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Abstract 

Pre-post randomised controlled trials (RCT) are the most common design used to build an evidence base in strength and 

conditioning but are limited by small effects, small samples sizes, and concomitant low statistical power. The purpose of 

this study was to explore the effects of manipulating a range of factors including intervention length, frequency, and pattern 

of outcome measurements on the sample size required to achieve adequate statistical power. A case-based approach was 

used to enhance applicability.  

 

Realistic data generating patters were considered for hypothetical RCTs investigating resistance training interventions to 

improve maximum strength as measured by the 1RM bench press. Improvements for the ‘reference’ intervention and 

subsequent average treatment effect for the ‘testing’ intervention were matched to data summarised in recent large meta-

analyses. Different measurement error magnitudes were added to the high frequency RCT data to recreate the use of 1RM 

prediction methods that could be used during training sessions. A closed form solution linking statistical power and sample 

size was used to explore different strategies with simulations performed as a final check.  

 

The results showed large improvements in statistical power could be achieved when conducting interventions over a longer 

period (e.g. 18 weeks), and/or performing multiple outcome measurements. Efficient reductions in required sample sizes 

could be achieved by performing multiple measurements at baseline and post-intervention. This strategy, however, may be 

limited by induced fatigue or training effects. Similar reductions in sample size could be achieved by performing high-

frequency measurement throughout the intervention. This reduction in sample size was demonstrated despite acute 

increases in measurement error (factor of 1.5 and 2) that would occur when using prediction methods. 

 

In conclusion, very low statistical power is likely the norm in pre-post RCTs in strength and conditioning. Simply increasing 

sample size is unlikely to remedy the situation given the resource constraints that are common in the discipline. The results 

of this study suggest that researchers should consider other strategies including longer interventions and high frequency 

data collection to obtain adequate statistical power with feasible resources.  
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Introduction 
 
A broad range of strength and conditioning approaches and training regimes have been shown to cause readily observable 

improvements across many populations and outcome domains of interest. Within this context, it is common for athletes 

and coaches to seek interventions that maximise improvements. To assist in this regard, researchers frequently compare 

similar training practices using randomised controlled trials (RCTs). Previous reviews of RCTs in strength and conditioning 

have shown that most studies employ a pre-post design (single baseline and post-intervention measurement) with 

interventions lasting between eight to twelve weeks and include sample sizes of ten to twenty per group.1,2 In a recent 

simulation study creating data to reflect patterns typical in strength and conditioning, I demonstrated that statistical power 

is likely to be very low.3 Statistical power was shown to be influenced by a range of factors including the average treatment 

effect (ATE), sample size, treatment response heterogeneity, and measurement error.3 When analysing a small ATE 

contextualised for strength and conditioning, statistical power tended to remain below ~0.2 for sample sizes less than 20 

per group, and only reached ~0.4 for small measurement errors and a sample size of 50 per group.3 Given there is a strong 

desire in strength and conditioning to identify the most effective approaches and training regimes, RCTs will frequently 

compare similar interventions such that the ATE should be expected to be small. With greater sample sizes a concomitant 

increase in statistical power will occur. However, given 90% of RCTs in strength and conditioning include sample sizes of 

20 or less per group,1 it does not appear that simply increasing the number of participants is a viable strategy and 

alternatives are required that fit within the typical resource constraints of the discipline.  

 

I have suggested a move-away from pre-post designs and instead collecting high-frequency data measured daily or multiple 

times per week.3 Whilst, the collection of high-frequency data is unlikely to be a solution to low statistical power in all 

scenarios, there may be a range for which the approach obtains adequate statistical power for realistic sample sizes. The 

ability to collect high-frequency data will depend on the intervention and the outcome of interest. For cases where 

measurements are not cost or resource-intensive and do not interact with the intervention itself, high frequency 

measurement may be easy to adopt. Examples include measures of body composition through body mass and 

bioimpedance analysis that can be measured on a daily basis.4-6 Additionally, more laboratory-based body composition 

measurements including use of ultrasound or 3D body scanning could potentially be used at each participant visit if training 

regimes are supervised.7,8 There is also the potential for participant reported outcomes such as pain and muscle soreness to 

be recorded multiple times per day with digital technologies available to robustly collect the data.9 Similarly, technology 
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exists for participants to conduct their own physical tests such as the vertical jump and accurately measure a range of 

variables using smartphone applications.10  

 

In contrast to cases where testing does not interact with training interventions, there are likely to be more cases where 

interactions are severe. For example, in many studies comparing resistance training interventions the primary outcome of 

interest is maximum strength. The frequent measurement of this outcome domain using standard tests such as 1RMs are 

likely to alter the training stimulus rendering the RCT invalid. It may be possible, however, to predict maximum strength or 

other relevant outcomes using data that can be collected during the training intervention itself. Where the intervention 

includes performance of repetition maximums, previously validated regression equations that predict 1RM from the load 

lifted and the number of repetitions performed can be used.11,12 Alternatively, where sets are not performed to momentary 

failure, but repetitions are performed with the intention to move the load as fast as possible, more novel approaches 

including use of individualised load-velocity relationships can be used to predict 1RM.13 Velocity of the barbell can be 

measured using a range of technologies including low-cost options 14 with our recent review suggesting this approach 

would be useful for high frequency data collection and monitoring.13 With many of the approaches suggested measurement 

error may be increased compared with tests that are commonly used for pre-post designs. The increased frequency of data 

collection, however, may offset the acute increase in measurement error and ultimately improve ATE precision and thereby 

statistical power.  

 

There are a range of statistical approaches that can be used to analyse high-frequency data collected within an RCT. It has 

been argued that linear mixed models (LMMs) should be the default statistical approach to analyse experimental data 15 and 

there have been calls for greater use in sport and exercise science beyond traditional methods such as repeated measures 

ANOVA.16 The advantages of LMMs over traditional methods include greater statistical power, improved ability to handle 

missing data, and estimation of parameters that provide relevant insights into the data generating mechanism.17 LMMs 

include fixed effects and random effects, the former represent population-level (i.e., average) trends that should be 

persistent across experiments, and the latter represent the extent to which these trends vary across some grouping factor 

such as participants.17  LMMs are linear in their parameters but can include non-linear variables such as time from baseline 

allowing curvilinear changes over an intervention to be modelled.18 A large observational analysis conducted by Steele et 

al.19 of resistance training over seven years was shown to be appropriately modelled with linear-log growth such that 30-

50% of improvements were obtained over the first year. In the context of most RCTs in strength and conditioning, 
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however, interventions are generally short, and an assumption of linear change may be appropriate, estimable, and easier to 

interpret. The purpose of this study, therefore, was to explore whether a simple class of LMM could be applied to high 

frequency data from a typical RCT conducted in strength and conditioning to achieve adequate statistical power. 

