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Abstract 30 

Studying cognitive-physical interactions in self-paced high-intensity physical exercise presents 31 

the challenge of accounting for potential dual-task effects. In fact, self-pacing is thought to rely 32 

on top-down cognitive processing which makes it more susceptible to cognitive-physical 33 

interactions. Hence, even in paradigms where the experimental manipulation concerns the 34 

intensity of the exercise (i.e. high intensity versus low intensity) rather than its presence (i.e. 35 

exercise versus resting), performing the physical task might be more cognitively demanding in 36 

the higher intensity exercise condition. Here, we investigate the temporal dynamics of 37 

cognitive-physical interactions during dual-tasking by applying time-domain Granger Causality 38 

to data that combined indoor self-paced cycling and a cognitive task. Moreover, we investigate 39 

whether greater experience in self-pacing during cycling would reduce the need for exerting 40 

top-down control and therefore dual-task effects. We show that while cognitive and physical 41 

performance can interact in some individuals, better physical performance was not detrimental 42 

to cognitive performance in the expert cyclists group. We therefore propose that in self-paced 43 

physical exercise cognitive-physical interactions in expert cyclists are overall not confounded 44 

by dual-tasks interaction effects, although such interaction cannot be excluded for every single 45 

participant. 46 



 

Keywords: Dual-task, cognitive load, top-down processing, stimulus-response conflict, 47 

physical exercise. 48 

 49 

 50 

1 Introduction 51 

Cognitive performance during physical exercise is typically studied using one of two 52 

methodologies: either comparing an exercise condition with a non-exercise resting condition 53 

(e.g., Audiffren et al., 2008) or comparing two (or more) exercise conditions at different 54 

intensities (e.g., Ciria et al., 2019). In the first case, participants’ behavior is assessed in 55 

situations that differ in terms of physical and cognitive demands, as in the exercise conditions 56 

they perform a physical (e.g., walking on a treadmill or pedaling on an indoor bike) and 57 

cognitive (e.g., simple reaction times, RT) tasks at the same time. This is controlled, to some 58 

extent, in the second case, as participants are always subject to a dual-task situation. However, 59 

even in this case, performing the physical task might be more cognitively demanding in the 60 

higher intensity exercise conditions than in the lower intensity conditions, which might result 61 

in a potentially stronger interaction with the concurrent cognitive task. The study of these 62 

potential cognitive-physical interactions is particularly relevant in the exercise-cognition field, 63 

especially when examining the potential effect of acute physical exercise on cognitive processes 64 

(e.g., on memory or attention). Moreover, self-paced high-intensity exercise conditions, (e.g., 65 

a cycling time-trial where participants are instructed to perform their best for a given time) are 66 

highly susceptible to cognitive-physical interactions, since self-pacing is thought to rely on top-67 

down cognitive processing (Holgado & Sanabria, 2021). This issue is addressed in the two 68 

experiments included in this report. 69 

https://www.zotero.org/google-docs/?fzhMcs


 

Cognitive-physical interaction effects have been studied mainly during walk, whereby 70 

participants’ gait and cognitive performance is compared between single and dual-task 71 

conditions (see Al-Yahya et al., 2011, for a review). The potential cognitive-physical 72 

interaction has also been investigated through more intense exercise conditions, such as cycling 73 

(Brisswalter et al., 1995) or rowing (Duckworth et al., 2021). For instance, Brisswalter et al. 74 

(Brisswalter et al., 1995) reported a U-shape relationship between mean RT performance in a 75 

simple probe task and pedal rate, and a linear relationship between mean RT and VO2max.   76 

In cognitive-physical dual-task experiments, time series of physical and cognitive performance 77 

data are averaged within blocks of given lengths and analyzed using parametric or non-78 

parametric statistical tools (analysis of variance, t-tests, Mann-Whitney test, linear regression 79 

etc.) (e.g., Brisswalter et al., 1995). Instead, here we use a novel approach based on Granger 80 

Causality (GC) (Granger, 1969), in order to exploit the information contained in the temporal 81 

fluctuations in these measures to quantify their interdependencies and respective modulations. 82 

