝑏1
2 + 𝜎𝜖

2 0𝜎𝑏0
2 + (𝑡1 + 𝑡2)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡1𝑡2𝜎𝑏1

2 𝜎𝑏0
2 + (𝑡1 + 𝑡3)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡1𝑡3𝜎𝑏1

2

𝜎𝑏0
2 + (𝑡0 + 𝑡2)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡0𝑡2𝜎𝑏1

2 𝜎𝑏0
2 + (𝑡1 + 𝑡2)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡1𝑡2𝜎𝑏1

2 𝜎𝑏0
2 + 2𝑡2𝜌𝜎𝑏0𝜎𝑏1 + 𝑡2

2𝜎𝑏1
2 + 𝜎𝜖

2 𝜎𝑏0
2 + (𝑡2 + 𝑡3)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡2𝑡3𝜎𝑏1

2

𝜎𝑏0
2 + (𝑡0 + 𝑡3)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡0𝑡3𝜎𝑏1

2 𝜎𝑏0
2 + (𝑡1 + 𝑡3)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡1𝑡3𝜎𝑏1

2 𝜎𝑏0
2 + (𝑡2 + 𝑡3)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡2𝑡3𝜎𝑏1

2 𝜎𝑏0
2 + 2𝑡3𝜌𝜎𝑏0𝜎𝑏1 + 𝑡3

2𝜎𝑏1
2 + 𝜎𝜖

2 ]
 
 
 
 

.  

The correlation between two time points (𝑡, 𝑡 + 𝑚) is then 
𝜎𝑏0

2 +(𝑡+(𝑡+𝑚))𝜌𝜎𝑏0𝜎𝑏1+𝑡(𝑡+𝑚)𝜎𝑏1
2

√𝜎𝑏0
2 +2𝑡𝜌𝜎𝑏0𝜎𝑏1+𝑡2𝜎𝑏1

2 +𝜎
𝜖

2
√𝜎𝑏0

2 +2(𝑡+𝑚)𝜌𝜎𝑏0𝜎𝑏1+(𝑡+𝑚)2𝜎𝑏1
2 +𝜎

𝜖

2
. 

 

The third model that we consider is the random intercepts and slopes model with first order autoregressive level one residuals 

 

𝑌𝑡𝑖 = 𝛽0 + 𝛽1𝐺𝑟𝑜𝑢𝑝𝑖 + (𝛽2 + 𝛽3𝐺𝑟𝑜𝑢𝑝𝑖 + 𝑏1𝑖)𝑡 + 𝑏0𝑖 + 𝜖𝑡𝑖,  
𝑏0𝑖

𝑏1𝑖
~ℕ([

0
0
] , [

𝜎𝑏0
2 𝜌𝜎𝑏0𝜎𝑏1

𝜌𝜎𝑏0𝜎𝑏1 𝜎𝑏1
2 ]),  
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𝜖𝑡𝑖 = 𝜑𝜖𝑡−1𝑖 + 𝜁𝑖, 𝜁𝑖~𝑁(0, 𝜎𝜁
2). As previously we have 𝒁𝒊 = 𝑐(𝟏𝑛𝑖

, 𝒕𝑛𝑖
), 𝑮 = [

𝜎𝑏0
2 𝜌𝜎𝑏0𝜎𝑏1

𝜌𝜎𝑏0𝜎𝑏1 𝜎𝑏1
2 ]. 

To derive the properties of the level one residuals we express 𝜖𝑡 as an infinite moving average time series  

𝜖𝑡 = 𝜑𝜖𝑡−1 + 𝜁𝑡 = 𝜑(𝜑𝜖𝑡−2 + 𝜁𝑡−1) + 𝜁𝑡 = 𝜑𝑡𝜖0 + ∑ 𝜑𝑖𝑡−1
𝑖=0 𝜁𝑡−𝑖 → ∑ 𝜑𝑖∞

𝑖=0 𝜁𝑡−𝑖 as 𝑡 → ∞ if |𝜑| <

1 and 𝜖0 is finite. From 𝜖𝑡 = ∑ 𝜑𝑖∞
𝑖=0 𝜁𝑡−𝑖 we have 𝐸(𝜖𝑡) = 0. Var(𝜖𝑡) = ∑ 𝜑2𝑖∞

𝑖=0 𝜎𝜁
2 which from infinite 

geometric series ∑ 𝑎𝑟𝑘 =
𝑎

1−𝑟
∞
𝑖=0  for |𝑟| < 1 and for series containing only even powers of r, ∑ 𝑎𝑟2𝑘 =

𝑎

1−𝑟2
∞
𝑖=0 , thus 

Var(𝜖𝑡) = ∑ 𝜑2𝑖∞
𝑖=0 𝜎𝜁

2 =
𝜎𝜁

2

1−𝜑2, |𝜑| < 1.  

For the covariance and correlation of 𝜖𝑡 and 𝜖𝑡+𝑚, We have  

Cov(𝜖𝑡 , 𝜖𝑡+𝑚) = 𝐸(𝜖𝑡, 𝜖𝑡+𝑚) − 0 = 𝐸(∑ 𝜑𝑖𝜁𝑡−𝑖
∞
𝑖=0 ∑ 𝜑𝑗𝜁𝑡+𝑚−𝑗

∞
𝑗=0 ) = 𝐸(∑ ∑ 𝜑𝑖𝜁𝑡−𝑖

∞
𝑗=0

∞
𝑖=0 𝜑𝑗𝜁𝑡+𝑚−𝑗) =  

𝐸(∑ 𝜑𝑖𝜑𝑗𝜁𝑡−𝑖𝜁𝑡+𝑚−𝑗
∞
𝑖,𝑗=0 ) = ∑ 𝜑𝑖𝜑𝑗∞

𝑖,𝑗=0 𝐸(𝜁𝑡−𝑖𝜁𝑡+𝑚−𝑗).   

𝜁𝑡−𝑖 and 𝜁𝑡+𝑚−𝑗 are independent except when −𝑖 = 𝑚 − 𝑗, that is 𝑗 = 𝑖 + 𝑚. In cases when 𝑗 ≠ 𝑖 + 𝑚, then  

𝐸(𝜁𝑡−𝑖)𝐸(𝜁𝑡+𝑚−𝑗) = 0. However, when 𝑗 = 𝑖 + 𝑚 𝐸(𝜁𝑡−𝑖𝜁𝑡+𝑚−𝑗) = 𝜎𝜁
2. Therefore, we can rewrite the sum under 

the constraint that 𝑗 = 𝑖 + 𝑚 as  

∑ 𝜑𝑖𝜑𝑖+𝑚∞
𝑖=0 𝐸(𝜁𝑡−𝑖

2 ) = ∑ 𝜑𝑖𝜑𝑖+𝑚𝜎𝜁
2 =∞

𝑖=0 𝜎𝜁
2𝜑𝑚 ∑ 𝜑2𝑖∞

𝑖=0 , where again we use the geometric series to give  

Cov(𝜖𝑡 , 𝜖𝑡+𝑚) =
𝜑𝑚𝜎𝜁

2

1−𝜑2 , |𝜑| < 1.  

The correlation is then  

𝜑𝑚𝜎𝜁
2

1−𝜑2

1−𝜑2

𝜎𝜁
2 = 𝜑|𝑚|,𝑚 = 0,±,… . 

From Var(𝒀𝒊) = 𝒁𝒊𝐕𝐚𝐫(𝒃𝒊)𝒁𝒊
𝑻 + 𝜎𝜖

2𝑰𝑛𝑖
+ 𝜏2𝑯𝑖, we have that 𝜎𝜖

2𝑰𝑛𝑖
+ 𝜏2𝑯𝑖 =

𝜎𝜁
2

1−𝜑2

[
 
 
 
 
1 𝜑 𝜑2 𝜑3

𝜑 1 𝜑 𝜑2

𝜑2 𝜑 1 𝜑

𝜑3 𝜑2 𝜑 1 ]
 
 
 
 

,  

The variance at time point 𝑡 is then 𝜎𝑏0
2 + 2𝑡𝜌𝜎𝑏0𝜎𝑏1 + 𝑡2𝜎𝑏1

2 +
𝜎𝜁

2

1−𝜑2 and the correlation between two time points (𝑡, 𝑡 + 𝑚) is then 

𝜎𝑏0
2 +(𝑡+(𝑡+𝑚))𝜌𝜎𝑏0𝜎𝑏1+𝑡(𝑡+𝑚)𝜎𝑏1

2 +
𝜑𝑚𝜎𝜁

2

1−𝜑2

√𝜎𝑏0
2 +2𝑡𝜌𝜎𝑏0𝜎𝑏1+𝑡2𝜎𝑏1

2 +
𝜎𝜁

2

1−𝜑2
√𝜎𝑏0

2 +2(𝑡+𝑚)𝜌𝜎𝑏0𝜎𝑏1+(𝑡+𝑚)2𝜎𝑏1
2 +

𝜎𝜁
2

1−𝜑2

. 
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R Code 
 
# First we confirm the relations expressed above 
 
library(MASS) 
 