Exploration was conducted using a closed form solution linking statistical power and sample size. Representative parameter 

values were used and combined with systematic variation of measurement error, and pattern of outcome measurements to 

achieve the study purpose.  
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Methods 
 
Approach to the problem 

In this study, results from recent large scale meta-analyses in strength and conditioning were combined with research on the 

accuracy of prediction methods to generate realistic data patterns across a range of scenarios that could be investigated for 

statistical power and sample size. To enhance the interpretability of the findings, a case study approach was used. The case 

was of an intervention study investigating the ATE between a “reference” resistance training intervention known to be 

successful and a new “testing” resistance training intervention hypothesised to be superior in improving maximum 

strength. The primary outcome measure was the 1RM bench press, which could be predicted using individualised load-

velocity relationships.20-31 Statistical power was approximated using a closed form solution and compared: 1) traditional pre-

post design; 2) multiple pre-post measurements; and 3) high-frequency data collected throughout the intervention. A range 

of realistic scenarios were investigated with manipulations made to: 1) the ATE magnitude; 2) the sample size in each 

group; 3) the frequency of measurements; 4) the magnitude of measurement errors; and 5) the strength of relationship 

between baseline values and change scores.  

 

Data generating and statistical model 

Typically, we conceptualise the data generating model for RCTs in discrete time with the true scores of participants 

denoted by 𝑌𝑖𝑗𝑘 , where 𝑖 = 1,2, … , 𝑁 indexes participants, 𝑗 = 0,1 indexes the reference and testing interventions, and 

𝑘 = 0,1 indexes the baseline and post-intervention measurements. Previously I outlined two data generating mechanisms 

referred to as the independent and constrained linear cases.3 For the independent case we have 𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛥𝑗 + 𝜉𝑖𝑗1, 

where Δ𝑗 is a constant describing the mean change in group 𝑗, and 𝜉𝑖𝑗1~𝑁(0, 𝜈1
2). The ATE is equal to Δ1 − Δ0 and 𝜈1

2 

quantifies individual variation in change scores. For the constrained linear case we assume that change across the 

intervention is influenced by the baseline value. In notation we have 𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛥𝑗 + 𝜏𝑌𝑖𝑗0 + 𝜉𝑖𝑗1, where 𝜏 sets the slope 

of the linear relationship between the true change score and baseline true score which is the same for each group, and 

𝜉𝑖𝑗1~𝑁(0, 𝜈1
2) describes any further variation in true change score and is independent from 𝑌𝑖𝑗0. The data generating 

mechanism is constrained by the fact that 𝜏 and 𝜈1
2 are the same across the groups.  

 

Where we can collect data during an intervention it is advantageous to consider other data generating mechanisms and 

associated statistical analyses. It is common to refer to RCTs with intermediate testing as 𝑆: 𝑇 repeated measures designs, 
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where 𝑆 denotes the number of measurements made at baseline, and 𝑇 denotes the number of measurements made after 

the intervention has started.32 LMMs provide a powerful and flexible framework to conceptualise and analyse longitudinal 

data. A simple LMM that could be used to analyse relatively short interventions (e.g. up to 6 months) is the random 

intercept and slope LMM with treatment by linear time interaction.32 The model can be expressed as  

𝑦𝑖𝑗𝑡 = 𝑏0𝑖 + 𝛽0 + 𝛽1𝐺𝑖𝑗 + (𝛽2 + 𝛽3𝐺𝑖𝑗 + 𝑏1𝑖)𝑡 + 𝜖𝑖𝑗𝑡 ,  where 𝑏0𝑖 is the participant random intercept which is distributed 

as 𝑏0𝑖~𝑁(0, 𝜎𝑏0
2 ) and denotes how much above or below the mean baseline value (𝛽0) each participant is, 𝐺𝑖𝑗 is a group 

indicator variable equal to 0 for the standard intervention, and 1 for the test intervention, 𝛽1 describes any group offset at 

baseline, 𝛽2 is the mean rate of change of the standard group (change in outcome per week), 𝛽3 is the difference in rate of 

change of the test intervention relative to the standard intervention (also referred to as the treatment by linear time 

interaction or comparative effect), and 𝑏1𝑖 is the participant random slope which is distributed as 𝑏1𝑖~𝑁(0, 𝜎𝑏1
2 ) and 

denotes how much each participants rate of change is  above or below the mean group rate of change. 𝑏0𝑖 and 𝑏1𝑖 follow a 

multivariate normal distribution  
𝑏0𝑖

𝑏1𝑖
~ℕ ([

0
0

] , [
𝜎𝑏0

2 𝜌𝜎𝑏0𝜎𝑏1

𝜌𝜎𝑏0𝜎𝑏1 𝜎𝑏1
2 ]), and 𝜖𝑖𝑗𝑡~𝑁(0, 𝛿2) describes variability due to 

factors not included in the model and measurement error. The multivariate relationship between 𝑏0𝑖 and 𝑏1𝑖 enables the 

random effects to be related such that when 𝜌 = 0 we have the independent case and pre-intervention value is not related 

to change, and when 𝜌 ≠ 0 they are related and we can match this to the constrained linear case (see the appendix for 

details).  

 

An advantage of considering data to be generated by the above LMM is that simple albeit approximate closed form 

solutions are available to link sample size and statistical power.33 These formulas can then be explored across various 

manipulations to identify for example what intervention length and measurement frequencies can obtain adequate statistical 

power given constraints on sample size. Using maximum likelihood estimates, Tango 32 derived the following notation and 

equation to link sample size and statistical power:    

𝑌𝑖𝑗𝑡𝑘
, where 𝑘 = −(𝑆 − 1), −(𝑆 − 2), … ,0,1, … 𝑇,  

𝑛𝑆,𝑇 = 2
(𝑍𝛼/2+𝑍𝜙)

2
 

𝛽3
2 (𝜎𝑏1

2 + 𝛿2𝑄(𝑆, 𝑇)−1),  

where 𝛼 is the probability of a Type I error (usually set to 0.05), statistical power is 1 − 𝜙 (usually set to 0.8), 𝑛𝑆,𝑇 is the 

sample size required for both groups, 𝑍𝛾 denotes the upper 100𝛾% percentile of the standard normal distribution, 𝛽3 is the 
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comparative effect size, 𝜎𝑏1
2  describes primarily between subject variability (e.g. response variability), and 𝛿2 describes 

within subject variability due to a broad conception of measurement error.34 We also have that  

𝑄(𝑆, 𝑇) = ∑ (𝑡𝑘 − 𝑡̅)2 + 𝑡̅2
(𝑆−1)(𝑇+1)

𝑆+𝑇
,𝑇

𝑘=0    

where  𝑡̅ = ∑
𝑡𝑘

𝑇+1
,𝑇

𝑘=0  𝑡0 = 0, and our 𝑇 post-baseline time of measurements are rounded to a decimal value, so that if our 

first two post-baseline measurements were in the middle and end of week 1 we would have 𝑡1 = 0.5 and 𝑡2 = 1.0.  