GC analysis involves building an autoregressive model to predict the future values of the system 83 

under consideration, given its past. The prediction on the target given by the values of its own 84 

past is then compared with the one to which also the past values of the candidate driver are 85 

included. If the prediction improves (i.e., if the candidate driver adds relevant information on 86 

the future values of the target above and beyond the information provided by the past values of 87 

the driver alone) it is said that the driver has a Granger influence on (or Granger causes) the 88 

driver. GC is then a proxy for a dynamical influence. Here we applied a multiscale version of 89 

time-domain GC (Faes et al., 2017) to capture influences at different temporal scales. It is 90 

important to stress that GC is informative on effects/behaviors, as opposed to mechanisms 91 

(Barrett & Barnett, 2013).  92 

https://www.zotero.org/google-docs/?S6w4hq
https://www.zotero.org/google-docs/?7KhHfj
https://www.zotero.org/google-docs/?0qGtMz
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The objective of the present study was twofold. First, we aimed at investigating temporal 93 

dynamics during dual-tasking involving self-paced cycling. This was addressed by applying 94 

GC to a dataset (Dataset 1) already published by our research group (Zandonai et al., 2021). 95 

Second, we studied the role of expertise in the potential interaction between physical and 96 

cognitive performance during a cycling self-paced time trial. If cyclists learn to efficiently self-97 

pace through experience (Brick et al., 2016; Edwards & Polman, 2013; Holgado & Sanabria, 98 

2021), they would reduce the need for exerting top-down control during cycling physical 99 

efforts. One would then expect a null or small interaction between the physical and cognitive 100 

tasks in expert cyclists, and a reliable interaction in non-expert endurance athletes, such as 101 

runners or swimmers.  102 

Our specific pre-registered hypotheses https://doi.org/10.17605/OSF.IO/6QAR5 were the 103 

following1: 1) power output will influence heart rate (HR) in both experts and non-experts; 2) 104 

a significant bidirectional influence between RT and power output in the cycling task will be 105 

shown only in non-experts; 3) experts will outperform non-experts in the cycling task, resulting 106 

in a longer distance covered in the 30-minute session, higher watts/kg ratio developed during 107 

the experiment, higher HR, and higher ratings of perceived effort (RPE); 4) experts will 108 

outperform non-experts in the RT task, resulting in shorter overall RT, reduced congruency 109 

effect and conflict adaptation (see below for a description of the task). 110 

2 Materials and Methods 111 

2.1 Participants 112 

 
1 Note that the pre-registration included the recording of muscle oxygenation saturation and hemoglobin, but we 

could not finally do it due to technical issues.  

https://www.zotero.org/google-docs/?RybXk6
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2.1.1 Dataset 1 113 

For Dataset 1, we re-analysed data from 23 healthy expert cyclists from a previous study 114 

(Zandonai et al., 2021). In the original experiment, 29 subjects completed an intense cycling 115 

exercise session under 3 different conditions: tramadol, paracetamol and placebo. Here, we 116 

analyzed the data from 23 participants (6 were discarded for technical issues) under the placebo 117 

condition to avoid any potential moderator effect of the drugs. 118 

2.1.2 Dataset 2 119 

For Dataset 2, we planned to collect data from 100 healthy athletes, 50 experienced cyclists and 120 

50 non-cycling endurance athletes (i.e., runners and swimmers). Given the difficulty of 121 

estimating an effect size a priori, we aimed for a large sample size based on our previous 122 

experience recruiting this type of participants. In addition, we planned to monitor the Bayes 123 

Factor (BF) for between-group differences in GC parameters and the other dependent variables, 124 

and to stop the experiment whenever the BF reached moderate evidence to support (BF>6) or 125 

reject the null hypothesis (BF<1/6). Finally, due to the time and budget constraints, we recruited 126 

a total of 44 participants, composed of 21 expert cyclists (20 males, mean age 31.95 years, 127 

range 18-55 years) and 22 non-expert athletes (runners and swimmers; 17 males, mean age 128 

