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Abstract

Blood lactate is routinely measured in endurance athletes to determine the physi-
ological responses to exercise. The blood lactate profile allows the determination
of thresholds that can be used to inform training and is often reported as the
corresponding heart rate, speed, or power output. Wearable technology devel-
opment has allowed blood lactate to be estimated in real-time rather than being
restricted to laboratory-based testing during a single session. Following institu-
tional ethical approval, eight male participants provided written informed consent
to take part in this study. Each participant completed a lactate threshold testing
protocol, starting at an intensity of 100 W, with 25 W increments observed every
three minutes. At the end of each stage, a capillary blood lactate sample was
taken (Biosen C-Line, Sport). Throughout testing, it was anticipated that blood
lactate could be estimated using bioimpedance spectroscopy (Zelemiq, UK sen-
sor). There were two aspects of data analysis: firstly, to determine the predictive
quality of blood lactate values from the Zelemiq sensor, and secondly, to observe
the agreement of lactate thresholds derived from capillary blood lactate and the
Zelemiq sensor values. Both Zelemiq and blood lactate values were standardised
within participants, with results demonstrating an exponential quadratic relation-
ship. The greatest agreement in threshold detection was observed when using
the ModDmax method with a bias of -0.95 [95% confidence interval: -13.85,
11.95] W. Further work is required to determine the baseline variation between
participants and test the quadratic model.
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Introduction

When describing the physiological responses to exercise, it is common to refer to four exercise
intensity domains; termed moderate, heavy, severe, and extreme (Burnley & Jones, 2018;
Poole, 2009). It is widely accepted that the demarcation between the moderate and heavy
exercise intensity domains is defined by the lactate threshold (LT) (Jones et al., 2010). Blood
lactate concentrations may initially rise temporarily at the onset of exercise below the LT but will
quickly return close to resting values if exercise is maintained within the moderate exercise
intensity domain (Ferguson et al., 2018). It is not until exercise rises above this threshold
(i.e. within the heavy exercise intensity domain) for an extended duration that the onset of
metabolic acidosis and, ultimately, fatigue ensues (Davis et al., 2007; Gaesser & Poole, 1996).
It has been suggested that LT typically occurs at 50–65% of an individual’s V�O2max and
is influenced by training status (Poole et al., 2016). It is, therefore, important to regularly
monitor an individual’s LT when using this metric for informing training and race strategy. The
LT test is a commonly performed laboratory-based testing protocol in sports science (Faude
et al., 2009). Typically, protocols use capillary blood sampling from the fingertip or earlobe
to allow the plotting of blood lactate levels against increasing speed or power output. The
LT test allows the determination of two key thresholds: the lactate threshold (LT1), which
represents the initial rise in blood lactate from baseline values, and the lactate turnpoint (LT2),
represented by a sharp increase in blood lactate leading to exhaustion (Eston & Reilly, 2013).

Several methods can be used to determine an individual’s thresholds, which can potentially
cause some confusion within the literature, and it is known that both stage length and in-
crement size can affect when this threshold occurs (Faude et al., 2009). Commonly used
methods for analysing a LT profile include visual inspection and fixed values; however, it is
widely accepted that fixed values should be avoided due to the large variations observed be-
tween individuals. One of the challenges when interpreting a LT profile is that the wide range
of methods for analysing LT will result in different results, and it has been reported that no
deflection point is observed in approximately 30% of profiles (Cheng et al., 1992). For the pur-
poses of this paper, LT will be determined from Breakpoints (LT1 and LT2) and Dmax methods
(Dmax, Exp-Dmax, and ModDmax) (Jamnick et al., 2018).