# Check variance and covariance of model 1, four time periods 
 
# beta_0 = 100, beta_1 = 0, beta_2 = 2, beta_3 = 0.5,  
# sigma_b0 = 15, sigma_e = 5, t =0,1,2,3 
 
set.seed(1) 
Model1Collect = matrix(NA, ncol = 1000000,nrow=4) 
for(i in 1:1000000){ 
  Model1Collect[,i] = 100 + rnorm(1,0,15) +  
    2*c(0,1,2,3) + rnorm(4,0,5) 
} 
 
Model1Var = matrix(c(round(var(Model1Collect[1,]),0), 
                   round(cov(Model1Collect[1,],Model1Collect[2,]),0), 
                   round(cov(Model1Collect[1,],Model1Collect[3,]),0), 
                   round(cov(Model1Collect[1,],Model1Collect[4,]),0), 
                   NA, 
                   round(var(Model1Collect[2,]),0), 
                   round(cov(Model1Collect[2,],Model1Collect[3,]),0), 
                   round(cov(Model1Collect[2,],Model1Collect[4,]),0), 
                   NA,NA, 
                   round(var(Model1Collect[3,]),0), 
                   round(cov(Model1Collect[3,],Model1Collect[4,]),0), 
                   NA,NA,NA, 
                   round(var(Model1Collect[4,]),0)),ncol=4) 
 
15^2 
15^2+5^2 
Model1Var 
 
# Agrees 
 
### Check correlation  
Model1Cor = matrix(c(round(var(Model1Collect[1,]),0), 
                     round(cor(Model1Collect[1,],Model1Collect[2,]),2), 
                     round(cor(Model1Collect[1,],Model1Collect[3,]),2), 
                     round(cor(Model1Collect[1,],Model1Collect[4,]),2), 
                     NA, 
                     round(var(Model1Collect[2,]),0), 
                     round(cor(Model1Collect[2,],Model1Collect[3,]),2), 
                     round(cor(Model1Collect[2,],Model1Collect[4,]),2), 
                     NA,NA, 
                     round(var(Model1Collect[3,]),0), 
                     round(cor(Model1Collect[3,],Model1Collect[4,]),2), 
                     NA,NA,NA, 
                     round(var(Model1Collect[4,]),0)),ncol=4) 
 
(15^2)/(15^2+5^2) 
Model1Cor 
# Agrees 
 
 
# Check variance and covariance of model 2, four time periods 
 
# beta_0 = 100, beta_1 = 0, beta_2 = 2, beta_3 = 0.5,  
# sigma_b0 = 15, sigma_e = 5, t =0,1,2,3, sigma_b1 = 0.25,rho = -0.7 
 
 
set.seed(123) 
Model2Collect = matrix(NA, ncol = 1000000,nrow=4) 
for(i in 1:1000000){ 
  RE = mvrnorm(n = 1, c(0,0),  
               matrix(c(15^2,-0.7*15*0.25,-0.7*15*0.25,0.25^2),ncol=2)) 
  Model2Collect[,i] = 100 + RE[1] +  
    (2+RE[2])*c(0,1,2,3) + rnorm(4,0,5) 
} 
 
Model2Var = matrix(c(round(var(Model2Collect[1,]),0), 
                     round(cov(Model2Collect[1,],Model2Collect[2,]),0), 
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                     round(cov(Model2Collect[1,],Model2Collect[3,]),0), 
                     round(cov(Model2Collect[1,],Model2Collect[4,]),0), 
                     NA, 
                     round(var(Model2Collect[2,]),0), 
                     round(cov(Model2Collect[2,],Model2Collect[3,]),0), 
                     round(cov(Model2Collect[2,],Model2Collect[4,]),0), 
                     NA,NA, 
                     round(var(Model2Collect[3,]),0), 
                     round(cov(Model2Collect[3,],Model2Collect[4,]),0), 
                     NA,NA,NA, 
                     round(var(Model2Collect[4,]),0)),ncol=4) 
 
# VAR 
15^2 + 5^2 
15^2 -2*1*0.7*15*0.25 + 0.25^2 + 5^2 
15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + 5^2 
15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + 5^2 
 
# COV 
15^2 -1*0.7*15*0.25 
15^2 -2*0.7*15*0.25 
15^2 -3*0.7*15*0.25 
 
15^2 -(1+2)*0.7*15*0.25 + 1*2*(0.25^2) 
15^2 -(1+3)*0.7*15*0.25 + 1*3*(0.25^2) 
 
15^2 -(2+3)*0.7*15*0.25 + 2*3*(0.25^2) 
 
Model2Var 
 
# Agrees 
 
# Check correlation 
Model2Cor = matrix(c(round(var(Model2Collect[1,]),0), 
                     round(cor(Model2Collect[1,],Model2Collect[2,]),3), 
                     round(cor(Model2Collect[1,],Model2Collect[3,]),3), 
                     round(cor(Model2Collect[1,],Model2Collect[4,]),3), 
                     NA, 
                     round(var(Model2Collect[2,]),0), 
                     round(cor(Model2Collect[2,],Model2Collect[3,]),3), 
                     round(cor(Model2Collect[2,],Model2Collect[4,]),3), 
                     NA,NA, 
                     round(var(Model2Collect[3,]),0), 
                     round(cor(Model2Collect[3,],Model2Collect[4,]),3), 
                     NA,NA,NA, 
                     round(var(Model2Collect[4,]),0)),ncol=4) 
 
(15^2 -1*0.7*15*0.25)/(sqrt(15^2 + 5^2)*sqrt(15^2 -2*1*0.7*15*0.25 + 0.25^2 + 5^2)) 
(15^2 -2*0.7*15*0.25)/(sqrt(15^2 + 5^2)*sqrt(15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + 5^2)) 
(15^2 -3*0.7*15*0.25)/(sqrt(15^2 + 5^2)*sqrt(15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + 5^2)) 
 
(15^2 -(1+2)*0.7*15*0.25 + 1*2*(0.25^2))/ 
  (sqrt(15^2 -2*1*0.7*15*0.25 + 0.25^2 + 5^2)*sqrt(15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + 5^2)) 
   
(15^2 -(1+3)*0.7*15*0.25 + 1*3*(0.25^2))/ 
  (sqrt(15^2 -2*1*0.7*15*0.25 + 0.25^2 + 5^2)*sqrt(15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + 5^2)) 
 
(15^2 -(2+3)*0.7*15*0.25 + 2*3*(0.25^2))/ 
  (sqrt(15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + 5^2)*sqrt(15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + 5^2)) 
 
 
Model2Cor 
 
# Agrees  
 
 
# Check variance and covariance of model 3, four time periods 
 
# beta_0 = 100, beta_1 = 0, beta_2 = 2, beta_3 = 0.5,  
# sigma_b0 = 15, t =0,1,2,3, sigma_b1 = 0.25, rho = -0.7, 
# phi = 0.5, zeta_ = 3.5 
 
set.seed(123) 
Model3Collect = matrix(NA, ncol = 1000000,nrow=4) 
for(i in 1:1000000){ 
  RE = mvrnorm(n = 1, c(0,0),  
               matrix(c(15^2,-0.7*15*0.25,-0.7*15*0.25,0.25^2),ncol=2)) 
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  Model3 = 100 + RE[1] +  
    (2+RE[2])*c(0,1,2,3) 
   
  Model3AR10 = 0.5*rnorm(1,0,3.5) + rnorm(1,0,3.5) 
  Model3AR11 = 0.5*Model3AR10 + rnorm(1,0,3.5) 
  Model3AR12 = 0.5*Model3AR11 + rnorm(1,0,3.5) 
  Model3AR13 = 0.5*Model3AR12 + rnorm(1,0,3.5) 
  Model3Collect[,i] = Model3 + c(Model3AR10,Model3AR11, 
                                 Model3AR12,Model3AR13)} 
 
 
Model3Var = matrix(c(round(var(Model3Collect[1,]),0), 
                     round(cov(Model3Collect[1,],Model3Collect[2,]),0), 
                     round(cov(Model3Collect[1,],Model3Collect[3,]),0), 
                     round(cov(Model3Collect[1,],Model3Collect[4,]),0), 
                     NA, 
                     round(var(Model3Collect[2,]),0), 
                     round(cov(Model3Collect[2,],Model3Collect[3,]),0), 
                     round(cov(Model3Collect[2,],Model3Collect[4,]),0), 
                     NA,NA, 
                     round(var(Model3Collect[3,]),0), 
                     round(cov(Model3Collect[3,],Model3Collect[4,]),0), 
                     NA,NA,NA, 
                     round(var(Model3Collect[4,]),0)),ncol=4) 
 
 
# VAR 
15^2 + (3.5^2)/(1-0.25) 
15^2 -2*1*0.7*15*0.25 + 0.25^2 + (3.5^2)/(1-0.25) 
15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + (3.5^2)/(1-0.25) 
15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + (3.5^2)/(1-0.25) 
 
# COV 
15^2 -1*0.7*15*0.25+0.5*((3.5^2)/(1-0.25)) 
15^2 -2*0.7*15*0.25+0.5*0.5*((3.5^2)/(1-0.25)) 
15^2 -3*0.7*15*0.25+0.5*0.5*0.5*((3.5^2)/(1-0.25)) 
 