25.63 years, range 18-55 years). Both expert cyclists and non-expert endurance athletes had at 129 

least 3 years of experience in their sport with a training routine of 4 or more days per week. We 130 

ensured that the non-experts did not include cycling in their training routine and had no previous 131 

cycling experience. Exclusion criteria were the presence of symptomatic cardiomyopathy, 132 

metabolic disorders, chronic obstructive pulmonary disease, epilepsy, therapy with b-blockers 133 

or medications that would alter cardiovascular function, hormonal therapy, smoking, or 134 

neurological disorders. Before taking part in the experiment, participants were informed about 135 

https://www.zotero.org/google-docs/?uvNL0n


 

the experiment and provided written consent. They received a compensation of 10€ for their 136 

participation in the experiment. The experiment was approved by the local ethical committee 137 

(978/CEIH/2019) and was conducted following the Declaration of Helsinki. 138 

 139 

2.2 Experimental design and procedure 140 

2.2.1 Dataset 1 141 

Dataset 1 corresponded to a self-paced high-intensity cycling session (indoor time-trial) lasting 142 

20 min, in which participants were told to perform their best, avoiding premature extenuation, 143 

while responding, as fast and accurately as possible, to the Sustained Attention to Response 144 

Task (SART) (Robertson et al., 1997). More details about the procedure can be found in the 145 

original article (Zandonai et al., 2021).  146 

2.2.2 Dataset 2 147 

2.2.2.1 Design and procedure 148 

Dataset 2 consisted of a between-participants design, with the main independent variable of 149 

Expertise (experts vs. non-experts). Participants performed a 30 min indoor high intensity self-150 

paced cycling session and an auditory Simon task simultaneously. Participants were asked to 151 

maintain their coffee intake habit (i.e., to avoid it if not used to) and refrain from taking any 152 

other stimulants for 8 h before the experimental session, as well as avoid any intense physical 153 

exercise 24 h prior to the test (as in Dataset 1). When participants arrived at the laboratory, the 154 

cycle ergometer (SRM indoor trainer, SRM, Germany) was adjusted to their preferences. The 155 

experimenter adjusted the chest heart rate monitor (H10, Polar Electro, Kempele, Finland). 156 

https://www.zotero.org/google-docs/?wlzfmO
https://www.zotero.org/google-docs/?pH0kzG


 

Power output was measured using the SRM indoor trainer and the Favero Assioma pedals 157 

(Favero Electronics SLR, Arcade, Italy). Auditory stimuli were presented through in-ear 158 

earphones (Hyperx, HP Inc., USA).  159 

 160 

2.2.2.2 Cycling session  161 

The session started with a 10-min warm-up at a power corresponding between 1.5 and 2.5 162 

W·kg–1. They were instructed to achieve the maximum mean power possible during the 30 min. 163 

Power and HR data were collected at a frequency of 1Hz. Perceived cognitive and physical 164 

effort was measured using a visual analogue scale. 165 

2.2.2.3 Task 166 

Participants were asked to perform an auditory version of the classic Simon task (Simon & 167 

Rudell, 1967). Recordings of the spoken words “izquierda” (left in Spanish) and “derecha” 168 

(right in Spanish) were presented to participants through the right or left earphone. Stimuli were 169 

considered congruent when the word meaning corresponded to the side from which they were 170 

played (e.g., listening to the word “derecha” through the right earphone) and incongruent when 171 

they did not (e.g., listening to the word “derecha” through the left earphone). Participants were 172 

asked to report by button pressing (with their thumb) the location depicted by the word meaning 173 

while ignoring its physical location (see Figure 1). For instance, if the word presented was 174 

“izquierda” the participant had to press a button with his left hand regardless of which 175 

headphone the word was played from. If the word presented was “derecha” the participant had 176 

to press a button with his right hand regardless of which headphone the word was played from. 177 

The response devices were placed on both sides of the bike’s handlebar, so the participant was 178 

https://www.zotero.org/google-docs/?vBb9vP
https://www.zotero.org/google-docs/?vBb9vP


 

able to respond without moving the hands away from the bike. Speed and accuracy were 179 

stressed. Participants had a maximum of 750 ms to respond, after which responses were 180 

discarded. The participant’s response and the following trial were separated by an Interstimulus 181 

interval (ITI) which was a random number between 800 and 1200 ms. If the participant did not 182 

respond, the ITI began after the response window of 750 ms ended. Testing was fixed in time 183 

duration, therefore the total number of trials depended on the participant's speed. During the 184 

warm-up, participants familiarized with the task through a 30 seconds practice block. 185 