LT has been reported as the gold standard measure of aerobic performance (Faude et al.,
2009). Traditionally, LT testing has been completed in a laboratory setting using an ergometer
suitable for the individual athlete (e.g., bike). It is acknowledged, however, that completing
testing in a laboratory will reduce the ecological validity of the results obtained, and this
may impact how they can be transferred to training or race environments. The introduction
of portable lactate analysers has allowed the determination of LT with a field-based setting
using the athlete’s personal equipment (e.g., bike and power meter). One of the most used
portable analysers, the Lactate Pro, has been reported to provide reliable measures of blood
lactate when compared to laboratory systems (r > 0.97) (Pyne et al., 2000). Although LT
testing can occur in laboratory and field settings, estimating blood lactate in real time would
benefit athletes and coaches, reducing the need for frequent and potentially costly testing
using consumables such as test strips. Despite LT testing being used to inform training and
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race strategy, a typical testing protocol will only provide information about an individual on a
specific testing day. With LT being sensitive to exercise intensity and duration (Beneke et al.,
2011), it could be suggested that regular testing is advised.

The interest in wearable technology has increased within sport science, and systems, such
as heat rate monitors and activity monitors, are accessible to athletes of all standards. The
interest in real-time lactate monitoring saw the development of the first wearable LT device,
the BSX Insight, which uses near-infrared LED technology to estimate LT. Research by Driller
et al. (2016) and Borges and Driller (2016) have provided some evidence for the use of the
BSX Insight during cycling and running. A more recent study, however, has suggested that
this system significantly overestimates the speed at which LT occurs during running (Parisi
et al., 2022). It was highlighted that knowledge of an individual’s LT is useful for training
prescription, but the risk of overestimation would lead to early fatigue (Parisi et al., 2022).

Therefore, the aim of this study was to assess the accuracy of a novel non-invasive blood
lactate analyser during incremental cycling.

Materials and Methods

Participants

Eight male participants (mean ± SD; age: 31 ± 8 years; stature: 1.78 ± 0.10 m; mass:
77.63 ± 12.37 kg) volunteered to participate in this study. Before commencing testing, all
participants were fully informed about the procedures, possible risks, and purpose of the study.
All participants completed a health questionnaire and provided informed written consent. The
host university ethics committee approved this study.

Procedures

Participants were asked to refrain from training 48 hours before testing and avoid caffeine con-
sumption for at least two hours before testing. Before the warm-up, a resting capillary blood
lactate sample was taken from the participant’s finger for analysis (Biosen, C-Line, Germany).
The cycle ergometer (Excalibur Sport, Lode, Germany) was adjusted for each participant, and
a heart rate (HR) monitor (H10, Polar, Finland) was fitted. The wearable lactate sensor used
in this study (Zelemiq, UK) was fitted on the posterior upper arm just above the elbow joint by
a strap attached to the device and further secured with tubigrip to prevent movement during
testing. The Zelemiq device measured 60 mm in length and 30 mm in width and is an enhanced
bioimpedance spectroscopy sensor. Bioimpedance spectroscopy is a non-invasive technique
that measures the electrical impedance of biological tissues across a range of frequencies. The
device used in this study was optimised to measure frequencies below 20 kHz and calibrated
to sample every 30 s. At the start of each 30-s epoch, 10 bioimpedance measurements were
made over a 1-s period (10 Hz). These 10 sensor readings were then post-processed and
allowed the calculation of the average values recorded by the sensor at the start of every
30-s period during the lactate threshold testing. During testing, these measurements were
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buffered within the sensor’s internal memory, with wireless telemetry used to transfer them
to a PC running a data capture and display application. To ensure that no data was lost in the
event of a telemetry error, the measurements were timestamped and written to a file within
the sensor’s internal memory. These timestamps were used to align the Zelemiq sensor data
to the work rate data (LEM10, Lode, Germany) and blood lactate measurements.

Before each test, the participants completed a 5-minute warm-up (50 W) on the ergometer at a
self-selected cadence between 80-100 revs·min-1. Upon completion of the warm-up, another
capillary blood sample was taken. The test then started at an intensity of 100 W and increased
by 25 W every three minutes, with capillary blood samples taken from the finger for further
analysis at the end of every stage. The test was terminated when the authors observed a
2nd sudden and sustained increase in blood lactate. The participants were not asked to cycle
to volitional exhaustion to ensure they could complete a full three-minute stage before test
termination.

