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Abstract

Blood lactate is routinely measured in endurance athletes to determine the physi-
ological responses to exercise. The blood lactate profile allows the determination
of thresholds that can be used to inform training and is often reported as the
corresponding heart rate, speed, or power output. Wearable technology devel-
opment has allowed blood lactate to be estimated in real-time rather than being
restricted to laboratory-based testing during a single session. Following institu-
tional ethical approval, eight male participants provided written informed consent
to take part in this study. Each participant completed a lactate threshold test-
ing protocol, starting at an intensity of 100 W, with 25 W increments observed
every three minutes. At the end of each stage, a capillary blood lactate sample
was taken (lab-based system). Throughout testing, it was anticipated that blood
lactate could be estimated using bioimpedance spectroscopy (wearable sensor).
There were two aspects of data analysis: firstly, to determine the predictive qual-
ity of blood lactate values from the wearable sensor, and secondly, to observe the
agreement of lactate thresholds derived from lab-based system and the wearable
sensor values. Both wearable sensor and lab-based system blood lactate values
were standardised within participants, with results demonstrating an exponential
quadratic relationship. The greatest agreement in threshold detection was ob-
served when using the ModDmax method with a bias of -0.95 [95% confidence
interval: -13.85, 11.95] W. Further work is required to determine the baseline
variation between participants and test the quadratic model.
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Introduction

When describing the physiological responses to exercise, it is common to refer to four exercise
intensity domains; termed moderate, heavy, severe, and extreme (Burnley & Jones, 2018;
Poole, 2009). It is widely accepted that the demarcation between the moderate and heavy
exercise intensity domains is defined by the lactate threshold (LT) (Jones et al., 2010). Blood
lactate concentrations may initially rise temporarily at the onset of exercise below the LT but will
quickly return close to resting values if exercise is maintained within the moderate exercise
intensity domain (Ferguson et al., 2018). It is not until exercise rises above this threshold
(i.e. within the heavy exercise intensity domain) for an extended duration that the onset of
metabolic acidosis and, ultimately, fatigue ensues (Davis et al., 2007; Gaesser & Poole, 1996).
It has been suggested that LT typically occurs at 50-65% of an individual’s VCOO2max and
is influenced by training status (Poole et al., 2016). It is, therefore, important to regularly
monitor an individual’s LT when using this metric for informing training and race strategy. The
LT test is a commonly performed laboratory-based testing protocol in sports science (Faude
et al., 2009). Typically, protocols use capillary blood sampling from the fingertip or earlobe
to allow the plotting of blood lactate levels against increasing speed or power output. The
LT test allows the determination of two key thresholds: the lactate threshold (LT1), which
represents the initial rise in blood lactate from baseline values, and the lactate turnpoint (LT2),
represented by a sharp increase in blood lactate leading to exhaustion (Eston & Reilly, 2013).

Several methods can be used to determine an individual’s thresholds, which can potentially
cause some confusion within the literature, and it is known that both stage length and in-
crement size can affect when this threshold occurs (Faude et al., 2009). Commonly used
methods for analysing a LT profile include visual inspection and fixed values; however, it is
widely accepted that fixed values should be avoided due to the large variations observed be-
tween individuals. One of the challenges when interpreting a LT profile is that the wide range
of methods for analysing LT will result in different results, and it has been reported that no
deflection point is observed in approximately 30% of profiles (Cheng et al., 1992). For the pur-
poses of this paper, LT will be determined from Breakpoints (LT1 and LT2) and Dmax methods
(Dmax, Exp-Dmax, and ModDmax) (Jamnick et al., 2018).

LT has been reported as the gold standard measure of aerobic performance (Faude et al,,
2009). Traditionally, LT testing has been completed in a laboratory setting using an ergometer
suitable for the individual athlete (e.g., bike). It is acknowledged, however, that completing
testing in a laboratory will reduce the ecological validity of the results obtained, and this
may impact how they can be transferred to training or race environments. The introduction
of portable lactate analysers has allowed the determination of LT with a field-based setting
using the athlete’s personal equipment (e.g., bike and power meter). One of the most used
portable analysers, the Lactate Pro, has been reported to provide reliable measures of blood
lactate when compared to laboratory systems (r > 0.97) (Pyne et al., 2000). Although LT
testing can occur in laboratory and field settings, estimating blood lactate in real time would
benefit athletes and coaches, reducing the need for frequent and potentially costly testing
using consumables such as test strips. Despite LT testing being used to inform training and
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race strategy, a typical testing protocol will only provide information about an individual on
a specific testing day. With LT being sensitive to exercise intensity and duration (Beneke
et al.,, 2011), it could be suggested that regular testing is advised. Portable systems allow
the measurement of blood lactate in both laboratory and field settings; however, they still
require samples to be taken at set times with single use test strips. Consideration of the
safe disposable of consumables (e.g., test strips, lancets, tissues) when taking capillary blood
samples is also required when testing in the laboratory and field. Estimating blood lactate using
wearable technology would benefit athletes and coaches, reducing the need for consumables
and provide estimations of blood lactate in real time.