 186 

 187 

Figure 1: Auditory conflict task. In each trial, participants either heard the word “left” or “right” played from the 188 

left or right headphone. The trials were congruent when the meaning of the word matched the location from where 189 

it was played, or incongruent if otherwise. Presentation of congruent or incongruent trials were equally probable 190 

and randomized. Participants responded by button pressing. They were instructed to press either the left or right 191 

button according to the meaning of the word, ignoring the location from which it was played. 192 

 193 

2.3 Preprocessing and statistical analysis 194 

For Dataset 1, the preprocessing followed the procedure reported in Zandonai and colleagues 195 

(2021). For Dataset 2, behavioral data corresponding to incorrect responses and omissions were 196 



 

removed. To match the time series to RT, we selected the time series sampling points closest 197 

to the time points of the behavioral responses.  198 

For both datasets, time series were detrended with the l1 norm (Kim et al., 2009) and 199 

standardized prior to the analysis. We used time-domain GC (Granger, 1969), which establishes 200 

whether an autoregressive model of a target time series improves when another time series is 201 

included in the model, acting as a proxy for a dynamical influence. Among the several 202 

modifications to Granger’s original conceptualization (see Shohaje & Fox, 2022 for a review), 203 

here we use a multiscale version of GC (Faes et al., 2017), allowing to assess Granger-causal 204 

influences broken down across several temporal time scales. The first scale contains all the 205 

temporal complexity of the time series (thus up to the Nyquist frequency). The second scale 206 

considers slower frequencies (up to half of the Nyquist frequency), the third one even slower 207 

(up to ⅓ of the Nyquist frequency) and so on. The approach used here, and described in detail 208 

in Faes and colleagues (2017), performs downsampling and averaging in a single step, allowing 209 

to mitigate problems arising by considering the two steps separately.  210 

We downsampled the time series up to a factor 12, i.e. we used 12 scale values, in steps of 1. 211 

The order of the autoregressive model was chosen according to the Bayesian Information 212 

Criterion testing the values from 1 to 20.  213 

In order to account for the simultaneous presence of short-term dynamics and long-range 214 

correlations, particularly prominent in the data under investigation, we complemented the 215 

model with a vector autoregressive fractionally integrated framework for Gaussian processes 216 

(Pinto et al., 2022). 217 

https://www.zotero.org/google-docs/?ubiD42
https://www.zotero.org/google-docs/?oujTRb
https://www.zotero.org/google-docs/?8PvasC
https://www.zotero.org/google-docs/?4tbVt0
https://www.zotero.org/google-docs/?4tbVt0
https://www.zotero.org/google-docs/?4tbVt0
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Statistical significance was assessed for every participant by building a null distribution using 218 

iterative amplitude adjusted Fourier Transform surrogates preserving the spectrum (Schreiber 219 

& Schmitz, 1996), and checking whether the results fall outside the 95th percentile of the null 220 

distribution. 221 

In Dataset 2, if significant effects were found in any of the participants, the BF (with the null 222 

hypothesis as denominator) for the GC parameters was calculated considering the independent 223 

variable “Expertise”. The BF was also calculated for the rest of between-group comparisons. 224 

To compare the conflict effect in the Simon task between groups, we computed the RT 225 

difference between incongruent and congruent trials for every participant. For the conflict 226 

adaptation effect, we first computed the congruency effect for previous congruent and previous 227 

incongruent trials, to then subtract the congruency effect of previous incongruent trials from 228 

that of previous congruent trials to obtain and index of the conflict adaptation effect. 229 

Data and analytic code can be found on the OSF page of the project 230 

(https://doi.org/10.17605/OSF.IO/6QAR5). 231 

 232 

3 Results 233 

3.1 Granger causality 234 

The GC analysis performed on Dataset 1 showed influence of power output on RT in only 4 235 

participants (out of 23), influence of RT over power output in 5 participants, and influence of 236 

power output on HR in 11 participants (see Figures 2 and 3). In Dataset 2, RT to power influence 237 

was shown in 7 expert cyclists (out of 21), and 8 non-expert cyclists (out of 23). Larger GC 238 

values were obtained in all time scales, although BF analyses showed anecdotal evidence for 239 

https://www.zotero.org/google-docs/?NmAeYn
https://www.zotero.org/google-docs/?NmAeYn