15^2 -(1+2)*0.7*15*0.25 + 1*2*(0.25^2) +0.5*((3.5^2)/(1-0.25)) 
15^2 -(1+3)*0.7*15*0.25 + 1*3*(0.25^2) +0.5*0.5*((3.5^2)/(1-0.25)) 
 
15^2 -(2+3)*0.7*15*0.25 + 2*3*(0.25^2)+0.5*((3.5^2)/(1-0.25)) 
 
Model3Var 
 
# Agreed 
 
Model3Cor = matrix(c(round(var(Model3Collect[1,]),0), 
                     round(cor(Model3Collect[1,],Model3Collect[2,]),3), 
                     round(cor(Model3Collect[1,],Model3Collect[3,]),3), 
                     round(cor(Model3Collect[1,],Model3Collect[4,]),3), 
                     NA, 
                     round(var(Model3Collect[2,]),0), 
                     round(cor(Model3Collect[2,],Model3Collect[3,]),3), 
                     round(cor(Model3Collect[2,],Model3Collect[4,]),3), 
                     NA,NA, 
                     round(var(Model3Collect[3,]),0), 
                     round(cor(Model3Collect[3,],Model3Collect[4,]),3), 
                     NA,NA,NA, 
                     round(var(Model3Collect[4,]),0)),ncol=4) 
 
(15^2 -1*0.7*15*0.25+0.5*((3.5^2)/(1-0.25)))/ 
  (sqrt(15^2 + (3.5^2)/(1-0.25))*sqrt(15^2 -2*1*0.7*15*0.25 + 0.25^2 + (3.5^2)/(1-0.25))) 
(15^2 -2*0.7*15*0.25+0.5*0.5*((3.5^2)/(1-0.25)))/ 
  (sqrt(15^2 + (3.5^2)/(1-0.25))*sqrt(15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + (3.5^2)/(1-0.25))) 
(15^2 -3*0.7*15*0.25+0.5*0.5*0.5*((3.5^2)/(1-0.25)))/ 
  (sqrt(15^2 + (3.5^2)/(1-0.25))*sqrt(15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + (3.5^2)/(1-0.25))) 
 
 
(15^2 -(1+2)*0.7*15*0.25 + 1*2*(0.25^2) +0.5*((3.5^2)/(1-0.25)))/ 
  (sqrt(15^2 -2*1*0.7*15*0.25 + 0.25^2 + (3.5^2)/(1-0.25))*sqrt(15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + (3.5^2)/(1-0.25))) 
(15^2 -(1+3)*0.7*15*0.25 + 1*3*(0.25^2) +0.5*0.5*((3.5^2)/(1-0.25)))/ 
  (sqrt(15^2 -2*1*0.7*15*0.25 + 0.25^2 + (3.5^2)/(1-0.25))*sqrt(15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + (3.5^2)/(1-0.25))) 
 
 
(15^2 -(2+3)*0.7*15*0.25 + 2*3*(0.25^2)+0.5*((3.5^2)/(1-0.25)))/ 
  (sqrt(15^2 -2*2*0.7*15*0.25 + (2^2)*0.25^2 + (3.5^2)/(1-0.25))*sqrt(15^2 -2*3*0.7*15*0.25 + (3^2)*0.25^2 + (3.5^2)/(1-
0.25))) 
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Model3Cor 
 
# Agreed 
 

 
 

# Code for the simulations 
 
library(MASS) 
library(ggplot2) 
library(tidyr) 
library(dplyr) 
library(scales) 
library(nlme) 
library(foreach) 
library(doParallel) 
library(Hmisc) 
library(cowplot) 
# https://www.java.com/en/download/ 
library(rJava) 
library(xlsx) 
library("readxl") 
library(ggpubr) 
 
BaseSimulationTime = function(n,sigmab0,sigmab1,beta0,beta2,beta3,rho,t,Iter){ 
   
  Datalmm = array(NA, c(2*n,length(t),Iter)) 
  G = c(rep(0,n),rep(1,n)) 
  for(i in 1:Iter){ 
    U = mvrnorm(2*n,c(0,0), 
                matrix(c(sigmab0^2,rho*sigmab0*sigmab1,rho*sigmab0*sigmab1,sigmab1^2),ncol=2)) 
    for(j in 1:length(t)){ 
      Datalmm[,j,i] = beta0 + U[,1] + t[j]*(beta2 + G*beta3 + U[,2])}} 
  return(Datalmm)} 
 
BaseSimulationError = function(Data,sigma,ar){ 
  rown = length(Data[,1,1]) 
  coln = length(Data[1,,1]) 
  slicen = length(Data[1,1,]) 
  DatalmmError = array(NA, c(rown,coln,slicen)) 
  zeta = sqrt((sigma^2)*(1-ar^2)) 
  for(i in 1:slicen){ 
    errorsigma = matrix(rnorm(rown*coln,0,zeta),nrow=rown,ncol=coln) 
    DatalmmError[,1,i] = errorsigma[,1] 
    for(j in 2:coln){ 
      DatalmmError[,j,i]  = ar*DatalmmError[,(j-1),i] + errorsigma[,j] 
    }} 
  DataE = Data + DatalmmError 
  return(DataE)} 
 
PowerAnalysis = function(Data,n1,n2,n3,n4,n,t){ 
  Iter = length(Data[1,1,]) 
  nt = length(Data[1,,1]) 
  Collection = matrix(NA,nrow=Iter,ncol=5) 
   
  n1FullIDs = c(seq(1,n1,1),seq(n+1,(n+n1),1)) 
  n2FullIDs = c(seq(1,n2,1),seq(n+1,(n+n2),1)) 
  n3FullIDs = c(seq(1,n3,1),seq(n+1,(n+n3),1)) 
  n4FullIDs = c(seq(1,n4,1),seq(n+1,(n+n4),1)) 
   
  for(i in 1:Iter){ 
    DEDF = as.data.frame(Data[,,i]) 
    DEDFL = as.data.frame(pivot_longer(DEDF, cols = everything())) 
    DEDFL$ID = rep(1:(2*n),each=nt) 
    DEDFL$Group = c(rep("Standard",n*nt),rep("Test",n*nt)) 
    DEDFL$Time = rep(t,2*n) 
    DEDFL$ID = factor(DEDFL$ID) 
    DEDFL$Group = factor(DEDFL$Group) 
     
    # All participants once per week 
    n1Mod = lme(value~Group+Group*Time,random=~Time|ID, 
                control = lmeControl(opt = 'optim'), 
                data=DEDFL[DEDFL$ID %in% n1FullIDs,]) 
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    n2Mod = lme(value~Group+Group*Time,random=~Time|ID, 
                control = lmeControl(opt = 'optim'), 
                data=DEDFL[DEDFL$ID %in% n2FullIDs,]) 
     
    n3Mod = lme(value~Group+Group*Time,random=~Time|ID, 
                control = lmeControl(opt = 'optim'), 
                data=DEDFL[DEDFL$ID %in% n3FullIDs,]) 
     
    n4Mod = lme(value~Group+Group*Time,random=~Time|ID, 
                control = lmeControl(opt = 'optim'), 
                data=DEDFL[DEDFL$ID %in% n4FullIDs,]) 
     
    nMod = lme(value~Group+Group*Time,random=~Time|ID, 
               control = lmeControl(opt = 'optim'), 
               data=DEDFL) 
     
    n1ModS = summary(n1Mod) 
    n2ModS = summary(n2Mod) 
    n3ModS = summary(n3Mod) 
    n4ModS = summary(n4Mod) 
    nModS = summary(nMod) 
     
    Collection[i,1] =as.numeric(n1ModS$tTable[4,5]) 
    Collection[i,2] =as.numeric(n2ModS$tTable[4,5]) 
    Collection[i,3] =as.numeric(n3ModS$tTable[4,5]) 
    Collection[i,4] =as.numeric(n4ModS$tTable[4,5]) 
    Collection[i,5] =as.numeric(nModS$tTable[4,5])} 
  return(Collection)} 
 
PowerAnalysisP = function(Data,n1,n2,n3,n4,n,t){ 
  nt = length(Data[1,]) 
  Collection = c(NULL) 
   
  n1FullIDs = c(seq(1,n1,1),seq(n+1,(n+n1),1)) 
  n2FullIDs = c(seq(1,n2,1),seq(n+1,(n+n2),1)) 
  n3FullIDs = c(seq(1,n3,1),seq(n+1,(n+n3),1)) 
  n4FullIDs = c(seq(1,n4,1),seq(n+1,(n+n4),1)) 
   
  DEDF = as.data.frame(Data) 
  DEDFL = as.data.frame(pivot_longer(DEDF, cols = everything())) 
  DEDFL$ID = rep(1:(2*n),each=nt) 
  DEDFL$Group = c(rep("Standard",n*nt),rep("Test",n*nt)) 
  DEDFL$Time = rep(t,2*n) 
  DEDFL$ID = factor(DEDFL$ID) 
  DEDFL$Group = factor(DEDFL$Group) 
   