The interest in wearable technology has increased within sport science, and systems, such
as heat rate monitors and activity monitors, are accessible to athletes of all standards. The
interest in real-time lactate monitoring saw the development of the first wearable LT device,
the BSX Insight, which uses near-infrared LED technology to estimate LT. Research by Driller
et al. (2016) and Borges and Driller (2016) have provided some evidence for the use of the
BSX Insight during cycling and running. A more recent study, however, has suggested that
this system significantly overestimates the speed at which LT occurs during running (Parisi
et al., 2022). It was highlighted that knowledge of an individual’s LT is useful for training
prescription, but the risk of overestimation would lead to early fatigue (Parisi et al., 2022).

Therefore, the aim of this study was to assess the accuracy of a novel non-invasive wearable
blood lactate sensor during incremental cycling.

Materials and Methods

Participants

Eight white male participants (mean £ SD; age: 31 * 8 years; stature: 1.78 £ 0.10 m; mass:
77.63 £ 12.37 kg) volunteered to participate in this study. Before commencing testing, all
participants were fully informed about the procedures, possible risks, and purpose of the study.
All participants completed a health questionnaire and provided informed written consent. The
host university ethics committee approved this study.

Procedures

Participants were asked to refrain from training 48 hours before testing and avoid caffeine
consumption for at least two hours before testing. Before the warm-up, a resting capillary
blood lactate sample was taken from the participant’s finger for analysis (Biosen, C-Line, Ger-
many; photo available at https://osf.io/z9xdj). The cycle ergometer (Excalibur Sport, Lode,
Germany) was adjusted for each participant, and a heart rate (HR) monitor (H10, Polar, Fin-
land) was fitted. The wearable lactate sensor used in this study (Zelemiq, UK; photo available
at https://osf.io/z9xdj) was fitted on the posterior upper arm just above the elbow joint by a
strap attached to the device and further secured with tubigrip to prevent movement during
testing. The Zelemiq device measured 60 mm in length and 30 mm in width and is an enhanced
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bioimpedance spectroscopy sensor. Bioimpedance spectroscopy is a non-invasive technique
that measures the electrical impedance of biological tissues across a range of frequencies. The
device used in this study was optimised to measure frequencies below 20 kHz and calibrated
to sample every 30 s. At the start of each 30-s epoch, 10 bioimpedance measurements were
made over a 1-s period (10 Hz). These 10 sensor readings were then post-processed and
allowed the calculation of the average values recorded by the sensor at the start of every
30-s period during the lactate threshold testing. During testing, these measurements were
buffered within the sensor’s internal memory, with wireless telemetry used to transfer them
to a PC running a data capture and display application. To ensure that no data was lost in the
event of a telemetry error, the measurements were timestamped and written to a file within
the sensor’s internal memory. These timestamps were used to align the wearable sensor data
to the work rate data (LEM10, Lode, Germany) and blood lactate measurements.

Before each test, the participants completed a 5-minute warm-up (50 W) on the ergometer at a
self-selected cadence between 80-100 revs-min-1. Upon completion of the warm-up, another
capillary blood sample was taken. The test then started at an intensity of 100 W and increased
by 25 W every three minutes, with capillary blood samples taken from the finger for further
analysis at the end of every stage. The test was terminated when the authors observed a
2nd sudden and sustained increase in blood lactate. The participants were not asked to cycle
to volitional exhaustion to ensure they could complete a full three-minute stage before test
termination.

Statistical Analysis

The present analysis was not pre-registered as we had no a priori hypotheses and thus, given
the pilot nature of this study, was considered exploratory. Inferential statistics were treated
as highly unstable local descriptions of the relations between model assumptions and data in
order to acknowledge the inherent uncertainty in drawing generalised inferences from single
and small samples (Amrhein, Trafimow, et al., 2019). For all analyses we opted to avoid di-
chotomising the existence of effects and therefore did not employ traditional null hypothesis
significance testing on parameter estimates (Amrhein, Greenland, et al., 2019; McShane et
al., 2019). Instead, we opted to take a model- (Sterba, 2009) and estimation-based approach
(Cumming, 2014). For all analyses model parameter estimates and their precision, along with
conclusions based upon them, were interpreted continuously and probabilistically, considering
data quality, plausibility of effect, and previous literature, all within the context of each model.
We focused primarily on qualitative examination of our results based on visualization of the
data and models for fixed effects, and exploration of variances using random effects and visu-
alising individual participant level model predictions.All analysis was performed in R (version
4.2.2, The R Foundation for Statistical Computing, 2022) and all data and code is presented
in the supplementary materials (https://osf.io/kf9r3/).All data visualisations were made using
geplot2 (Wickham et al., 2022) and the patchwork package (Pedersen, 2022). The aim of our
analysis was to explore how well the wearable sensor device predicted blood lactate levels as
measured from capillary samples by the Biosen C-Line, in addition to the agreement between
lactate thresholds detected using either device. Both wearable and lab-based system values
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were standardised within participants (i.e., clusters) by subtracting the participants mean and
dividing by their standard deviation. Thus wearable and lab-based system values were ex-
pressed in participants standard deviation units. A rolling mean was also calculated from the
standardised Zelemiq raw data using a 10 sample window prior to the corresponding blood
lactate values at that time point.