 

the null in the case of time scales 1 to 5, and anecdotal evidence for the alternative hypothesis 240 

for time scales 6 to 12 (see Table 1 in the supplementary material). Power influence on RT was 241 

shown in 5 experts (out of 21) and 6 non-experts (out of 23). Again, larger values were obtained 242 

for non-experts than for experts in all time scales, albeit all between-group comparisons showed 243 

anecdotal evidence for the null (all BF10 <.72; see Table 1 in the supplementary material). As 244 

expected, there was an influence of power output and HR in 12 experts (out of 21) and 19 non-245 

expert cyclists (out of 23), with larger values for non-experts than for experts in all time scales. 246 

Independent-samples BF t-tests showed anecdotal evidence for the null in all time scales (all 247 

BF10 <.78 see Table 1 in the supplementary material). Graphic representation of individual 248 

results are available in the supplementary material (supplementary figures 1 and 2 for the 249 

experts group of Dataset 1, supplementary figures 3 and 4 for the experts group of Dataset 2, 250 

and supplementary figures 5 and 6 for the non-experts group of Dataset 2). 251 

 252 



 

Figure 2.  Individual GC estimates of power to HR (top row), power to RT (middle row), and RT to power (bottom 253 

row). Estimates are calculated over 12 time bins in the experts (Dataset 1), experts and non-experts (Dataset 2) 254 

groups. Thin lines represent individual participants’ estimates and bold lines the group average. 255 

 256 

 257 

3.2 Reaction times, heart rate and power output, perceived physical and cognitive effort 258 

The analysis of the RT data showed anecdotal evidence for a null group difference in overall 259 

RT, BF10 = 0.45, anecdotal evidence for a larger congruency effect in non-experts than in 260 

experts, BF10 = 2.93, and anecdotal evidence for the null regarding the conflict adaptation effect, 261 

BF10 = 0.49. Strong evidence was shown for group differences in terms of overall power output, 262 

BF10 = 239189, relative power output (w/kg) BF10 = 145500000, and HR BF10 = 31.46. In terms 263 

of the perceived effort, the analysis showed anecdotal evidence for greater perceived physical 264 



 

effort in the expert group than in the non-expert group, BF10 = 1.844, and anecdotal evidence 265 

for the null in the case of perceived cognitive effort,  BF10 = 0.43 (see Figure 4).  266 

 267 

Figure 3. Group GC estimates of power to HR (top row), power to RT (middle row), and RT to power (bottom 268 

row). Estimates are averaged over each of the 12 time bins in the experts and in the experts and non-experts 269 

(Dataset 2) groups. Box plots show the median (middle horizontal line), and 25th and 75th percentiles (bottom and 270 

top horizontal lines). The upper and lower whiskers indicate the 1.5 times the interquartile range above the 75th 271 

percentile and below the 25th percentile. Gray dots represent outlier values.  272 

 273 

4 Discussion 274 

 275 

People can perform two tasks at the same time but usually at the cost of shared resources and 276 

potential interaction effects (Pashler, 1994). This is what has been reported for the case of motor 277 

tasks, such as walking, and RT tasks (Al-Yahya et al., 2011), and could in turn explain at least 278 

part of the variance in studies investigating cognitive performance during physical exercise 279 

(e.g., cycling) that compare exercise condition(s) with a resting condition (Chang et al., 2014), 280 

or even in the case of two cycling conditions with different intensities (Ciria et al., 2019).  281 

 282 

The results of Datasets 1 and 2 showed evidence of mutual interaction between power output 283 

and RT in some of the participants, with no evidence of group differences in GC indexes. In 284 

most cases when an interaction was present, its maximum was found at time scales slower than 285 

the one corresponding to the original sampling. For example, some individual and average 286 

curves peak at scale 7, corresponding to a frequency around 0.07 Hz, and to a period of about 287 