 

To explore statistical power and sample size using the above formulas and make it relevant to strength and conditioning, a 

range of scenarios were considered with systematic modifications made to: 1) the intervention length (6,12, and 18 weeks); 

2) the measurement structure (multiple baseline and post intervention measurements, or single baseline and equally spaced 

measurements); 3) the measurement frequency (1, 2, 4, and 7 days/week); 4) the comparative effect size (small: 𝛽3 =0.1875 

and medium: 𝛽3 =0.375); 5) the magnitude of measurement errors (5, 7.5, 10 kg); and 6) changes to sampling to reduce 𝜎𝑏0 

(𝜎𝑏0 =15, 𝜎𝑏0 =10, and 𝜎𝑏0 =5 kg). Further discussions of parameter values and attempts to align the LMM with standard 

conceptions of pre-post designs are presented in the appendix. Statistical power-sample size curves were generated with 

statistical power set from 0.1 to 0.9. To provide a check on the values obtained, direct simulations were conducted on those 

scenarios where statistical power of 0.8 was obtained with sample size ≤50. Simulations were performed in R,35 with the 

doParallel package 36 used to conduct parallel computation. R code for the study is presented in the appendix. 
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Results 

Based on the formula 𝑛𝑆,𝑇 = 2
(𝑍𝛼/2+𝑍𝜙)

2
 

𝛽3
2 (𝜎𝑏1

2 + 𝛿2𝑄(𝑆, 𝑇)−1), and once 𝛼 and 𝜙 are set, it can be seen that researchers 

greatest control over the sample size required is through within person variability (𝛿2) and the structure of measurements 

made (e.g. 𝑄(𝑆, 𝑇)). Whilst the researcher has some control over the variation in interindividual response (e.g. 𝜎𝑏1
2 ), this is 

limited. From the formula 𝑄(𝑆, 𝑇) = ∑ (𝑡𝑘 − 𝑡̅)2 + 𝑡̅2
(𝑆−1)(𝑇+1)

𝑆+𝑇
𝑇
𝑘=0  we can see that increasing the number of 

measurements and altering their structure can reduce the effects of within participant variability (𝛿2) thereby reducing the 

sample size required for a specified statistical power. It can also be seen that for a given number of measurements, sample 

size requirements are best reduced by performing these at baseline and as long as possible following baseline (e.g. long-

intervention lengths). Figures 1 and 2 illustrate this phenomenon. With the small comparative effect size, low measurement 

error (5 kg) and one measurement made at baseline and post-intervention, sample sizes of 660, 195, and 109 per group are 

required for statistical power of 0.8 for intervention lengths of 6, 12, and 18 weeks, respectively (Figure 1). In contrast, if 

four measurements are made at baseline and post-intervention, sample sizes required decrease to 195, 90, and 57 (Figure 1). 

With a medium comparative effect size, the single and quadruple set of measurements lead to required sample sizes of 165, 

49, 27; and 49, 20, and 14, respectively (Figure 2).  

 

Figures 1 and 2 also provide statistical power-sample size curves for equally spaced measurements across different 

intervention lengths and measurement error values. Again, large reductions in sample size are obtained with greater 

intervention lengths. Eventually, increasing the frequency of measurements provides limited additional benefits. For 

example, with the small comparative effect size, medium measurement error (10 kg) and intervention length of 18 weeks, 

we require sample sizes of 53 and 47 to obtain statistical power of 0.8 when measuring four times a week or seven times a 

week, respectively (Figure 1). For a medium comparative effect, sample sizes required are reduced to 13 and 12, respectively 

(Figure 12).  

 

Simulations performed to provide a check showed that the formula tended to overestimate the sample size required to 

obtain statistical power of 0.8. This overestimation was greatest for the small comparative effect size, with overestimations 

of approximately 10 participants per group. However, overestimations for the medium comparative effect size were 

generally between 1 and 2 participants per group.  
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Figure 1: Statistical power-sample size curves for small comparative effect size across different intervention lengths, 
measurement strategies, measurement frequencies, and measurement error magnitudes.  

 

Top-panel illustrates measurements made only at baseline and post-intervention. Other panels show equally spaced 
measurements comprising one at baseline and a multiple per week throughout the intervention.  
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Figure 2: Statistical power-sample size curves for medium comparative effect size across different intervention lengths, 
measurement strategies, measurement frequencies, and measurement error magnitudes.  

 
Top-panel illustrates measurements made only at baseline and post-intervention. Other panels show equally spaced 
measurements comprising one at baseline and a multiple per week throughout the intervention.  
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Where there is a relationship between change scores and baseline values, we can see that 𝜎𝑏1
2 =

𝜏2𝜎𝑏0
2 +𝜈̃1

2

𝑡𝑇
2  (see appendix for 

further details). Therefore, between participant variability 𝜎𝑏1
2  can be reduced by recruiting a more homogenous group such 

that 𝜎𝑏0
2  is reduced. We can see from the statistical power-sample size formula, that reducing 𝜎𝑏1

2  will have a constant 

reduction in required sample size regardless of the number or spacing of measurements. It can also be seen that, greater 

reductions in required sample size for a given 𝛼 and statistical power will be obtained for lower comparative effect sizes. In the 

present study eight conditions (2×2×2) were investigated with modifications to the comparative effect size, the amount of 

change score variance contributed by the relationship between 𝜎𝑏0
2  and 𝜎𝑏1

2 , and the magnitude of reduction in 𝜎𝑏0
2  through 

sampling. Derivations of the formulas to calculate the change in sample size are presented in the appendix. For the small 

comparative effect size, the reduction in required sample size for 𝛼=0.05 and statistical power of 0.8 ranged from 6 to 18, and 

for the medium comparative effect size ranged from 1 to 4. 

 

 

  

https://doi.org/10.31236/osf.io/y7sk6


Doi: 10.51224/SRXIV.364 SportR𝜒iv Preprint version 1 

 

 

  Discussion 
 

The results from this study suggest that research designs, measurement strategies, and more contemporary statistical 

practices can be combined to obtain adequate statistical power for RCTs conducted in strength and conditioning with 

sample sizes that are feasible given typical resource constraints of the discipline. The following sections will discuss the 

findings and their implications for future research.  