Statistical Analysis

The present analysis was not pre-registered as we had no a priori hypotheses and thus, given
the pilot nature of this study, was considered exploratory. Inferential statistics were treated
as highly unstable local descriptions of the relations between model assumptions and data in
order to acknowledge the inherent uncertainty in drawing generalised inferences from single
and small samples (Amrhein, Trafimow, et al., 2019). For all analyses we opted to avoid di-
chotomising the existence of effects and therefore did not employ traditional null hypothesis
significance testing on parameter estimates (Amrhein, Greenland, et al., 2019; McShane et
al., 2019). Instead, we opted to take a model- (Sterba, 2009) and estimation-based approach
(Cumming, 2014). For all analyses model parameter estimates and their precision, along with
conclusions based upon them, were interpreted continuously and probabilistically, considering
data quality, plausibility of effect, and previous literature, all within the context of each model.
We focused primarily on qualitative examination of our results based on visualization of the
data and models for fixed effects, and exploration of variances using random effects and visu-
alising individual participant level model predictions.All analysis was performed in R (version
4.2.2, The R Foundation for Statistical Computing, 2022) and all data and code is presented
in the supplementary materials (https://osf.io/kf9r3/).All data visualisations were made using
ggplot2 (Wickham et al., 2022) and the patchwork package (Pedersen, 2022). The aim of our
analysis was to explore how well the Zelemiq sensor device predicted blood lactate levels as
measured from capillary samples by the Biosen C-Line, in addition to the agreement between
lactate thresholds detected using either device. Both Zelemiq and blood lactate values were
standardised within participants (i.e., clusters) by subtracting the participants mean and di-
viding by their standard deviation. Thus Zelemiq and blood lactate values were expressed in
participants standard deviation units. A rolling mean was also calculated from the standardised
Zelemiq raw data using a 10 sample window prior to the corresponding blood lactate values
at that time point.
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Prediction of blood lactate values from Zelemiq values

We firstly explored whether the Zelemiq values were able to predict the corresponding blood
lactate values. The dependent variable in our model was therefore the standardised blood
lactate levels, and the independent predictor variable was the standardised rolling average of
the Zelemiq sensor data. Visual exploration of the data suggested a non-linear relationship
between the two and so we opted to fit the Zelemiq values with a second-order polynomial func-
tion. A maximal (i.e., with random intercepts and slopes for both linear and quadratic terms)
linear mixed effect model was estimated initially using Restricted Maximal Likelihood with the
lme4 package (Bates et al., 2023) however this obtained a singular fit and even reduced models
did not avoid this (other model checks for this structure are available in the supplementary
materials - https://osf.io/98ey6). As such we refit the model using a Bayesian approach em-
ploying weakly regularising default priors to allow for estimation of the random effects using
the brms package (Bürkner, 2017). The inclusion of random effects for the quadratic term
however resulted in large �̂� values suggested chains had not converged and thus we removed
this keeping on the linear term as a random slope. With the Zelemiq sensor data as a fixed
second-order polynomial effect, and allowing random intercepts and random linear slopes by
participant id, the model equation was as follows where Lactate∗ and Zelemiq∗ indicate they
are the standardised variables:

Lactate∗
𝑖 ∼ 𝑁 (𝛼𝑗[𝑖] + 𝛽1𝑗[𝑖](Zelemiq) + 𝛽2(Zelemiq2), 𝜎2)