  # All participants once per week 
  n1Mod = lme(value~Group+Group*Time,random=~Time|ID, 
              control = lmeControl(opt = 'optim'), 
              data=DEDFL[DEDFL$ID %in% n1FullIDs,]) 
   
   
  n2Mod = lme(value~Group+Group*Time,random=~Time|ID, 
              control = lmeControl(opt = 'optim'), 
              data=DEDFL[DEDFL$ID %in% n2FullIDs,]) 
   
  n3Mod = lme(value~Group+Group*Time,random=~Time|ID, 
              control = lmeControl(opt = 'optim'), 
              data=DEDFL[DEDFL$ID %in% n3FullIDs,]) 
   
  n4Mod = lme(value~Group+Group*Time,random=~Time|ID, 
              control = lmeControl(opt = 'optim'), 
              data=DEDFL[DEDFL$ID %in% n4FullIDs,]) 
   
  nMod = lme(value~Group+Group*Time,random=~Time|ID, 
             control = lmeControl(opt = 'optim'), 
             data=DEDFL) 
   
  n1ModS = summary(n1Mod) 
  n2ModS = summary(n2Mod) 
  n3ModS = summary(n3Mod) 
  n4ModS = summary(n4Mod) 
  nModS = summary(nMod) 
   
  Collection[1] =as.numeric(n1ModS$tTable[4,5]) 
  Collection[2] =as.numeric(n2ModS$tTable[4,5]) 
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  Collection[3] =as.numeric(n3ModS$tTable[4,5]) 
  Collection[4] =as.numeric(n4ModS$tTable[4,5]) 
  Collection[5] =as.numeric(nModS$tTable[4,5]) 
  return(Collection)} 
 
PowerOUt = function(DF){ 
  DF1=t(as.data.frame(DF)) 
  rownames(DF1)=c(NULL) 
  Power = c(mean(DF1[,1]<0.05),mean(DF1[,2]<0.05), 
            mean(DF1[,3]<0.05),mean(DF1[,4]<0.05), 
            mean(DF1[,5]<0.05)) 
  return(Power) 
} 
 
n.cores = parallel::detectCores() - 2 
my.cluster = parallel::makeCluster( 
  n.cores, 
  type = "PSOCK" 
) 
doParallel::registerDoParallel(cl = my.cluster) 
# parallel::stopCluster(cl = my.cluster) 
 
SimulationAnalysisP = function(Data,nfull,nhalf,Weeks){ 
  np = length(Data[,1])/2 
  nt = length(Data[1,]) 
  Collection = c(NULL) 
  n = nhalf[1] 
  # IDs of participants in analysis across whole intervention 
  n1FullIDs = c(seq(1,nfull[1],1),seq(n+1,(n+nfull[1]),1)) 
  n2FullIDs = c(seq(1,nfull[2],1),seq(n+1,(n+nfull[2]),1)) 
  n3FullIDs = c(seq(1,nfull[3],1),seq(n+1,(n+nfull[3]),1)) 
   
   
  # IDs of participants in analysis across half intervention 
  n1HalfIDs = c(seq(1,nhalf[1],1),seq(n+1,(n+nhalf[1]),1)) 
  n2HalfIDs = c(seq(1,nhalf[2],1),seq(n+1,(n+nhalf[2]),1)) 
  n3HalfIDs = c(seq(1,nhalf[3],1),seq(n+1,(n+nhalf[3]),1)) 
   
  # Full-Intervention 
  T1Full = round(seq(0,Weeks,1),2) 
  T2Full = round(c(seq(0,Weeks,1),seq(3/7,Weeks,1)),2) 
  T3Full = round(c(seq(0,Weeks,1),seq(2/7,Weeks,1), 
                   seq(4/7,Weeks,1)),2) 
  # Time to match the data created  
  TFull = round(c(seq(0,Weeks,1),seq(2/7,Weeks,1),seq(3/7,Weeks,1), 
                  seq(4/7,Weeks,1)),2) 
   
  # Half-Intervention 
  T1Half = round(seq(0,Weeks/2,1),2) 
  T2Half = round(c(seq(0,Weeks/2,1),seq(3/7,Weeks/2,1)),2) 
  T3Half = round(c(seq(0,Weeks/2,1),seq(2/7,Weeks/2,1), 
                   seq(4/7,Weeks/2,1)),2) 
   
  DEDF = as.data.frame(Data) 
  DEDFL = as.data.frame(pivot_longer(DEDF, cols = everything())) 
  DEDFL$ID = rep(1:(2*np),each=nt) 
  DEDFL$Group = c(rep("Standard",np*nt),rep("Test",np*nt)) 
  DEDFL$Time = rep(TFull,2*np) 
  DEDFL$ID = factor(DEDFL$ID) 
  DEDFL$Group = factor(DEDFL$Group) 
   
  #### Half-Intervention Models 
   
   
  # All participants once per week 
  Mod1Half1 = tryCatch({ lme(value~Group+Group*Time,random=~1|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T1Half)&(DEDFL$ID %in% n1HalfIDs),])}, 
                       error=function(e) 3) 
  Mod2Half1 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T1Half)&(DEDFL$ID %in% n1HalfIDs),])}, 
                       error=function(e) 3) 
  Mod3Half1 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID,correlation=corAR1(), 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T1Half)&(DEDFL$ID %in% n1HalfIDs),])}, 
                       error=function(e) 3) 
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  if(is.list(Mod1Half1)==TRUE) {Mod1Half1S =summary(Mod1Half1)} 
  if(is.list(Mod1Half1)==FALSE) {Mod1Half1S =NA} 
   
  if(is.list(Mod2Half1)==TRUE) {Mod2Half1S =summary(Mod2Half1)} 
  if(is.list(Mod2Half1)==FALSE) {Mod2Half1S =NA} 
   
  if(is.list(Mod3Half1)==TRUE) {Mod3Half1S =summary(Mod3Half1)} 
  if(is.list(Mod3Half1)==FALSE) {Mod3Half1S =NA} 
   
   
  # n2half participants twice per week 
  Mod1Half2 = tryCatch({ lme(value~Group+Group*Time,random=~1|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T2Half)&(DEDFL$ID %in% n2HalfIDs),])}, 
                       error=function(e) 3) 
  Mod2Half2 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T2Half)&(DEDFL$ID %in% n2HalfIDs),])}, 
                       error=function(e) 3) 
  Mod3Half2 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID,correlation=corAR1(), 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T2Half)&(DEDFL$ID %in% n2HalfIDs),])}, 
                       error=function(e) 3) 
   
  if(is.list(Mod1Half2)==TRUE) {Mod1Half2S =summary(Mod1Half2)} 
  if(is.list(Mod1Half2)==FALSE) {Mod1Half2S =NA} 
   
  if(is.list(Mod2Half2)==TRUE) {Mod2Half2S =summary(Mod2Half2)} 
  if(is.list(Mod2Half2)==FALSE) {Mod2Half2S =NA} 
   
  if(is.list(Mod3Half2)==TRUE) {Mod3Half2S =summary(Mod3Half2)} 
  if(is.list(Mod3Half2)==FALSE) {Mod3Half2S =NA} 
   
   
  # n3half participants three times per week 
  Mod1Half3 = tryCatch({ lme(value~Group+Group*Time,random=~1|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T3Half)&(DEDFL$ID %in% n3HalfIDs),])}, 
                       error=function(e) 3) 
  Mod2Half3 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T3Half)&(DEDFL$ID %in% n3HalfIDs),])}, 
                       error=function(e) 3) 
  Mod3Half3 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID,correlation=corAR1(), 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T3Half)&(DEDFL$ID %in% n3HalfIDs),])}, 
                       error=function(e) 3) 
   
  if(is.list(Mod1Half3)==TRUE) {Mod1Half3S =summary(Mod1Half3)} 
  if(is.list(Mod1Half3)==FALSE) {Mod1Half3S =NA} 
   
  if(is.list(Mod2Half3)==TRUE) {Mod2Half3S =summary(Mod2Half3)} 
  if(is.list(Mod2Half3)==FALSE) {Mod2Half3S =NA} 
   
  if(is.list(Mod3Half3)==TRUE) {Mod3Half3S =summary(Mod3Half3)} 
  if(is.list(Mod3Half3)==FALSE) {Mod3Half3S =NA} 
   
   
  #### Full-Intervention Models 
   
  # n1full participants once per week 
   
  Mod1Full1 = tryCatch({ lme(value~Group+Group*Time,random=~1|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T1Full)&(DEDFL$ID %in% n1FullIDs),])}, 
                       error=function(e) 3) 
  Mod2Full1 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T1Full)&(DEDFL$ID %in% n1FullIDs),])}, 
                       error=function(e) 3) 
  Mod3Full1 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID,correlation=corAR1(), 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T1Full)&(DEDFL$ID %in% n1FullIDs),])}, 
                       error=function(e) 3) 
   
  if(is.list(Mod1Full1)==TRUE) {Mod1Full1S =summary(Mod1Full1)} 
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  if(is.list(Mod1Full1)==FALSE) {Mod1Full1S =NA} 
   
  if(is.list(Mod2Full1)==TRUE) {Mod2Full1S =summary(Mod2Full1)} 
  if(is.list(Mod2Full1)==FALSE) {Mod2Full1S =NA} 
   
  if(is.list(Mod3Full1)==TRUE) {Mod3Full1S =summary(Mod3Full1)} 
  if(is.list(Mod3Full1)==FALSE) {Mod3Full1S =NA} 
   