 

Underpinning this study is the assumption that the response of individuals to a single training intervention can be 

adequately described by a linear model. Whilst long-term observational studies show that improvements to strength and 

conditioning interventions will be non-linear,19 over the shorter-term which is typical of RCTs, a linear model may be 

appropriate. In our large meta-analysis, we identified an ordered effect with greater magnitude improvements obtained with 

intervention durations exceeding 10 weeks as compared to intervention durations of 6 to 10 weeks, and less than 6 weeks.37 

What is probably not as well understood in strength and conditioning research, is the large improvements in statistical 

power that can be achieved if interventions are conducted over longer durations (assuming the underlying data generating 

model presented is appropriate). As a reference calculation, the sample size required for statistical power of 0.8 with a pre-

post design, small comparative effect and relatively low measurement error (e.g. 5 kg for the bench press), was 660, 195, 

and 109 when the post-intervention measurement was made at 6, 12, and 18 weeks, respectively. Similarly with a medium 

comparative effect size, the sample sizes reduced to 165, 49, and 27. These represent enormous savings in resources that 

can be achieved with conducting longer interventions, which are also more reflective of strength and conditioning in 

practice and the time course for stable adaptations.38,39   

 

Another practice that is not well understood in strength and conditioning research, is the large improvements in statistical 

power that can be achieved if baseline and post-interventions measurements are repeated. As the statistical power-sample 

size formula used highlights, for a given number of measurements made, statistical power is increased the most by 

performing these at baseline and post-intervention.33 Combining the long intervention period of 18 weeks with repeated 

baseline and post-intervention measures, the results from this study show that the sample size required for statistical power 

of 0.8 (small comparative effect size and relatively low measurement error) was 109, 75, 63, and 57 for 1, 2, 3, and 4 sets of 

measurements, respectively. For the medium comparative effect size, the required sample sizes reduced to 27, 19, 16, and 

13. The combination of longer interventions and duplicate measurements at baseline and post-intervention should be 

strongly considered as a strategy to obtain adequate statistical power for future RCTs in strength and conditioning. There is 

https://doi.org/10.31236/osf.io/y7sk6


Doi: 10.51224/SRXIV.364 SportR𝜒iv Preprint version 1 

 

 

the possibility, however, that multiple testing at baseline and post-intervention will not be feasible as the repeat testing may 

cause training or fatigue effects that disrupt assessment of the interventions.   

 

An alternative and more feasible strategy may be to conduct additional measurements during the intervention. As 

highlighted in the introduction, there may be cases where the same measurement process used at baseline and post-

intervention is also appropriate during the intervention. There are likely to be many cases, however, where this is not 

possible, and outcomes are best obtained with prediction methods that add some additional measurement error. Despite 

the increase in measurement error with prediction methods, the results from this study highlight with sufficient frequency 

of measurement, this problem can be overcome, and required sample sizes lowered to that achieved when performing 

multiple baseline and post-intervention measurements. For example, with the small comparative effect size and 18-week 

intervention, sample sizes of 53 and 62 were found to provide statistical power of 0.8 when measurements were made four 

times per week and errors were increased by a factor of 1.5 and 2, respectively. If the measurements could be made each 

day in the week, the sample sizes reduced to 47 and 53. For the medium comparative effect size, the sample sizes were 13 

and 16 for measurements made four times per week, and 12 and 13 for measurements made seven times per week.  

 

Collectively, the results of the study highlight that when the comparative effect size is small, there may still be substantial 

resource required to obtain adequate statistical power (e.g. sample sizes >40). However, the resource is much smaller than 

the hundreds of participants that are required with small comparative effect sizes and short interventions using a pre-post 

design. The statistical-power sample size calculation used for this study highlights that there are limitations with regards to 

high frequency measurements. This strategy reduces the effects of within participant variation but does not alter the 

influence of between participant variability. Where this latter variation is large, statistical power is likely to be low unless 

more participants are recruited. Where there is a relationship between baseline values and change scores, between 

participant variation can be reduced by recruiting more homogenous participants. However, the results of this study show 

that the reduction may be small and restricting recruitment of participants to be more homogenous may lead to issues with 

generalising findings. The sample recruited should reflect the population the researcher wishes to generalise to and for 

which the data generating mechanism studied is appropriate.  

 

Further research on the statistical analysis of high frequency data collection to improve RCTs is required. The present 

study introduced a relatively simple model and did not consider complexities that exist within actual studies. Where 
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high frequency measurements are possible, the structure of the data may include dependencies beyond that 

considered here. Further research is required to identify the structure of high frequency data in strength and 

conditioning, which may include for example autoregressive errors.40 With a better understanding of the structure of 

the data, more accurate statistical models can be applied that may further improve statistical power with realistic 

sample sizes. Further research is also required to investigate the effects of issues such as missing data and drop-outs 

that may increase with high frequency data collection. The performance of more complex models including 

multivariate models is required to determine how best to accommodate RCTs with multiple outcome variables that 

are likely to be correlated.3 Further research should also be conducted to explore the use of Bayesian approaches and 

how previous data and structured expert elicitation can be used to build informative priors that better leverage pre-

existing knowledge.  
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Adequate statistical power in strength and conditioning may be 
achieved through longer interventions and high frequency 
outcome measurement. 
 
Paul, A. Swinton 

 

Appendices 

 
Data generating mechanisms 
In this section we introduce the notation used and explain the data generating mechanisms assumed to produce pre- and post-intervention 
values for traditional RCT analyses and higher frequency data to be analysed with linear mixed models.    
 
Notation for pre- and post-intervention data 

𝑌𝑖𝑗𝑘 is the true score of participant 𝑖 (𝑖 = 1,2, … , 𝑛), in group 𝑗 (𝑗 = 0,1) at time 𝑘 (𝑘 = 0,1). 

𝑦𝑖𝑗𝑘 is the observed score (true score plus measurement error). Groups 𝑗 = 0,1 are both considered intervention groups, and times 𝑘 =

0,1 refer to baseline and post-intervention, respectively. 

Pre-intervention we draw from a normal distribution with mean 𝜇0 and standard deviation 𝜎0 to obtain 𝑌𝑖𝑗0~𝑁(𝜇0, 𝜎0
2). We assume that 𝑗 

is randomly assigned with equal probability and is independent of 𝑌𝑖.0.  
What we observe in data collection is the true value plus error given by 𝑦𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 + 𝜖𝑖𝑗., where 𝜖𝑖𝑗.~𝑁(0, 𝛿2) is independent of 𝑌𝑖𝑗𝑘 . 
 
Data generation 

The baseline and post-intervention true scores are generated from a multivariate normal distribution 
𝑌𝑖𝑗0

𝑌𝑖𝑗1
~ℕ ([

𝜇0

𝜇𝑗1
] , [

𝜎0
2 𝜌𝑗𝜎0𝜎𝑗1

𝜌𝑗𝜎0𝜎𝑗1 𝜎𝑗1
2 ]), 

where 𝜇𝑗1 and 𝜎𝑗1 are the group mean and standard deviation in post-intervention true scores, and  𝜌𝑗 is the group correlation between 

baseline and post-intervention true scores. Throughout we only consider the homogenous case, that is where 𝜌0 = 𝜌1 and 𝜎01
2 = 𝜎11

2 . We 

consider two homogenous cases including: 1) the independent case where Corr(𝑌𝑖𝑗0 , 𝑌𝑖𝑗1 − 𝑌𝑖𝑗0) = 0; and 2) the constrained linear case 

where Corr(𝑌𝑖𝑗0 , 𝑌𝑖𝑗1 − 𝑌𝑖𝑗0) ≠ 0. 