Prediction of blood lactate values from wearable sensor values

We firstly explored whether the wearable sensor values were able to predict the corresponding
blood lactate values. The dependent variable in our model was therefore the standardised
blood lactate levels, and the independent predictor variable was the standardised rolling av-
erage of the wearable sensor data. Visual exploration of the data suggested a non-linear
relationship between the two and so we opted to fit the wearable sensor values with a second-
order polynomial function. A maximal (i.e., with random intercepts and slopes for both linear
and quadratic terms) linear mixed effect model was estimated initially using Restricted Maxi-
mal Likelihood with the 1me4 package (Bates et al., 2023) however this obtained a singular fit
and even reduced models did not avoid this (other model checks for this structure are available
in the supplementary materials - https://osf.io/98ey6). As such we refit the model using a
Bayesian approach employing weakly regularising default priors to allow for estimation of the
random effects using the brms package (BUrkngr, 2017). The inclusion of random effects for
the quadratic term however resulted in large R values suggested chains had not converged
and thus we removed this keeping only the linear term as a random slope. With the wearable
sensor data as a fixed second-order polynomial effect, and allowing random intercepts and
random linear slopes by participant id, the model equation was as follows where Lactate®™ and
Wearable™ indicate they are the standardised variables:

Lactate; ~ N (%‘m + By, (Wearable®) + By (Wearable™?), 02)

2
. g
( % ) ~N [ Fe ) o Paypy, Jforidj=1,..,]
Blj M/Bu pﬁuaj 051;‘

All parameters in the model had R values < 1.01, trace plots demonstrated chain convergence,
and the posterior predictive checks appeared appropriate (see https://osf.io/e782c). Given the
novelty of the wearable sensor device we did not have a clear intuition or informed opinion
about what priors to set and so opted to use the default weakly regularising priors merely to
allow for random effects estimation and “let the data speak”. Four Monte Carlo Markov Chains
with 4000 warmup and 4000 sampling iterations were used in each model. Model predictions
and 95% quantile intervals were visualised for both the global grand mean (i.e., the expectation
of the posterior predictive distribution for the parameter ignoring cluster effects) in addition to
the conditional effects (i.e., including cluster effects) and the posterior predictions, and also at
the individual participant level using the marginaleffects package (Arel-Bundock et al., 2022).
The standarised raw wearable sensor data (i.e., unaveraged) was also visualised alongside the
standardised blood lactate data.
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Agreement of lactate thresholds detected using a lab-based system blood lactate
values compared to wearable sensor values

We used the lactater package (Maturana, 2023) for the detection of blood lactate thresholds.
We similarly used the standardised lab-based system blood lactate and wearable sensor aver-
aged values (i.e., Lactate® and Wearable® from the model described above) and as such did
not explore threshold detection methods which relied on log transformations of the lactate re-
sponse because of negative standardised values. For both blood lactate and wearable sensor
values we determined thresholds for watts on the cycle ergometer using the Dmax, Exp-Dmax,
ModDmax, and both LTP1 and LTP2 methods (Jamnick et al., 2018). We then examined the
agreement between the watts at which each threshold was detected between the blood lactate
and the wearable sensor values using the Bland-Altman 95% limits of agreement in addition
to the concordance correlation coefficient (p- ) calculated using the SimplyAgree package
(Caldwell, 2022). Frequentist confidence intervals for the bias and p-~~ were calculated at
the 95% level and for the upper and lower limits of agreement at the 90% level.

Results

Prediction of blood lactate values from wearable sensor values

Model parameters estimates and 95% quantile intervals are shown in Table 1 and Figure 1
panel (A) shows the raw data and model predictions for each individual participant in addition
to the participant level in panel (B) and model predictions in panel (C). The Wearable;; . .orterm
indicated that the rate of change in blood lactate at a standardised wearable sensor value of
zero was 0.64 [95% quantile interval: 0.55, 0.72] and the positive Wearablezuadmtmerm
was 0.17 [95% quantile interval: 0.11, 0.23] indicating a convex curve. Thus, blood lactate
in standardised units increased exponentially with increasing wearable sensor standardised
values. The random effects parameter estimates from the Bayesian model were negligible as
expected given the singularity of the Frequentist model fit with Restricted Maximum Likelihood.