14 seconds. In other words, the dynamical processes of the driver time series which are more 288 

informative in predicting the dynamical processes of the target time series are located in a 289 

https://www.zotero.org/google-docs/?iuvt4p
https://www.zotero.org/google-docs/?J0FI2K
https://www.zotero.org/google-docs/?rX2cGH
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temporal range centered at this frequency. This lack of strong cognitive-physical interactions 290 

in any of the samples tested here contrasts with the evidence for better physical performance of 291 

the expert cyclists, and anecdotal evidence for better performance (i.e., reduced congruency 292 

effect) in the cognitive task. The expected influence of power output on HR was detected in 11 293 

out of 23 participants in Dataset 1 and 31 out of 44 participants in Dataset 2, which reflects the 294 

impact of workload on heart response (McCarthy & Wyatt, 2003).  295 

 296 

 297 

Figure 4. Group representation of the main variables measured in Dataset 1 and Dataset 2. Box plots depict the 298 

median (middle horizontal line), and 25th and 75th percentiles (bottom and top horizontal lines). The upper and 299 

lower whiskers indicate the 1.5 times the interquartile range above the 75th percentile and below the 25th 300 

percentile. Jittered dots are individual participants' means. 301 

 302 

https://www.zotero.org/google-docs/?7nS4xY


 

The GC results in both studies suggest that cognitive and physical performance can interact in 303 

some individuals, at least for the case of RT and self-paced high intense indoor cycling. Given 304 

that only a small portion of the sample showed that cognitive-physical interaction pattern, and 305 

that no clear group differences were reported, a potential ad-hoc explanation points to individual 306 

differences in self-pacing capacities/strategies, regardless of the particular expertise in the 307 

physical/motor cycling task. The lack of relationship between the RT and power output time 308 

series in the majority of the participants in Studies 1 and 2 could also be due to the use of a 309 

stationary indoor bike in a laboratory. Maintaining the desired cadence and effort pace seems 310 

much easier indoors than outdoors, where cyclists have to keep attending while riding in a 311 

changing environment and react rapidly to unexpected events that could compromise their 312 

safety (e.g., a pothole on the road, or a dog crossing the road). Hence, our results cannot be 313 

directly extrapolated to real cycling contexts, where the likelihood of physical and cognitive 314 

performance mutual influence might increase, and expertise could play a crucial role.  315 

 316 

In our study, however, expertise in cycling did not seem to be important according to the results 317 

of the BF analysis, even if larger GC values were shown for non-experts than for experts for 318 

both the influence of RT to power output and power output to RT. Participants in the non-expert 319 

group had no prior experience in cycling, but were endurance athletes with experience in self-320 

paced efforts, thereby explaining, at least partially, the lack of group differences in the GC 321 

indexes. In contrast, the analysis of central tendency measures, commonly used in this type of 322 

studies, showed strong evidence for group differences in terms of power output and HR, and 323 

anecdotal evidence for superior cognitive performance in experts. Together, these results could 324 

be taken as evidence of lack of dual-tasks interaction effects, as GC shows that better physical 325 

performance was not detrimental to cognitive performance in the expert cyclists group. In any 326 



 

case, the GC approach used here certainly provides more valuable information than those 327 

central tendency measures, at least for the purpose of looking at potential physical-cognitive 328 

performance interactions. 329 

 330 

In conclusion, our study brings two major contributions. One is the evidence that dual-task 331 

effects are likely to be negligible in expert cyclists, suggesting that experiments using 332 

paradigms in which the experimental manipulation concerns exercise intensity may be robust 333 

to dual-task confounds, although interactions between power output and RT cannot be 334 

discarded, at least in some participants. However, our study did not allow us to neatly isolate 335 

the effects of expertise in such a relationship. We recruited non-cyclist athletes to control for 336 

fitness levels and address cycling-specific expertise. Nevertheless, endurance athletes 337 

regardless of discipline may still acquire important experience in self-paced physical exercise. 338 

As a result, our findings cannot be generalized to any other group than those considered in this 339 

study as, for example, non-athletes. Another important contribution concerns the use of GC as 340 

a way of determining the potential dynamical influence between time series of physical and 341 

cognitive performance data in research on cognitive performance during cycling. Our results 342 

highlight the importance of GC measures in carefully assessing individual cognitive-physical 343 

interaction beyond group effects. 344 
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 445 