 
Independent case 
For the independent case we express the data generating mechanism as  

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + 𝛥𝑗 + 𝜉𝑖𝑗1,  

where Δ𝑗 is a constant describing the average change in group 𝑗, and 𝜉𝑖𝑗1~𝑁(0, 𝜈1
2) describes the variation in true change score which is 

the same across groups to fit with the homogenous case. From this data generating mechanism we have the following relationships:  

Cov(𝑌𝑖𝑗0 , 𝑌𝑖𝑗1) = 𝐸(𝑌𝑖𝑗0𝑌𝑖𝑗1) − 𝜇0𝜇𝑗1   

                           = 𝐸 (𝑌𝑖𝑗0(𝑌𝑖𝑗0 + Δ𝑗 + 𝜉𝑖𝑗1)) − 𝜇0(𝜇0 + 𝛥𝑗)  

                             = 𝜎0
2 + 𝜇0

2 + 𝜇0𝛥𝑗 − 𝜇0(𝜇0 + 𝛥𝑗)   

                             = 𝜎0
2.                                             Result 1 

 

Cov(𝑌𝑖𝑗0 , 𝑌𝑖𝑗1 − 𝑌𝑖𝑗0) = 𝐸 (𝑌𝑖𝑗0(𝑌𝑖𝑗1 − 𝑌𝑖𝑗0)) − 𝜇0(𝜇𝑗1 − 𝜇0)    

                                      = 𝜎0
2 + 𝜇0𝜇𝑗1 − (𝜎0

2 + 𝜇0
2) − 𝜇0(𝜇𝑗1 − 𝜇0)  

                                       = 0.                                                                            Result 2 
The distribution of baseline and post-intervention true scores for the independent case are thus 

𝑌𝑖𝑗0

𝑌𝑖𝑗1
~ℕ ([

𝜇0

𝜇0 + 𝛥𝑗
] , [

𝜎0
2 𝜎0

2

𝜎0
2 𝜎0

2 + 𝜈1
2]).                                                                            Result 3 

 
Constrained linear case 
For the constrained linear case we assume the data generating model 

𝑌𝑖𝑗1 = 𝑌𝑖𝑗0 + Δ̃𝑗 + 𝜏𝑌𝑖𝑗0 + 𝜉𝑖𝑗1,  

https://doi.org/10.31236/osf.io/y7sk6


Doi: 10.51224/SRXIV.364 SportR𝜒iv Preprint version 1 

 

 

where 𝜏 sets the slope of the linear relationship between the true change score and baseline true score which is the same for each group, 

and Δ̃𝑗  sets any group offset. 𝜉𝑖𝑗1~𝑁(0, 𝜈1
2) describes any further variation in true change score not caused by differences in baseline true 

score and is independent from 𝑌𝑖𝑗0. The data generating mechanism is constrained by the fact that 𝜏 and 𝜈1
2 are the same across the groups. 

From this data generating mechanism we have the following relationships:  
 

Cov(𝑌𝑖𝑗0 , 𝑌𝑖𝑗1) = 𝐸(𝑌𝑖𝑗0𝑌𝑖𝑗1) − 𝜇0𝜇𝑗1   

                           = 𝐸 (𝑌𝑖𝑗0(𝑌𝑖𝑗0 + Δ̃𝑗 + 𝜏𝑌𝑖𝑗0 + 𝜉𝑖𝑗1)) − 𝜇0(𝜇0 + Δ̃𝑗 + 𝜏𝜇0)  

                            = 𝜎0
2 + 𝜇0

2 + 𝜇0Δ̃𝑗 + 𝜏(𝜎0
2 + 𝜇0

2) − 𝜇0
2 − Δ̃𝑗𝜇0 − 𝜏𝜇0

2   

                            = (1 + 𝜏)𝜎0
2.                                      Result 4 

 
 

Cov(𝑌𝑖𝑗0 , 𝑌𝑖𝑗1 − 𝑌𝑖𝑗0) = 𝐸 (𝑌𝑖𝑗0(𝑌𝑖𝑗0 + Δ̃𝑗 + 𝜏𝑌𝑖𝑗0 + 𝜉𝑖𝑗1 − 𝑌𝑖𝑗0)) − 𝜇0(𝜇0 + Δ̃𝑗 + 𝜏𝜇0 − 𝜇0)  

                                        = 𝐸 (𝑌𝑖𝑗0(Δ̃𝑗 + 𝜏𝑌𝑖𝑗0 + 𝜉𝑖𝑗1)) − 𝜇0(Δ̃𝑗 + 𝜏𝜇0) 

                                    = Δ̃𝑗𝜇0 + 𝜏(𝜎0
2 + 𝜇0

2) − Δ̃𝑗𝜇0 − 𝜏𝜇0
2  

                                         = 𝜏𝜎0
2.                                                                     Result 5 

 
The distribution of baseline and post-intervention true scores for the constrained linear case are thus 

𝑌𝑖𝑗0

𝑌𝑖𝑗1
~ℕ ([

𝜇0

𝜇0(1 + 𝜏) + Δ̃𝑗
] , [

𝜎0
2 (1 + 𝜏)𝜎0

2

(1 + 𝜏)𝜎0
2 (1 + 𝜏)2𝜎0

2 + 𝜈1
2]).                                           Result 6 

 
If we want the post-intervention means to match between the independent and constrained linear cases, then we have  

𝜇0 + 𝛥𝑗 = 𝜇0(1 + 𝜏) + Δ̃𝑗 → Δ̃𝑗 = 𝛥𝑗 − 𝜏𝜇0.  

 
If we want to match the change score variances between the independent and constrained linear cases, then we have 

𝜈1
2 = 𝜏2𝜎0

2 + 𝜈1
2.  

We set 𝜏2𝜎0
2 to a proportion 0 < 𝑐 < 1 of the variance 𝜈1

2, such that  

𝜏2𝜎0
2 = 𝑐𝜈1

2 → 𝜏 = ±
√𝑐𝜈1

𝜎0
, and we select 𝜏 to be negative.  

We then have 𝜈1
2 = (1 − 𝑐)𝜈1

2. 
 
 
 
Notation for high-frequency data 

𝑌𝑖𝑗𝑡 is the true score of participant 𝑖 (𝑖 = 1,2, … , 𝑛), in group 𝑗 (𝑗 = 0,1) at time 𝑡, where 𝑡 is expressed as a decimal with integer values 

representing the number of weeks from baseline, such that 𝑡 = 10, would equal 10 weeks from pre-intervention. And 𝑡 =
71

7
~10.14 

would equal 10 weeks and 1 day from pre-intervention.  

𝑦𝑖𝑗𝑡  is the observed score (true score plus measurement error). Groups 𝑗 = 0,1 are both considered intervention groups. 

Pre-intervention we draw from a normal distribution with mean 𝛽0 and standard deviation 𝜎𝑏0 to obtain 𝑌𝑖𝑗0~𝑁(𝛽0, 𝜎𝑏0
2 ). We assume that 

𝑗 is randomly assigned with equal probability and is independent of 𝑌𝑖.0.  
What we observe in data collection is the true value plus error given by 𝑦𝑖𝑗𝑡 = 𝑌𝑖𝑗𝑡 + 𝜖𝑖𝑗., where 𝜖𝑖𝑗.~𝑁(0, 𝛿2) is independent of 𝑌𝑖𝑗𝑡 . 
 