  # n2full participants twice per week 
  Mod1Full2 = tryCatch({ lme(value~Group+Group*Time,random=~1|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T2Full)&(DEDFL$ID %in% n2FullIDs),])}, 
                       error=function(e) 3) 
  Mod2Full2 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T2Full)&(DEDFL$ID %in% n2FullIDs),])}, 
                       error=function(e) 3) 
  Mod3Full2 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID,correlation=corAR1(), 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T2Full)&(DEDFL$ID %in% n2FullIDs),])}, 
                       error=function(e) 3) 
   
  if(is.list(Mod1Full2)==TRUE) {Mod1Full2S =summary(Mod1Full2)} 
  if(is.list(Mod1Full2)==FALSE) {Mod1Full2S =NA} 
   
  if(is.list(Mod2Full2)==TRUE) {Mod2Full2S =summary(Mod2Full2)} 
  if(is.list(Mod2Full2)==FALSE) {Mod2Full2S =NA} 
   
  if(is.list(Mod3Full2)==TRUE) {Mod3Full2S =summary(Mod3Full2)} 
  if(is.list(Mod3Full2)==FALSE) {Mod3Full2S =NA} 
   
  # n3full participants four times per week 
  Mod1Full3 = tryCatch({ lme(value~Group+Group*Time,random=~1|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T3Full)&(DEDFL$ID %in% n3FullIDs),])}, 
                       error=function(e) 3) 
  Mod2Full3 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID, 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T3Full)&(DEDFL$ID %in% n3FullIDs),])}, 
                       error=function(e) 3) 
  Mod3Full3 = tryCatch({ lme(value~Group+Group*Time,random=~Time|ID,correlation=corAR1(), 
                             control = lmeControl(opt = 'optim'), 
                             data=DEDFL[(DEDFL$Time %in% T3Full)&(DEDFL$ID %in% n3FullIDs),])}, 
                       error=function(e) 3) 
   
  if(is.list(Mod1Full3)==TRUE) {Mod1Full3S =summary(Mod1Full3)} 
  if(is.list(Mod1Full3)==FALSE) {Mod1Full3S =NA} 
   
  if(is.list(Mod2Full3)==TRUE) {Mod2Full3S =summary(Mod2Full3)} 
  if(is.list(Mod2Full3)==FALSE) {Mod2Full3S =NA} 
   
  if(is.list(Mod3Full3)==TRUE) {Mod3Full3S =summary(Mod3Full3)} 
  if(is.list(Mod3Full3)==FALSE) {Mod3Full3 =NA} 
   
   
  Collection = c( 
     
    c(if(!is.na(Mod1Half1S[[1]][1])==TRUE) 
    {c(as.numeric(Mod1Half1S$tTable[1:4,1]),as.numeric(Mod1Half1S$tTable[1:4,2]), 
       as.numeric(Mod1Half1S$tTable[1:4,5]), as.numeric(VarCorr(Mod1Half1S)[2,2]), 
       as.numeric(VarCorr(Mod1Half1S)[1,2]),Mod1Half1S$AIC,Mod1Half1S$BIC,Mod1Half1S$logLik)}, 
     
    if(is.na(Mod1Half1S[[1]][1])==TRUE) {rep(NA,17)}), 
     
     
    c(if(!is.na(Mod2Half1S[[1]][1])==TRUE) 
    {c(as.numeric(Mod2Half1S$tTable[1:4,1]),as.numeric(Mod2Half1S$tTable[1:4,2]), 
       as.numeric(Mod2Half1S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod2Half1S)[3,2]),as.numeric(VarCorr(Mod2Half1S)[1,2]), 
       as.numeric(VarCorr(Mod2Half1S)[2,2]),as.numeric(VarCorr(Mod2Half1S)[2,3]), 
       Mod2Half1S$AIC,Mod2Half1S$BIC,Mod2Half1S$logLik)}, 
     
    if(is.na(Mod2Half1S[[1]][1])==TRUE) {rep(NA,19)}), 
     
    c(if(!is.na(Mod3Half1S[[1]][1])==TRUE) 
    {c(as.numeric(Mod3Half1S$tTable[1:4,1]),as.numeric(Mod3Half1S$tTable[1:4,2]), 
       as.numeric(Mod3Half1S$tTable[1:4,5]), 
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       as.numeric(VarCorr(Mod3Half1S)[3,2]),as.numeric(VarCorr(Mod3Half1S)[1,2]), 
       as.numeric(VarCorr(Mod3Half1S)[2,2]),as.numeric(VarCorr(Mod3Half1S)[2,3]), 
       as.numeric(coef(Mod3Half1$modelStruct$corStruct, unconstrained = FALSE)), 
       Mod3Half1S$AIC,Mod3Half1S$BIC,Mod3Half1S$logLik)}, 
     
    if(is.na(Mod3Half1S[[1]][1])==TRUE) {rep(NA,20)}), 
     
    c(if(!is.na(Mod1Half1S[[1]][1])==TRUE&!is.na(Mod2Half1S[[1]][1])==TRUE) 
    {anova(Mod1Half1,Mod2Half1)$`p-value`[2]}, 
    if(is.na(Mod1Half1S[[1]][1])==TRUE|is.na(Mod2Half1S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Half1S[[1]][1])==TRUE&!is.na(Mod3Half1S[[1]][1])==TRUE) 
    {anova(Mod1Half1,Mod3Half1)$`p-value`[2]}, 
    if(is.na(Mod1Half1S[[1]][1])==TRUE|is.na(Mod3Half1S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod2Half1S[[1]][1])==TRUE&!is.na(Mod3Half1S[[1]][1])==TRUE) 
    {anova(Mod2Half1,Mod3Half1)$`p-value`[2]}, 
    if(is.na(Mod2Half1S[[1]][1])==TRUE|is.na(Mod3Half1S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Half2S[[1]][1])==TRUE) 
    {c(as.numeric(Mod1Half2S$tTable[1:4,1]),as.numeric(Mod1Half2S$tTable[1:4,2]), 
       as.numeric(Mod1Half2S$tTable[1:4,5]), as.numeric(VarCorr(Mod1Half2S)[2,2]), 
       as.numeric(VarCorr(Mod1Half2S)[1,2]),Mod1Half2S$AIC,Mod1Half2S$BIC,Mod1Half2S$logLik)}, 
     
    if(is.na(Mod1Half2S[[1]][1])==TRUE) {rep(NA,17)}), 
     
     
    c(if(!is.na(Mod2Half2S[[1]][1])==TRUE) 
    {c(as.numeric(Mod2Half2S$tTable[1:4,1]),as.numeric(Mod2Half2S$tTable[1:4,2]), 
       as.numeric(Mod2Half2S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod2Half2S)[3,2]),as.numeric(VarCorr(Mod2Half2S)[1,2]), 
       as.numeric(VarCorr(Mod2Half2S)[2,2]),as.numeric(VarCorr(Mod2Half2S)[2,3]), 
       Mod2Half2S$AIC,Mod2Half2S$BIC,Mod2Half2S$logLik)}, 
     
    if(is.na(Mod2Half2S[[1]][1])==TRUE) {rep(NA,19)}), 
     
    c(if(!is.na(Mod3Half2S[[1]][1])==TRUE) 
    {c(as.numeric(Mod3Half2S$tTable[1:4,1]),as.numeric(Mod3Half2S$tTable[1:4,2]), 
       as.numeric(Mod3Half2S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod3Half2S)[3,2]),as.numeric(VarCorr(Mod3Half2S)[1,2]), 
       as.numeric(VarCorr(Mod3Half2S)[2,2]),as.numeric(VarCorr(Mod3Half2S)[2,3]), 
       as.numeric(coef(Mod3Half2$modelStruct$corStruct, unconstrained = FALSE)), 
       Mod3Half2S$AIC,Mod3Half2S$BIC,Mod3Half2S$logLik)}, 
     
    if(is.na(Mod3Half2S[[1]][1])==TRUE) {rep(NA,20)}), 
     
    c(if(!is.na(Mod1Half2S[[1]][1])==TRUE&!is.na(Mod2Half2S[[1]][1])==TRUE) 
    {anova(Mod1Half2,Mod2Half2)$`p-value`[2]}, 
    if(is.na(Mod1Half2S[[1]][1])==TRUE|is.na(Mod2Half2S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Half2S[[1]][1])==TRUE&!is.na(Mod3Half2S[[1]][1])==TRUE) 
    {anova(Mod1Half2,Mod3Half2)$`p-value`[2]}, 
    if(is.na(Mod1Half2S[[1]][1])==TRUE|is.na(Mod3Half2S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod2Half2S[[1]][1])==TRUE&!is.na(Mod3Half2S[[1]][1])==TRUE) 
    {anova(Mod2Half2,Mod3Half2)$`p-value`[2]}, 
    if(is.na(Mod2Half2S[[1]][1])==TRUE|is.na(Mod3Half2S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Half3S[[1]][1])==TRUE) 
    {c(as.numeric(Mod1Half3S$tTable[1:4,1]),as.numeric(Mod1Half3S$tTable[1:4,2]), 
       as.numeric(Mod1Half3S$tTable[1:4,5]), as.numeric(VarCorr(Mod1Half3S)[2,2]), 
       as.numeric(VarCorr(Mod1Half3S)[1,2]),Mod1Half3S$AIC,Mod1Half3S$BIC,Mod1Half3S$logLik)}, 
     