( 𝛼𝑗
𝛽1𝑗

) ∼ 𝑁 (( 𝜇𝛼𝑗
𝜇𝛽1𝑗

) , ( 𝜎2
𝛼𝑗

𝜌𝛼𝑗𝛽1𝑗
𝜌𝛽1𝑗𝛼𝑗

𝜎2
𝛽1𝑗

)) , for id j = 1,… ,J

All parameters in the model had �̂� values≤ 1.01, trace plots demonstrated chain convergence,
and the posterior predictive checks appeared appropriate (see https://osf.io/e782c). Given the
novelty of the Zelemiq sensor device we did not have a clear intuition or informed opinion about
what priors to set and so opted to use the default weakly regularising priors merely to allow
for random effects estimation and “let the data speak”. Four Monte Carlo Markov Chains with
4000 warmup and 4000 sampling iterations were used in each model. Model predictions and
95% quantile intervals were visualised for both the global grand mean (i.e., the expectation of
the posterior predictive distribution for the parameter ignoring cluster effects) in addition to
the conditional effects (i.e., including cluster effects) and the posterior predictions, and also at
the individual participant level using the marginaleffects package (Arel-Bundock et al., 2022).
The standarised raw Zelemiq sensor data (i.e., unaveraged) was also visualised alongside the
standardised blood lactate data.

Agreement of lactate thresholds detected using blood lactate values compared to
Zelemiq values

We used the lactater package (Maturana, 2023) for the detection of blood lactate thresholds.
We similarly used the standardised blood lactate and Zelemiq averaged values (i.e., Lactate∗

and Zelemiq∗ from the model described above) and as such did not explore threshold detec-
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Table 1: Model parameter estimates for both fixed and random effects.

Model Term Estimate Lower 95% QI Upper 95% QI

Fixed Effects
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -0.29 -0.40 -0.18
Zelemiq∗

𝑙𝑖𝑛𝑒𝑎𝑟𝑡𝑒𝑟𝑚 0.64 0.55 0.72
Zelemiq∗

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐𝑡𝑒𝑟𝑚 0.17 0.11 0.23
Random Effects

𝜎𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.05 0.00 0.16
𝜎Zelemiq∗

𝑙𝑖𝑛𝑒𝑎𝑟𝑡𝑒𝑟𝑚
0.04 0.00 0.14

𝜌𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡∶Zelemiq∗
𝑙𝑖𝑛𝑒𝑎𝑟𝑡𝑒𝑟𝑚

0.04 -0.94 0.96
𝜎𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 0.28 0.23 0.34

Note:
QI = quantile interval
Note, estimates are in standard deviation units at the individual participant level.

tion methods which relied on log transformations of the lactate response because of negative
standardised values. For both blood lactate and Zelemiq values we determined thresholds
for watts on the cycle ergometer using the Dmax, Exp-Dmax, ModDmax, and both LTP1 and
LTP2 methods (Jamnick et al., 2018). We then examined the agreement between the watts at
which each threshold was detected between the blood lactate and the Zelemiq values using the
Bland-Altman 95% limits of agreement in addition to the concordance correlation coefficient
(𝜌𝐶𝐶𝐶) calculated using the SimpleAgree package (Caldwell, 2022). Frequentist confidence
intervals for the bias and 𝜌𝐶𝐶𝐶 were calculated at the 95% level and for the upper and lower
limits of agreement at the 90% level.

Results

Prediction of blood lactate values from Zelemiq values

Model parameters estimates and 95% quantile intervals are shown in Table 1 and Figure 1
panel (A) shows the raw data and model predictions for each individual participant in addition
to the participant level in panel (B) and model predictions in panel (C). The Zelemiq∗

𝑙𝑖𝑛𝑒𝑎𝑟𝑡𝑒𝑟𝑚
indicated that the rate of change in blood lactate at a standardised Zelemiq value of zero was
0.64 [95% quantile interval: 0.55, 0.72] and the positive Zelemiq∗