Data generation 
The high-frequency data are generated from a linear mixed model with random intercept and slope 
 

𝑌𝑖𝑗𝑡 = 𝑏0𝑖 + 𝛽0 + (𝛽2 + 𝛽3𝐺𝑖𝑗 + 𝑏1𝑖)𝑡,  
where 𝑏0𝑖 is the participant random intercept which is distributed as 𝑏0𝑖~𝑁(0, 𝜎𝑏0

2 ) and denotes how much above or below the mean 

baseline value each participant is, 𝛽2 is the mean rate of change of the standard group (change in outcome per week), 𝐺𝑖𝑗 is a group 

indicator variable equal to 0 for the standard intervention, and 1 for the test intervention, 𝛽3 is the difference in rate of change of the test 
intervention relative to relative to standard intervention (also referred to as the treatment by linear time interaction or comparative effect 

size), and 𝑏1𝑖 is the participant random slope which is distributed as 𝑏1𝑖~𝑁(0, 𝜎𝑏1
2 ) and denotes how each participants rate of change is  

above or below the mean group rate of change. 𝑏0𝑖 and 𝑏1𝑖 follow a multivariate normal distribution 
 

 
𝑏0𝑖

𝑏1𝑖
~ℕ ([

0
0

] , [
𝜎0

2 𝜌𝜎0𝜎𝑏1

𝜌𝜎0𝜎𝑏1 𝜎𝑏1
2 ]). 
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This multivariate relationship allows 𝑏0𝑖 and 𝑏1𝑖 to be related such that when 𝜌 = 0 we have the independent case and pre-intervention 

value is not related to change, and when 𝜌 ≠ 0 they are related. When we have measurement error our data generation mechanism 
becomes  
 

𝑦𝑖𝑗𝑡 = 𝑏0𝑖 + 𝛽0 + (𝛽2 + 𝛽3𝐺𝑖𝑗 + 𝑏1𝑖)𝑡 + 𝜖𝑖𝑗.,  

  

Where 𝜖𝑖𝑗. is independent 𝑏0𝑖 and 𝑏1𝑖 . 

 
From this data generating mechanism we have the following 

Var(𝑌𝑖𝑗𝑡) = 𝜎𝑏0
2 + 𝜎𝑏1

2 𝑡2 + 2𝑡𝜌𝜎𝑏0𝜎𝑏1.  
 

Cov(𝑌𝑖𝑗𝑡 , 𝑌𝑖𝑗𝑡′) = 𝐸(𝑌𝑖𝑗𝑡 , 𝑌𝑖𝑗𝑡′) − 𝜇0𝜇𝑗1  

                             = 𝐸 ((𝑏0𝑖 + 𝛽0 + (𝛽2 + 𝛽3𝐺𝑖𝑗 + 𝑏1𝑖)𝑡)(𝑏0𝑖 + 𝛽0 + (𝛽2 + 𝛽3𝐺𝑖𝑗 + 𝑏1𝑖)𝑡′)) −  

                             (𝛽0 + 𝛽2𝑡 + 𝛽3𝐺𝑖𝑗𝑡)(𝛽0 + 𝛽2𝑡′ + 𝛽3𝐺𝑖𝑗𝑡′) 

                             = 𝐸(𝑏0𝑖
2 + (𝑡 + 𝑡′)𝑏0𝑖𝑏1𝑖 + 𝑏1𝑖

2 𝑡𝑡′)  

                             = Var(𝑏0𝑖
2 ) + (𝑡 + 𝑡′)Cov(𝑏0𝑖 , 𝑏1𝑖) + 𝑡𝑡′Var(𝑏1𝑖

2 )  

                             = 𝜎𝑏0
2 + (𝑡 + 𝑡′)𝜌𝜎𝑏0𝜎𝑏1 + 𝑡𝑡′𝜎𝑏1

2 .  
  
If we want to match the pre-, post-intervention models and the linear mixed model, then to achieve this, we ensure that the variance at the 
post-intervention is the same as the variance of the final data point in the linear mixed model, and we ensure that the covariance between 
pre-, and post-intervention is the same as the covariance of the initial and final data points in the linear mixed model. For the independent 

case we set 𝜌 = 0, 𝜎0
2 = 𝜎𝑏0

2 , and 𝑡 = 𝑇𝐸𝑁𝐷  (the final week of the intervention) such that  

𝜎𝑏0
2 + 𝜈1

2 = 𝜎𝑏0
2 + 𝜎𝑏1

2 𝑇𝐸𝑁𝐷
2 → 𝜎𝑏1

2 =
𝜈1

2

𝑇𝐸𝑁𝐷
2 .  

 
For the constrained linear case we have   

(1 + 𝜏)𝜎𝑏0
2 = 𝜎𝑏0

2 + 𝑇𝐸𝑁𝐷𝜌𝜎𝑏0𝜎𝑏1 → 𝜌 =
𝜏𝜎0

2

𝑇𝐸𝑁𝐷𝜎𝑏0𝜎𝑏1
.  

 For the variances at post-intervention we have  

 (1 + 𝜏)2𝜎𝑏0
2 + 𝜈1

2 = 𝜎𝑏0
2 + 𝜎𝑏1

2 𝑇𝐸𝑁𝐷
2 + 2𝑇𝐸𝑁𝐷𝜌𝜎𝑏0𝜎𝑏1. 

Inserting 𝜌 from the previous equation we have  

(1 + 𝜏)2𝜎𝑏0
2 + 𝜈1

2 = 𝜎𝑏0
2 + 𝜎𝑏1

2 𝑇𝐸𝑁𝐷
2 + 2𝑇𝐸𝑁𝐷 (

𝜏𝜎𝑏0
2

𝑇𝐸𝑁𝐷𝜎𝑏0𝜎𝑏1
) 𝜎𝑏0𝜎𝑏1 → 𝜏2𝜎𝑏0

2 + 𝜈1
2 = 𝜎𝑏1

2 𝑇𝐸𝑁𝐷
2 → 𝜎𝑏1

2 =
𝜏2𝜎𝑏0

2 +𝜈̃1
2

𝑇𝐸𝑁𝐷
2 .  

  
 
In the data generating model we did not include a group difference at baseline, but it common to include and fit the model  
 

𝑦𝑖𝑗𝑡 = 𝑏0𝑖 + 𝛽0 + 𝛽1𝐺𝑖𝑗 + (𝛽2 + 𝛽3𝐺𝑖𝑗 + 𝑏1𝑖)𝑡 + 𝜖𝑖𝑗..  
 

 

Parameter selection for analysis  
 
To explore the effects of manipulations on statistical power-sample size curves, an approximation using a closed form solution for the 
random intercept and slope model with treatment by linear time interaction was used. The notation for the formula includes the number of 

measurements 𝑆 made at baseline, and the number of measurements 𝑇 made following baseline, expressed as 

𝑌𝑖𝑗𝑡𝑘
 where 𝑘 = −(𝑆 − 1), −(𝑆 − 2), … ,0,1, … 𝑇. We also have 𝑡−𝑆+1 = 𝑡−𝑆+2 = ⋯ = 𝑡0 = 0.  