    if(is.na(Mod1Half3S[[1]][1])==TRUE) {rep(NA,17)}), 
     
     
    c(if(!is.na(Mod2Half3S[[1]][1])==TRUE) 
    {c(as.numeric(Mod2Half3S$tTable[1:4,1]),as.numeric(Mod2Half3S$tTable[1:4,2]), 
       as.numeric(Mod2Half3S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod2Half3S)[3,2]),as.numeric(VarCorr(Mod2Half3S)[1,2]), 
       as.numeric(VarCorr(Mod2Half3S)[2,2]),as.numeric(VarCorr(Mod2Half3S)[2,3]), 
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       Mod2Half3S$AIC,Mod2Half3S$BIC,Mod2Half3S$logLik)}, 
     
    if(is.na(Mod2Half3S[[1]][1])==TRUE) {rep(NA,19)}), 
     
    c(if(!is.na(Mod3Half3S[[1]][1])==TRUE) 
    {c(as.numeric(Mod3Half3S$tTable[1:4,1]),as.numeric(Mod3Half3S$tTable[1:4,2]), 
       as.numeric(Mod3Half3S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod3Half3S)[3,2]),as.numeric(VarCorr(Mod3Half3S)[1,2]), 
       as.numeric(VarCorr(Mod3Half3S)[2,2]),as.numeric(VarCorr(Mod3Half3S)[2,3]), 
       as.numeric(coef(Mod3Half3$modelStruct$corStruct, unconstrained = FALSE)), 
       Mod3Half3S$AIC,Mod3Half3S$BIC,Mod3Half3S$logLik)}, 
     
    if(is.na(Mod3Half3S[[1]][1])==TRUE) {rep(NA,20)}), 
     
    c(if(!is.na(Mod1Half3S[[1]][1])==TRUE&!is.na(Mod2Half3S[[1]][1])==TRUE) 
    {anova(Mod1Half3,Mod2Half3)$`p-value`[2]}, 
    if(is.na(Mod1Half3S[[1]][1])==TRUE|is.na(Mod2Half3S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Half3S[[1]][1])==TRUE&!is.na(Mod3Half3S[[1]][1])==TRUE) 
    {anova(Mod1Half3,Mod3Half3)$`p-value`[2]}, 
    if(is.na(Mod1Half3S[[1]][1])==TRUE|is.na(Mod3Half3S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod2Half3S[[1]][1])==TRUE&!is.na(Mod3Half3S[[1]][1])==TRUE) 
    {anova(Mod2Half3,Mod3Half3)$`p-value`[2]}, 
    if(is.na(Mod2Half3S[[1]][1])==TRUE|is.na(Mod3Half3S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Full1S[[1]][1])==TRUE) 
    {c(as.numeric(Mod1Full1S$tTable[1:4,1]),as.numeric(Mod1Full1S$tTable[1:4,2]), 
       as.numeric(Mod1Full1S$tTable[1:4,5]), as.numeric(VarCorr(Mod1Full1S)[2,2]), 
       as.numeric(VarCorr(Mod1Full1S)[1,2]),Mod1Full1S$AIC,Mod1Full1S$BIC,Mod1Full1S$logLik)}, 
     
    if(is.na(Mod1Full1S[[1]][1])==TRUE) {rep(NA,17)}), 
     
     
    c(if(!is.na(Mod2Full1S[[1]][1])==TRUE) 
    {c(as.numeric(Mod2Full1S$tTable[1:4,1]),as.numeric(Mod2Full1S$tTable[1:4,2]), 
       as.numeric(Mod2Full1S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod2Full1S)[3,2]),as.numeric(VarCorr(Mod2Full1S)[1,2]), 
       as.numeric(VarCorr(Mod2Full1S)[2,2]),as.numeric(VarCorr(Mod2Full1S)[2,3]), 
       Mod2Full1S$AIC,Mod2Full1S$BIC,Mod2Full1S$logLik)}, 
     
    if(is.na(Mod2Full1S[[1]][1])==TRUE) {rep(NA,19)}), 
     
    c(if(!is.na(Mod3Full1S[[1]][1])==TRUE) 
    {c(as.numeric(Mod3Full1S$tTable[1:4,1]),as.numeric(Mod3Full1S$tTable[1:4,2]), 
       as.numeric(Mod3Full1S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod3Full1S)[3,2]),as.numeric(VarCorr(Mod3Full1S)[1,2]), 
       as.numeric(VarCorr(Mod3Full1S)[2,2]),as.numeric(VarCorr(Mod3Full1S)[2,3]), 
       as.numeric(coef(Mod3Full1$modelStruct$corStruct, unconstrained = FALSE)), 
       Mod3Full1S$AIC,Mod3Full1S$BIC,Mod3Full1S$logLik)}, 
     
    if(is.na(Mod3Full1S[[1]][1])==TRUE) {rep(NA,20)}), 
     
    c(if(!is.na(Mod1Full1S[[1]][1])==TRUE&!is.na(Mod2Full1S[[1]][1])==TRUE) 
    {anova(Mod1Full1,Mod2Full1)$`p-value`[2]}, 
    if(is.na(Mod1Full1S[[1]][1])==TRUE|is.na(Mod2Full1S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Full1S[[1]][1])==TRUE&!is.na(Mod3Full1S[[1]][1])==TRUE) 
    {anova(Mod1Full1,Mod3Full1)$`p-value`[2]}, 
    if(is.na(Mod1Full1S[[1]][1])==TRUE|is.na(Mod3Full1S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod2Full1S[[1]][1])==TRUE&!is.na(Mod3Full1S[[1]][1])==TRUE) 
    {anova(Mod2Full1,Mod3Full1)$`p-value`[2]}, 
    if(is.na(Mod2Full1S[[1]][1])==TRUE|is.na(Mod3Full1S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Full2S[[1]][1])==TRUE) 
    {c(as.numeric(Mod1Full2S$tTable[1:4,1]),as.numeric(Mod1Full2S$tTable[1:4,2]), 
       as.numeric(Mod1Full2S$tTable[1:4,5]), as.numeric(VarCorr(Mod1Full2S)[2,2]), 
       as.numeric(VarCorr(Mod1Full2S)[1,2]),Mod1Full2S$AIC,Mod1Full2S$BIC,Mod1Full2S$logLik)}, 
     
    if(is.na(Mod1Full2S[[1]][1])==TRUE) {rep(NA,17)}), 
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    c(if(!is.na(Mod2Full2S[[1]][1])==TRUE) 
    {c(as.numeric(Mod2Full2S$tTable[1:4,1]),as.numeric(Mod2Full2S$tTable[1:4,2]), 
       as.numeric(Mod2Full2S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod2Full2S)[3,2]),as.numeric(VarCorr(Mod2Full2S)[1,2]), 
       as.numeric(VarCorr(Mod2Full2S)[2,2]),as.numeric(VarCorr(Mod2Full2S)[2,3]), 
       Mod2Full2S$AIC,Mod2Full2S$BIC,Mod2Full2S$logLik)}, 
     
    if(is.na(Mod2Full2S[[1]][1])==TRUE) {rep(NA,19)}), 
     
    c(if(!is.na(Mod3Full2S[[1]][1])==TRUE) 
    {c(as.numeric(Mod3Full2S$tTable[1:4,1]),as.numeric(Mod3Full2S$tTable[1:4,2]), 
       as.numeric(Mod3Full2S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod3Full2S)[3,2]),as.numeric(VarCorr(Mod3Full2S)[1,2]), 
       as.numeric(VarCorr(Mod3Full2S)[2,2]),as.numeric(VarCorr(Mod3Full2S)[2,3]), 
       as.numeric(coef(Mod3Full2$modelStruct$corStruct, unconstrained = FALSE)), 
       Mod3Full2S$AIC,Mod3Full2S$BIC,Mod3Full2S$logLik)}, 
     
    if(is.na(Mod3Full2S[[1]][1])==TRUE) {rep(NA,20)}), 
     
    c(if(!is.na(Mod1Full2S[[1]][1])==TRUE&!is.na(Mod2Full2S[[1]][1])==TRUE) 
    {anova(Mod1Full2,Mod2Full2)$`p-value`[2]}, 
    if(is.na(Mod1Full2S[[1]][1])==TRUE|is.na(Mod2Full2S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Full2S[[1]][1])==TRUE&!is.na(Mod3Full2S[[1]][1])==TRUE) 
    {anova(Mod1Full2,Mod3Full2)$`p-value`[2]}, 
    if(is.na(Mod1Full2S[[1]][1])==TRUE|is.na(Mod3Full2S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod2Full2S[[1]][1])==TRUE&!is.na(Mod3Full2S[[1]][1])==TRUE) 
    {anova(Mod2Full2,Mod3Full2)$`p-value`[2]}, 
    if(is.na(Mod2Full2S[[1]][1])==TRUE|is.na(Mod3Full2S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Full3S[[1]][1])==TRUE) 
    {c(as.numeric(Mod1Full3S$tTable[1:4,1]),as.numeric(Mod1Full3S$tTable[1:4,2]), 
       as.numeric(Mod1Full3S$tTable[1:4,5]), as.numeric(VarCorr(Mod1Full3S)[2,2]), 
       as.numeric(VarCorr(Mod1Full3S)[1,2]),Mod1Full3S$AIC,Mod1Full3S$BIC,Mod1Full3S$logLik)}, 
     