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐𝑡𝑒𝑟𝑚 was 0.17 [95%
quantile interval: 0.11, 0.23] indicating a convex curve. Thus, blood lactate in standardised
units increased exponentially with increasing Zelemiq standardised values. The random effects
parameter estimates from the Bayesian model were negligible as expected given the singularity
of the Frequentist model fit with Restricted Maximum Likelihood. The majority of variance in
the model was attributable to the residual variation.
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Figure 1: Panel (A) shows the standardised values for raw Zelemiq sensor output and Biosen C-Line blood lactate during the course of the incremental test where time has been normalised
to 0-100% of the test duration and a locally estimated scatter smooth (LOESS) curve for each has been performed; panel (B) shows the individual participant level predicted values (thick
lines) with 95% quantile intervals (ribbons) from the fitted model; panel (C) shows the global grand mean estimate (thick line) from the model with 95% quantile interval (dark grey
ribbon) in addition to intervals for the conditional effects including the random effects of participants (lighter grey ribbon) and the posterior predictions (lightest grey ribbon). Individual
points in each panel are the individual observed values of data; and panel (D) shows the scatterplots of lactate thresholds detected from either Zelemiq or blood lactate values using
Dmax, Exp-Dmax, LT1, LT2, and ModDmax.

7



James Wright et al. (2024)

Agreement of lactate thresholds detected using blood lactate values
compared to Zelemiq values

Scatterplots of lactate thresholds calculated from either blood lactate or from the Zelemiq
values using either Dmax, Exp-Dmax, LTP1, LTP2, or ModDmax can be see in Figure 1 panel
(D). In comparing the two devices there appeared to be the greatest agreement in threshold
detected when using the ModDmax method with a bias of -0.95 [95% confidence interval:
-13.85, 11.95] Watts and lower and upper 95% limits of agreement of bias of -31.2 [95%
confidence interval: -45.6, -16.8] and bias of 29.3 [95% confidence interval: 14.9, 43.7]
Watts respectively. For the ModDmax method the 𝜌𝐶𝐶𝐶 = 0.93 [95% confidence interval:
0.77, 0.98].

Discussion

This study aimed to assess the accuracy of a novel non-invasive blood lactate analyser during
incremental cycling. Initial results from this pilot study would suggest that the greatest agree-
ment in threshold detection was observed when using the ModDmax, which aligns with LT2
(i.e., the second break point in blood lactate). The weakest agreement was observed for LT1,
where blood lactate initially rises from baseline. It should be noted, however, that the limits
of agreement were wide for all thresholds, and this is something that should be considered for
future development of this product. The results highlighted variation between individuals in
the raw Zelemiq sensor baseline values at rest, which was accounted by standardising within
participants for during analysis. It was not clear, however, if the baseline would vary for each
participant between different occasions and this is an area that requires further investigation
before a standard adjustment could be incorporated within the system.

It is not intended for this device to be used in the medical field and, therefore, the absolute
prediction of blood lactate is less important. However, there did appear to be a fairly clear
quadratic relationship between the standardised lactate and Zelemiq values which requires fur-
ther out of sample testing in future research. In a sporting context, the practical application
of this device would be primarily to identify different deflection points in blood lactate during
exercise, which can be used to inform training and race strategy. These thresholds could then
be presented to the athlete in real-time based on heart rate, speed, or power output for the
purposes of exercising within the optimal exercise intensity domain. It is recognised that there
are several methods for determining an individual’s threshold [11,26]. For endurance athletes,
the initial rise from baseline (e.g., LT1) would be of significant importance as this would iden-
tify the upper region of the moderate intensity domain where exercise can be sustained for
several hours [2]. Considering that the weakest agreement was observed for this threshold,
additional development is required to identify where the processing of the Zelemiq sensor can
be adjusted.
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Conclusion

This pilot study demonstrates a proof of concept for the Zelemiq sensor as a non-invasive
system for estimating blood lactate and an individual’s exercise thresholds. The strongest
agreement in threshold detection was observed when using the ModDmax method, and the
weakest agreement was observed when using LT1. Further research should focus on how the
sensor works with different demographics (e.g., sex, ethnicity) and the impact of conditions
such as hydration status or sweat rate. Additionally, future developments should focus on
reducing the overall size of the Zelemiq sensor and incorporating technology to allow live
feedback within a watch or cycling computer.
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