The sample size for each group given the number of measurements 𝑆 and 𝑇 is denoted 𝑛𝑆,𝑇, and we have 33 

 

𝑛𝑆,𝑇 = 2
(𝑍𝛼/2+𝑍𝜙)

2
 

𝛽3
2 (𝜎𝑏1

2 + 𝛿2𝑄(𝑆, 𝑇)−1),  

where 𝛼 is the probability of a Type I error (set to 0.05), statistical power is 1 − 𝜙 (explored from values of 0.1 to 0.9), 𝑍𝛾 denotes the 

upper 100𝛾% percentile of the standard normal distribution, 𝛽3 is the comparative effect size, 𝜎𝑏1
2  describes primarily between subject 

variability (e.g. response variability), and 𝛿2 describes within subject variability due to a broad conception of measurement error.34 We 
also have that  
 

𝑄(𝑆, 𝑇) = ∑ (𝑡𝑘 − 𝑡̅)2 + 𝑡̅2
(𝑆−1)(𝑇+1)

𝑆+𝑇
.𝑇

𝑘=0    

 
The study was based on interventions to improve maximum strength in the bench press, and based on previous research.20-31 I assumed a 

baseline mean 𝜇0 = 𝛽0 = 100 kg, a population standard deviation of 𝜎0 = 𝜎𝑏0 = 15 kg. A measurement error value for conducting a 

1RM test of the bench press of 𝛿 = 5 kg was assumed. For the standard intervention, an improvement of 6 kg was assumed over 12 weeks 
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which returned 𝛽2 = 0.5 kg/wk. Using small and medium comparative effect sizes for strength and conditioning ,2 the small value was set 

to 𝛽3 =
0.15×15

12
= 0.1875 kg/wk, and the medium value set to 𝛽3 =

0.3×15

12
= 0.375 kg/wk. 𝜎𝑏1 was set so that only 5% of those in the 

standard group would have a slope that was negative, such 𝜎𝑏1 = 0.3, that is qnorm(0.05,0.5,0.3)=0.  
 

To investigate the effect of manipulating 𝜎𝑏1 through changes in sampling practices (that is reducing 𝜎𝑏0), eight conditions were considered 

based on manipulating three factors (e.g. 2×2×2 factorial). The first was the proportion of the change variance accounted for by the 

relationship between the change score and baseline (𝑐 = 0.25 and 0.5). The second was the restricted value of 𝜎𝑏0 (5 and 10). The third 

was the comparative effect size (small and medium). To determine the subsequent change in 𝜎𝑏1, we start with the relations 𝜈1 = 𝜎𝑏1𝑇𝐸𝑁𝐷  

and 𝜏 = −
√𝑐𝜈1

𝜎𝑏0
 such that 𝜏 = −

√𝑐𝜎𝑏1𝑇𝐸𝑁𝐷

𝜎𝑏0
. 

To identify the changed 𝜎𝑏1
2  from the original 𝜎𝑏1

∗2
 we use 𝜎𝑏1

2 =
𝜏2𝜎𝑏0

2 +𝜈̃1
2

𝑇𝐸𝑁𝐷
2 , and set 𝜈1

2 to (1 − 𝑐)𝜈1 = (1 − 𝑐)𝜎𝑏1
∗2

𝑇𝐸𝑁𝐷
2 . This gives 

𝜎𝑏1
2 =

𝑐𝜎𝑏1
∗2

𝑇𝐸𝑁𝐷
2

𝜎𝑏0
∗2 𝜎𝑏0

2 +(1−𝑐)𝜎𝑏1
∗2

𝑇𝐸𝑁𝐷
2

𝑇𝐸𝑁𝐷
2   

        =
𝑐𝜎𝑏1

∗2
𝜎𝑏0

2

𝜎𝑏0
∗2 + (1 − 𝑐)𝜎𝑏1

∗2
.  

 

For 𝑐 = 0.25 we have  

𝜎𝑏1
2 = 0.75𝜎𝑏1

∗2
+ 0.25 (

𝜎𝑏0
2

𝜎𝑏0
∗2) 𝜎𝑏1

∗2
  

        = (
3+𝜎𝑏0

2 /𝜎𝑏0
∗2

4
) 𝜎𝑏1

∗2
.  

 

For 𝑐 = 0.5 we have  

𝜎𝑏1
2 = 0.5𝜎𝑏1

∗2
+ 0.5 (

𝜎𝑏0
2

𝜎𝑏0
∗2) 𝜎𝑏1

∗2
  

        = (
1+𝜎𝑏0

2 /𝜎𝑏0
∗2

2
) 𝜎𝑏1

∗2
.  

 

From the closed form solution, we can see that the sample size that is reduced from lowering 𝜎𝑏1
2  for 𝑐 = 0.25 is 

2
(𝑍𝛼/2+𝑍𝜙)

2
 

𝛽3
2 (𝜎𝑏1

∗2
(1 − (

3+𝜎𝑏0
2 /𝜎𝑏0

∗2

4
))),  

 

And for 𝑐 = 0.5 is 
 

2
(𝑍𝛼/2+𝑍𝜙)

2
 

𝛽3
2 (𝜎𝑏1

∗2
(1 − (

1+𝜎𝑏0
2 /𝜎𝑏0

∗2

2
))).  
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Simulation check 
 
The table below provides results of simulations used to provide a check on the statistical power-sample size results with the approximate 
closed form solution. Checks were made on those results where statistical power of 0.8 was achieved with a sample size of 50 or less.  
 

Effect size Intervention 
length 

Measurement 
error 

Measurement 
frequency 

Sample size 
formula n, 
for power 

of 0.8 

Power of 
sample size 

with 
simulation 

Sample size for 
power of 0.8 

calculated with 
simulation 

0.1875 18 5 4×Week 46 0.97 35 

0.1875 12 5 7 ×Week 50 0.94 40 

0.1875 18 5 7 ×Week 43 0.97 31 

0.375 12 5 1 ×Week 25 0.81 25 

0.375 18 5 1 ×Week 15 0.87 13 

0.375 12 7.5 1 ×Week 45 0.81 45 

0.375 18 7.5 1 ×Week 21 0.84 19 

0.375 18 10 1 ×Week 30 0.83 28 

0.375 12 5 2 ×Week 19 0.88 17 

0.375 18 5 2 ×Week 13 0.90 11 

0.375 12 7.5 2 ×Week 29 0.84 28 

0.375 18 7.5 2 ×Week 16 0.88 14 

0.375 12 10 2 ×Week 44 0.82 43 

0.375 6 5 4 ×Week 44 0.84 42 

0.375 12 5 4 ×Week 15 0.90 13 

0.375 18 5 4 ×Week 11 0.78 12 

0.375 12 7.5 4 ×Week 20 0.85 18 

0.375 18 7.5 4 ×Week 13 0.90 12 

0.375 12 10 4 ×Week 28 0.82 28 

0.375 18 10 4 ×Week 16 0.89 14 

0.375 6 5 7 ×Week 31 0.82 30 

0.375 12 5 7 ×Week 13 0.89 11 

0.375 18 5 7 ×Week 11 0.92 9 

0.375 12 7.5 7 ×Week 16 0.86 15 

0.375 18 7.5 7 ×Week 12 0.92 10 

0.375 12 10 7 ×Week 21 0.85 19 

0.375 18 10 7 ×Week 13 0.89 11 
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R Code 
 
library(MASS) 
library(ggplot2) 
library(tidyr) 
library(dplyr) 
library(scales) 
library(lmerTest) 
library(foreach) 
library(doParallel) 
library(Hmisc) 
library(cowplot) 
 