    if(is.na(Mod1Full3S[[1]][1])==TRUE) {rep(NA,17)}), 
     
     
    c(if(!is.na(Mod2Full3S[[1]][1])==TRUE) 
    {c(as.numeric(Mod2Full3S$tTable[1:4,1]),as.numeric(Mod2Full3S$tTable[1:4,2]), 
       as.numeric(Mod2Full3S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod2Full3S)[3,2]),as.numeric(VarCorr(Mod2Full3S)[1,2]), 
       as.numeric(VarCorr(Mod2Full3S)[2,2]),as.numeric(VarCorr(Mod2Full3S)[2,3]), 
       Mod2Full3S$AIC,Mod2Full3S$BIC,Mod2Full3S$logLik)}, 
     
    if(is.na(Mod2Full3S[[1]][1])==TRUE) {rep(NA,19)}), 
     
    c(if(!is.na(Mod3Full3S[[1]][1])==TRUE) 
    {c(as.numeric(Mod3Full3S$tTable[1:4,1]),as.numeric(Mod3Full3S$tTable[1:4,2]), 
       as.numeric(Mod3Full3S$tTable[1:4,5]), 
       as.numeric(VarCorr(Mod3Full3S)[3,2]),as.numeric(VarCorr(Mod3Full3S)[1,2]), 
       as.numeric(VarCorr(Mod3Full3S)[2,2]),as.numeric(VarCorr(Mod3Full3S)[2,3]), 
       as.numeric(coef(Mod3Full3$modelStruct$corStruct, unconstrained = FALSE)), 
       Mod3Full3S$AIC,Mod3Full3S$BIC,Mod3Full3S$logLik)}, 
     
    if(is.na(Mod3Full3S[[1]][1])==TRUE) {rep(NA,20)}), 
     
    c(if(!is.na(Mod1Full3S[[1]][1])==TRUE&!is.na(Mod2Full3S[[1]][1])==TRUE) 
    {anova(Mod1Full3,Mod2Full3)$`p-value`[2]}, 
    if(is.na(Mod1Full3S[[1]][1])==TRUE|is.na(Mod2Full3S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod1Full3S[[1]][1])==TRUE&!is.na(Mod3Full3S[[1]][1])==TRUE) 
    {anova(Mod1Full3,Mod3Full3)$`p-value`[2]}, 
    if(is.na(Mod1Full3S[[1]][1])==TRUE|is.na(Mod3Full3S[[1]][1])==TRUE) 
    {NA}), 
     
    c(if(!is.na(Mod2Full3S[[1]][1])==TRUE&!is.na(Mod3Full3S[[1]][1])==TRUE) 
    {anova(Mod2Full3,Mod3Full3)$`p-value`[2]}, 
    if(is.na(Mod2Full3S[[1]][1])==TRUE|is.na(Mod3Full3S[[1]][1])==TRUE) 
    {NA}))   
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  names(Collection) = 
    c("Mod1Half1Inter","Mod1Half1GroupBase","Mod1Half1Standard","Mod1Half1Effect", 
      "Mod1Half1InterSE","Mod1Half1GroupBaseSE","Mod1Half1StandardSE","Mod1Half1EffectSE", 
      "Mod1Half1InterP","Mod1Half1GroupBaseP","Mod1Half1StandardP","Mod1Half1EffectP", 
      "Mod1Half1Resid", "Mod1Half1b0", 
      "Mod1Half1AIC", "Mod1Half1BIC","Mod1Half1LogLik", 
       
      "Mod2Half1Inter","Mod2Half1GroupBase","Mod2Half1Standard","Mod2Half1Effect", 
      "Mod2Half1InterSE","Mod2Half1GroupBaseSE","Mod2Half1StandardSE","Mod2Half1EffectSE", 
      "Mod2Half1InterP","Mod2Half1GroupBaseP","Mod2Half1StandardP","Mod2Half1EffectP", 
      "Mod2Half1Resid", "Mod2Half1b0","Mod2Half1b1","Mod2Half1rhob0b1", 
      "Mod2Half1AIC", "Mod2Half1BIC","Mod2Half1LogLik", 
       
      "Mod3Half1Inter","Mod3Half1GroupBase","Mod3Half1Standard","Mod3Half1Effect", 
      "Mod3Half1InterSE","Mod3Half1GroupBaseSE","Mod3Half1StandardSE","Mod3Half1EffectSE", 
      "Mod3Half1InterP","Mod3Half1GroupBaseP","Mod3Half1StandardP","Mod3Half1EffectP", 
      "Mod3Half1Resid", "Mod3Half1b0","Mod3Half1b1","Mod3Half1rhob0b1","Mod3Half1Phi", 
      "Mod3Half1AIC", "Mod3Half1BIC","Mod3Half1LogLik", 
       
      "Mod1Half1Mod2Half1P","Mod1Half1Mod3Half1P","Mod2Half1Mod3Half1P", 
       
      "Mod1Half2Inter","Mod1Half2GroupBase","Mod1Half2Standard","Mod1Half2Effect", 
      "Mod1Half2InterSE","Mod1Half2GroupBaseSE","Mod1Half2StandardSE","Mod1Half2EffectSE", 
      "Mod1Half2InterP","Mod1Half2GroupBaseP","Mod1Half2StandardP","Mod1Half2EffectP", 
      "Mod1Half2Resid", "Mod1Half2b0", 
      "Mod1Half2AIC", "Mod1Half2BIC","Mod1Half2LogLik", 
       
      "Mod2Half2Inter","Mod2Half2GroupBase","Mod2Half2Standard","Mod2Half2Effect", 
      "Mod2Half2InterSE","Mod2Half2GroupBaseSE","Mod2Half2StandardSE","Mod2Half2EffectSE", 
      "Mod2Half2InterP","Mod2Half2GroupBaseP","Mod2Half2StandardP","Mod2Half2EffectP", 
      "Mod2Half2Resid", "Mod2Half2b0","Mod2Half2b1","Mod2Half2rhob0b1", 
      "Mod2Half2AIC", "Mod2Half2BIC","Mod2Half2LogLik", 
       
      "Mod3Half2Inter","Mod3Half2GroupBase","Mod3Half2Standard","Mod3Half2Effect", 
      "Mod3Half2InterSE","Mod3Half2GroupBaseSE","Mod3Half2StandardSE","Mod3Half2EffectSE", 
      "Mod3Half2InterP","Mod3Half2GroupBaseP","Mod3Half2StandardP","Mod3Half2EffectP", 
      "Mod3Half2Resid", "Mod3Half2b0","Mod3Half2b1","Mod3Half2rhob0b1","Mod3Half2Phi", 
      "Mod3Half2AIC", "Mod3Half2BIC","Mod3Half2LogLik", 
       
      "Mod1Half2Mod2Half2P","Mod1Half2Mod3Half2P","Mod2Half2Mod3Half2P", 
       
      "Mod1Half3Inter","Mod1Half3GroupBase","Mod1Half3Standard","Mod1Half3Effect", 
      "Mod1Half3InterSE","Mod1Half3GroupBaseSE","Mod1Half3StandardSE","Mod1Half3EffectSE", 
      "Mod1Half3InterP","Mod1Half3GroupBaseP","Mod1Half3StandardP","Mod1Half3EffectP", 
      "Mod1Half3Resid", "Mod1Half3b0", 
      "Mod1Half3AIC", "Mod1Half3BIC","Mod1Half3LogLik", 
       
      "Mod2Half3Inter","Mod2Half3GroupBase","Mod2Half3Standard","Mod2Half3Effect", 
      "Mod2Half3InterSE","Mod2Half3GroupBaseSE","Mod2Half3StandardSE","Mod2Half3EffectSE", 
      "Mod2Half3InterP","Mod2Half3GroupBaseP","Mod2Half3StandardP","Mod2Half3EffectP", 
      "Mod2Half3Resid", "Mod2Half3b0","Mod2Half3b1","Mod2Half3rhob0b1", 
      "Mod2Half3AIC", "Mod2Half3BIC","Mod2Half3LogLik", 
       
      "Mod3Half3Inter","Mod3Half3GroupBase","Mod3Half3Standard","Mod3Half3Effect", 
      "Mod3Half3InterSE","Mod3Half3GroupBaseSE","Mod3Half3StandardSE","Mod3Half3EffectSE", 
      "Mod3Half3InterP","Mod3Half3GroupBaseP","Mod3Half3StandardP","Mod3Half3EffectP", 
      "Mod3Half3Resid", "Mod3Half3b0","Mod3Half3b1","Mod3Half3rhob0b1","Mod3Half3Phi", 
      "Mod3Half3AIC", "Mod3Half3BIC","Mod3Half3LogLik", 
       