The majority of variance in the model was attributable to the residual variation.
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Table 1: Model parameter estimates for both fixed and random effects.

Model Term Estimate Lower 95% QI Upper 95% QI
Fixed Effects
Intercept -0.29 -0.40 -0.18
Wearablej,,,carterm 0.64 0.55 0.72
Wearable,,,araticterm 0.17 0.11 0.23
Random Effects
O Intercept 0.05 0.00 0.16
T \earablel;,, ..., 0.04 0.00 0.14
PIntercept:Wearable};, ooricrm 0.04 -0.94 0.96
O Residual 0.28 0.23 0.34
Note:

QI = quantile interval
Note, estimates are in standard deviation units at the individual participant level.
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Figure 1: Panel (A) shows the standardised values for raw wearable sensor output and Biosen C-Line blood lactate during the course of the incremental test where time has been
normalised to 0-100% of the test duration and a locally estimated scatter smooth (LOESS) curve for each has been performed; panel (B) shows the individual participant level predicted
values (thick lines) with 95% quantile intervals (ribbons) from the fitted model; panel (C) shows the global grand mean estimate (thick line) from the model with 95% quantile interval
(dark grey ribbon) in addition to intervals for the conditional effects including the random effects of participants (lighter grey ribbon) and the posterior predictions (lightest grey ribbon).
Individual points in each panel are the individual observed values of data; and panel (D) shows the scatterplots of lactate thresholds detected from either wearable sensor or blood lactate
values using Dmax, Exp-Dmax, LT1, LT2, and ModDmax.
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Agreement of lactate thresholds detected using blood lactate values
compared to wearable sensor values

Scatterplots of lactate thresholds calculated from either blood lactate or from the wearable
sensor values using either Dmax, Exp-Dmax, LTP1, LTP2, or ModDmax can be see in Figure 1
panel (D). In comparing the two devices there appeared to be the greatest agreement in
threshold detected when using the ModDmax method with a bias of -0.95 [95% confidence
interval: -13.85, 11.95] Watts and lower and upper 95% limits of agreement of bias of -31.2
[95% confidence interval: -45.6, -16.8] and bias of 29.3 [95% confidence interval: 14.9, 43.7]
Watts respectively. For the ModDmax method the p--- = 0.93 [95% confidence interval:
0.77, 0.98].

Discussion

This study aimed to assess the accuracy of a novel non-invasive blood lactate analyser during
incremental cycling. Initial results from this pilot study would suggest that the greatest agree-
ment in threshold detection was observed when using the ModDmax, which aligns with LT2
(i.e., the second break point in blood lactate). The weakest agreement was observed for LT1,
where blood lactate initially rises from baseline. It should be noted, however, that the limits
of agreement were wide for all thresholds, and this is something that should be considered for
future development of this product. The results highlighted variation between individuals in
the raw wearable sensor baseline values at rest, which was accounted by standardising within
participants for during analysis. It was not clear, however, if the baseline would vary for each
participant between different occasions and this is an area that requires further investigation
before a standard adjustment could be incorporated within the system.

It is not intended for this device to be used in the medical field and, therefore, the absolute
prediction of blood lactate is less important. However, there did appear to be a fairly clear
quadratic relationship between the standardised lab-based system lactate and wearable sensor
values which requires further out of sample testing in future research. In a sporting context,
the practical application of this device would be primarily to identify different deflection points
in blood lactate during exercise, which can be used to inform training and race strategy. These
thresholds could then be presented to the athlete in real-time based on heart rate, speed, or
power output for the purposes of exercising within the optimal exercise intensity domain. It is
recognised that there are several methods for determining an individual’s threshold [11,26].
For endurance athletes, the initial rise from baseline (e.g., LT1) would be of significant impor-
tance as this would identify the upper region of the moderate intensity domain where exercise
can be sustained for several hours [2]. Considering that the weakest agreement was observed
for this threshold, additional development is required to identify where the processing of the
wearable sensor can be adjusted.
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Conclusion

This pilot study demonstrates a proof of concept for the wearable sensor as a non-invasive
system for estimating blood lactate and an individual’'s exercise thresholds. The strongest
agreement in threshold detection was observed when using the ModDmax method, and the
weakest agreement was observed when using LT1. The inclusion of only white male partici-
pants is a limitation of this study. Further research should therefore focus on how the sensor
works with different demographics (e.g., sex, ethnicity) and the impact of conditions such as
hydration status or sweat rate. Additionally, future developments should focus on reducing
the overall size of the wearable sensor and incorporating technology to allow live feedback
within a watch or cycling computer.
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