 

Supplementary figure 1. Individual GC estimates of the experts group from Dataset 1 (subject 446 

1 to subject 15). Estimates of power to HR, power to RT, and RT to power are calculated over 447 

12 time bins. Bold lines represent individual participants’ estimates and the gray shadowing the 448 

5th to 95th percentiles of the surrogate null distribution. The asterisks denote results that fall 449 

outside the 95th percentile of the null distribution. Note that participants’ numbers reflect the 450 

numbers assigned during data collection. 451 

 452 



 

 453 

Supplementary figure 2. Individual GC estimates of the experts group from Dataset 1 (subject 454 

17 to subject 28). Estimates of power to HR, power to RT, and RT to power are calculated over 455 



 

12 time bins. Bold lines represent individual participants’ estimates and the gray shadowing the 456 

5th to 95th percentiles of the surrogate null distribution. The asterisks denote results that fall 457 

outside the 99th percentile of the null distribution. Note that participants’ numbers reflect the 458 

numbers assigned during data collection. 459 
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Supplementary figure 3. Individual GC estimates of the experts group from Dataset 2 (subject 462 

1 to subject 12). Estimates of power to HR, power to RT, and RT to power are calculated over 463 

12 time bins. Bold lines represent individual participants’ estimates and the gray shadowing the 464 

5th to 95th percentiles of the surrogate null distribution. The asterisks denote results that fall 465 

outside the 95th percentile of the null distribution.  466 

 467 
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 469 

 470 
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 473 

Supplementary figure 4. Individual GC estimates of the experts group from Dataset 2  (subject 474 

13 to subject 21). Estimates of power to HR, power to RT, and RT to power are calculated over 475 

12 time bins. Bold lines represent individual participants’ estimates and the gray shadowing the 476 

5th to 95th percentiles of the surrogate null distribution. The asterisks denote results that fall 477 

outside the 95th percentile of the null distribution.  478 



 

 479 



 

Supplementary figure 5. Individual GC estimates of the non-experts group from Dataset 2  480 

(subject 1 to subject 12). Estimates of power to HR, power to RT, and RT to power are 481 

calculated over 12 time bins. Bold lines represent individual participants’ estimates and the gray 482 

shadowing the 5th to 95th percentiles of the surrogate null distribution. The asterisks denote 483 

results that fall outside the 95th percentile of the null distribution. 484 
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Supplementary figure 6. Individual GC estimates of the non-experts group from Dataset 2  487 

(subject 13 to subject 23). Estimates of power to HR, power to RT, and RT to power are 488 

calculated over 12 time bins. Bold lines represent individual participants’ estimates and the gray 489 

shadowing the 5th to 95th percentiles of the surrogate null distribution. The asterisks denote 490 

results that fall outside the 95th percentile of the null distribution. 491 

 492 

 493 

Table 1: Results of Bayesian independent-samples t-tests comparing GC parameters of the 494 

experts against the non-experts group of Dataset 2. BF are calculated with the null hypothesis 495 

as denominator, meaning that the larger the value, the more evidence is provided for the 496 

alternative hypothesis. 497 

 498 

 RT to power power to RT Power to HR 

scale BF10 error % BF10 error % BF10 error % 

1 0.299 0.006 0.348 0.006 0.782 0.006 

2 0.419 0.006 0.515 0.006 0.625 0.006 

3 0.582 0.006 0.464 0.006 0.566 0.006 

4 0.914 0.007 0.410 0.006 0.521 0.006 

5 0.916 0.007 0.436 0.006 0.499 0.006 

6 1010 0.007 0.408 0.006 0.443 0.006 

7 1.202 0.007 0.393 0.006 0.427 0.006 

8 1.060 0.007 0.522 0.006 0.400 0.006 

9 1.260 0.007 0.423 0.006 0.406 0.006 

10 1.310 0.007 0.446 0.006 0.386 0.006 

11 1.484 0.007 0.645 0.006 0.379 0.006 

12 1.592 0.008 0.729 0.006 0.394 0.006 
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