      "Mod1Half3Mod2Half3P","Mod1Half3Mod3Half3P","Mod2Half3Mod3Half3P", 
       
       
      "Mod1Full1Inter","Mod1Full1GroupBase","Mod1Full1Standard","Mod1Full1Effect", 
      "Mod1Full1InterSE","Mod1Full1GroupBaseSE","Mod1Full1StandardSE","Mod1Full1EffectSE", 
      "Mod1Full1InterP","Mod1Full1GroupBaseP","Mod1Full1StandardP","Mod1Full1EffectP", 
      "Mod1Full1Resid", "Mod1Full1b0", 
      "Mod1Full1AIC", "Mod1Full1BIC","Mod1Full1LogLik", 
       
      "Mod2Full1Inter","Mod2Full1GroupBase","Mod2Full1Standard","Mod2Full1Effect", 
      "Mod2Full1InterSE","Mod2Full1GroupBaseSE","Mod2Full1StandardSE","Mod2Full1EffectSE", 
      "Mod2Full1InterP","Mod2Full1GroupBaseP","Mod2Full1StandardP","Mod2Full1EffectP", 
      "Mod2Full1Resid", "Mod2Full1b0","Mod2Full1b1","Mod2Full1rhob0b1", 
      "Mod2Full1AIC", "Mod2Full1BIC","Mod2Full1LogLik", 
       
      "Mod3Full1Inter","Mod3Full1GroupBase","Mod3Full1Standard","Mod3Full1Effect", 
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      "Mod3Full1InterSE","Mod3Full1GroupBaseSE","Mod3Full1StandardSE","Mod3Full1EffectSE", 
      "Mod3Full1InterP","Mod3Full1GroupBaseP","Mod3Full1StandardP","Mod3Full1EffectP", 
      "Mod3Full1Resid", "Mod3Full1b0","Mod3Full1b1","Mod3Full1rhob0b1","Mod3Full1Phi", 
      "Mod3Full1AIC", "Mod3Full1BIC","Mod3Full1LogLik", 
       
      "Mod1Full1Mod2Full1P","Mod1Full1Mod3Full1P","Mod2Full1Mod3Full1P", 
       
      "Mod1Full2Inter","Mod1Full2GroupBase","Mod1Full2Standard","Mod1Full2Effect", 
      "Mod1Full2InterSE","Mod1Full2GroupBaseSE","Mod1Full2StandardSE","Mod1Full2EffectSE", 
      "Mod1Full2InterP","Mod1Full2GroupBaseP","Mod1Full2StandardP","Mod1Full2EffectP", 
      "Mod1Full2Resid", "Mod1Full2b0", 
      "Mod1Full2AIC", "Mod1Full2BIC","Mod1Full2LogLik", 
       
      "Mod2Full2Inter","Mod2Full2GroupBase","Mod2Full2Standard","Mod2Full2Effect", 
      "Mod2Full2InterSE","Mod2Full2GroupBaseSE","Mod2Full2StandardSE","Mod2Full2EffectSE", 
      "Mod2Full2InterP","Mod2Full2GroupBaseP","Mod2Full2StandardP","Mod2Full2EffectP", 
      "Mod2Full2Resid", "Mod2Full2b0","Mod2Full2b1","Mod2Full2rhob0b1", 
      "Mod2Full2AIC", "Mod2Full2BIC","Mod2Full2LogLik", 
       
      "Mod3Full2Inter","Mod3Full2GroupBase","Mod3Full2Standard","Mod3Full2Effect", 
      "Mod3Full2InterSE","Mod3Full2GroupBaseSE","Mod3Full2StandardSE","Mod3Full2EffectSE", 
      "Mod3Full2InterP","Mod3Full2GroupBaseP","Mod3Full2StandardP","Mod3Full2EffectP", 
      "Mod3Full2Resid", "Mod3Full2b0","Mod3Full2b1","Mod3Full2rhob0b1","Mod3Full2Phi", 
      "Mod3Full2AIC", "Mod3Full2BIC","Mod3Full2LogLik", 
       
      "Mod1Full2Mod2Full2P","Mod1Full2Mod3Full2P","Mod2Full2Mod3Full2P", 
       
      "Mod1Full3Inter","Mod1Full3GroupBase","Mod1Full3Standard","Mod1Full3Effect", 
      "Mod1Full3InterSE","Mod1Full3GroupBaseSE","Mod1Full3StandardSE","Mod1Full3EffectSE", 
      "Mod1Full3InterP","Mod1Full3GroupBaseP","Mod1Full3StandardP","Mod1Full3EffectP", 
      "Mod1Full3Resid", "Mod1Full3b0", 
      "Mod1Full3AIC", "Mod1Full3BIC","Mod1Full3LogLik", 
       
      "Mod2Full3Inter","Mod2Full3GroupBase","Mod2Full3Standard","Mod2Full3Effect", 
      "Mod2Full3InterSE","Mod2Full3GroupBaseSE","Mod2Full3StandardSE","Mod2Full3EffectSE", 
      "Mod2Full3InterP","Mod2Full3GroupBaseP","Mod2Full3StandardP","Mod2Full3EffectP", 
      "Mod2Full3Resid", "Mod2Full3b0","Mod2Full3b1","Mod2Full3rhob0b1", 
      "Mod2Full3AIC", "Mod2Full3BIC","Mod2Full3LogLik", 
       
      "Mod3Full3Inter","Mod3Full3GroupBase","Mod3Full3Standard","Mod3Full3Effect", 
      "Mod3Full3InterSE","Mod3Full3GroupBaseSE","Mod3Full3StandardSE","Mod3Full3EffectSE", 
      "Mod3Full3InterP","Mod3Full3GroupBaseP","Mod3Full3StandardP","Mod3Full3EffectP", 
      "Mod3Full3Resid", "Mod3Full3b0","Mod3Full3b1","Mod3Full3rhob0b1","Mod3Full3Phi", 
      "Mod3Full3AIC", "Mod3Full3BIC","Mod3Full3LogLik", 
       
      "Mod1Full3Mod2Full3P","Mod1Full3Mod3Full3P","Mod2Full3Mod3Full3P") 
   
  return(Collection)} 
 
AnalysisOUT = function(Data,Iter){ 
  DataDF = t(as.data.frame(Data)) 
  rownames(DataDF)=c(NULL) 
  DFL = pivot_longer(as.data.frame(DataDF), cols = everything()) 
   
  DFL$Types = 
    rep(rep(c(rep("Estimate",4),rep("SE",4),rep("Pvalue",4),rep("RE",2),rep("Model",3), 
              rep("Estimate",4),rep("SE",4),rep("Pvalue",4),rep("RE",4),rep("Model",3), 
              rep("Estimate",4),rep("SE",4),rep("Pvalue",4),rep("RE",5),rep("Model",3), 
              rep("Model",3)),6),Iter) 
   
  DFL$Types2 = rep(rep(c(rep(c("Intercept","GroupBase","Standard","Effect"),3),"Residual","Sigmab0", 
                         "AIC","BIC","LogLik", 
                         rep(c("Intercept","GroupBase","Standard","Effect"),3),"Residual","Sigmab0", 
                         "Sigmab1","rhob0b1","AIC","BIC","LogLik", 
                         rep(c("Intercept","GroupBase","Standard","Effect"),3),"Residual","Sigmab0", 
                         "Sigmab1","rhob0b1","Phi","AIC","BIC","LogLik", 
                         "Model1Model2P","Model1Model3P","Model2Model3P"),6),Iter) 
   
  DFL$Length = rep(c(rep(rep("Half",59),3),rep(rep("Full",59),3)),Iter) 
  DFL$Model =rep(rep(c(rep("Model1",17),rep("Model2",19),rep("Model3",20),rep("ModelComparison",3)),6),Iter) 
  DFL$Frequency = rep(rep(c(rep("OnceWeek",59),rep("TwiceWeek",59),rep("ThreeWeek",59)),2),Iter) 
  return(DFL)} 
 
# Output with filter and group 
OutputGeneral = function(Data, Groupargs,...){ 
   
  byG = syms(Groupargs) 
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  Data %>% 
    filter(...) %>% 
    group_by(!!!byG) %>% 
    summarise(mean = round(mean(value,na.rm=T),3),sd = round(sd(value,na.rm=T),3), 
              Q25 = round(quantile(value, 0.25,na.rm=T),3),Median = round(median(value,na.rm=T),3), 
              Q75 = round(quantile(value, 0.75,na.rm=T),3)) 
} 
 
Pvalue1 = function(Data, Groupargs,...){ 
  byG = syms(Groupargs) 
  Data %>% 
    filter(...) %>% 
    group_by(!!!byG) %>% 
    summarise(P005 = round(100*(mean(value<0.05,na.rm=T)),1)) 
} 
 
SUMNA = function(Data, Groupargs,...){ 
  byG = syms(Groupargs) 
  Data %>% 
    filter(...) %>% 
    group_by(!!!byG) %>% 
    summarise(SumNA = sum(is.na(value)), 
              length = length(value), 
              Percentage = 100*(SumNA/length)) 
} 
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