# Statistical power-sample size function 
 
NSTPowerRange = function(t,beta3,sigmab,sigmaE,alpha=0.05,phi=rev(seq(0.1,0.9,0.05))){ 
  S = sum(t==0) 
  Tint = sum(t!=0) 
  t0 = c(0,t[t!=0]) 
  tbar = sum(t0)/(Tint+1) 
  QST = sum((t0-tbar)^2) + (((S-1)*(Tint+1))/(S+Tint))*tbar^2 
  nst = ((2*((qnorm(1-(alpha/2)) + qnorm(1-phi))^2))/beta3^2) * 
    (sigmab^2+((sigmaE^2)*(1/QST))) 
  names(nst) =c("0.1","0.15","0.2","0.25","0.3","0.35","0.4","0.45","0.5", 
                "0.55","0.6","0.65","0.7","0.75","0.8","0.85","0.9") 
  return(nst) 
} 
 
# Function to simulate LMM for a given number of iterations 
 
PostlmmallParams = function(n,t,sigmab0,sigmab1, beta0,beta2,beta3,rho,Iter){ 
  Datalmm = array(NA, c(2*n,length(t),Iter)) 
  G = c(rep(0,n),rep(1,n)) 
  for(i in 1:Iter){ 
    U = mvrnorm(n,c(0,0), 
                matrix(c(sigmab0^2,rho*sigmab0*sigmab1,rho*sigmab0*sigmab1,sigmab1^2),ncol=2)) 
    for(j in 1:length(t)){ 
      Datalmm[,j,i] = beta0 + U[,1] + t[j]*(beta2 + G*beta3 + U[,2])}} 
  return(Datalmm)} 
 
# Function to return estimates of the LMM and p values 
 
LMMAFunP = function(t,Data,ErrorSD){ 
  n = length(Data[,1]) 
  Timep = length(Data[1,]) 
  LmmResult=c(NULL) 
  DataError = Data +  matrix(rnorm(n*Timep,0,ErrorSD),nrow=n) 
  DataErrorDF = as.data.frame(DataError) 
  DataErrorDFL = as.data.frame(pivot_longer(DataErrorDF, cols = everything())) 
  DataErrorDFL$ID = rep(1:n,each=Timep) 
  DataErrorDFL$Group = c(rep("Standard",(n/2)*Timep),rep("Test",(n/2)*Timep)) 
  DataErrorDFL$Time = rep(t,n) 
  DataErrorDFL$ID = factor(DataErrorDFL$ID) 
  DataErrorDFL$Group = factor(DataErrorDFL$Group) 
 
  lmmA = summary(lmer(value~Group+Group*Time + (1+Time|ID), 
                             data=DataErrorDFL)) 
  LmmResult= c(as.numeric(lmmA$coefficients[4,c(1,2,5)]), 
                      as.data.frame(lmmA$varcor)[c(1,2,4,3),5]) 
  return(LmmResult)} 
 
# Function to turn results across iterations into a data frame for analysis 
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DataSortFun = function(DataA){ 
  OutP = DataA 
  OutPDF = t(as.data.frame(OutP)) 
  rownames(OutPDF)=NULL 
  OutPDF = as.data.frame(OutPDF) 
  OutPDFL = pivot_longer(OutPDF, cols = everything()) 
  OutPDFL$Statistic =rep(c("ATERate","SE","Pvalue","Sigma0","Sigmab","Sigma","rho"),Iter) 
  return(OutPDFL)} 
 
# Function to summarise results and calculate statistical power 
   
  OutputSum = function(OutPDFL){ 
    OutputSumc = OutPDFL%>% 
    group_by(Statistic) %>% 
    summarise(mean = round(mean(value),3),sd = round(sd(value),3), 
              Q25 = round(quantile(value, 0.25),3),Median = round(median(value),3), 
              Q75 = round(quantile(value, 0.75),3), 
              P005 = round(100*(mean(value<0.05)),1)) 
  Out = list(OutputSumc,OutPDFL) 
  return(Out) 
} 
 
 
 
# Study parameters 
# Beta0 =100, sigma0 = b0 = 15, sigmab1 =0.3, Beta2 = 0.5, Beta3 = (0.15*15)/12 =0.1875, nu = 0.1875*T 
 
# Examples of use of statistical power-sample size formula 
PrePost6One = round(NSTPowerRange(c(0,6),0.1875,0.3,5,alpha=0.05,rev(seq(0.1,0.9,0.05))),0) 
PrePost12One = round(NSTPowerRange(c(0,12),0.1875,0.3,5,alpha=0.05,rev(seq(0.1,0.9,0.05))),0) 
PrePost18One = round(NSTPowerRange(c(0,18),0.1875,0.3,5,alpha=0.05,phi=rev(seq(0.1,0.9,0.05))),0) 
 
# Double Pre and Post 
PrePost6Two = round(NSTPowerRange(c(0,0,6,6),0.1875,0.3,5,alpha=0.05,rev(seq(0.1,0.9,0.05))),0) 
PrePost12Two = round(NSTPowerRange(c(0,0,12,12),0.1875,0.3,5,alpha=0.05,rev(seq(0.1,0.9,0.05))),0) 
PrePost18Two = round(NSTPowerRange(c(0,0,18,18),0.1875,0.3,5,alpha=0.05,phi=rev(seq(0.1,0.9,0.05))),0) 
 
# Examples of simulation check 
 
n.cores = parallel::detectCores() - 4 
my.cluster = parallel::makeCluster( 
  n.cores, 
  type = "PSOCK" 
) 
doParallel::registerDoParallel(cl = my.cluster) 
 
lmmS18SME4Wk46 = PostlmmallParams(n=46,t=seq(0,18,0.25),sigmab0=15,sigmab1=0.3, 
beta0=100,beta2=0.5,beta3=0.1875,rho=0,Iter=10000) 
lmmS18SME4Wk46A_5 = foreach(i = 1:10000,.packages=c('lmerTest','tidyr')) %dopar% 
  LMMAFunP(t=seq(0,18,0.25),Data=lmmS18SME4Wk46[,,i],ErrorSD=5) 
lmmS18SME4Wk46A_5DF = DataSortFun(lmmS18SME4Wk46A_5,1000) 
OutputSum(lmmS18SME4Wk46A_5DF)[[1]] 
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